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Near-modern ecosystems were established as a result of rapid
ecological adaptation and climate change in the Late Miocene. On
land, Late Miocene aridification spread in tandem with expansion
of open habitats including C4 grassland ecosystems. Proxy records
for the central Andes spanning the Late Miocene cooling (LMC)
show the reorganization of subtropical ecosystems and hydrocli-
mate in South America between 15 and 35°S. Continental pedo-
genic carbonates preserved in Neogene basins record a general
increase of δ18O and δ13C values from pre-LMC to post-LMC, most
robustly occurring in the subtropics (25 to 30°S), suggesting aridi-
fication and a shift toward a more C4-plant-dominated ecosystem.
These changes are closely tied to the enhancement of the Hadley
circulation and moisture divergence away from the subtropics to-
ward the Intertropical Convergence Zone as revealed by climate
model simulations with prescribed sea-surface temperatures (SSTs)
reflecting different magnitudes of LMC steepening of equator-to-
pole temperature gradient and CO2 decline.
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The Miocene marks the establishment of near-modern eco-
systems, which are characterized by moderate atmospheric

CO2 concentrations (ranging from ∼200 to 300 ppm during the
Late Miocene to above 400 ppm during the Early and Mid-
Miocene) (1, 2) and the expansion of grassland biomes (3, 4).
The transition from greenhouse conditions of the Paleogene to
an increasingly near-modern climate state in the Miocene was
punctuated by two episodes of global climatic variation charac-
terized by clear shifts in stable isotope data from oceanic sedi-
mentary records: the Middle Miocene climatic optimum
(MMCO) and the Late Miocene cooling (LMC). Whereas the
MMCO has been recognized for some time, the significance of
the LMC is still being assessed, especially on the continent. The
LMC is associated with an ∼6 °C decrease in SST from 7 to
5.4 Ma across the high latitudes (30–50° N/S) (3); by Early Pli-
ocene time SSTs were similar to today (5). CO2 reconstructions
fail to show appreciable changes in CO2 concentration poten-
tially attributable to the lack of high-resolution records or
method limitation (2). Nonetheless, radiative forcing associated
with CO2 decline remains the leading hypothesis to explain the
LMC (3).
We focus on the central Andes (Fig. 1) because their tectono-

sedimentary history is well constrained (6); combined with a
wealth of geochemical data, this provides a unique opportunity
to reconstruct paleoclimate across South America. Relationships
between climate and vegetation have long been studied; the
global expansion of C4 plants has been linked to declining global
temperatures and CO2 concentrations since the Late Oligocene
(4). Expansion of C4 plants at ∼8 Ma in the central Andes has
been connected to an increase in seasonality (7). Prior records of
Cenozoic grassland appearance and expansion in South America
have primarily relied on the mammalian fossil record (8–10),

which shows an increase in C4 contribution to herbivore diets in
the Late Miocene (Fig. 2A) and an increasing abundance of
species with high-crowned (hypsodont) or ever-growing (hyp-
selodont) dentitions over time (Fig. 2B). In North America, this
morphology has been cited as evidence of the spread of grass-
lands during the Miocene (11), but hypsodont and hypselodont
species appear much earlier in South America (Middle Eocene,
∼40 Ma) (12), raising the possibility that open habitats resulting
from early aridification in the southern Andes may have con-
trolled faunal evolution (13, 14).
A key time interval for understanding Neogene climate and

ecosystem evolution across South America is the LMC event (3),
which coincides with global records of lower δ13C values in
marine carbonates (3, 15) and a general increase in soil car-
bonate δ13C. The latter is proposed to reflect an expansion of C4
grasses in North America, Asia, Africa, and South America (8,
16). These shifts suggest potential perturbation in the carbon
cycle at global scale. Nonetheless, signals of continental ecosystem
changes show that heterogeneous changes across the LMC are
embedded in the Late Neogene long-term global climate cooling
trend, which has hindered the reconstruction and understanding
of spatial structure of continental climate during the LMC.
We compile available δ18O and δ13C records from pedogenic

carbonates preserved in several basins along the central Andes,
between ∼15 and 35°S, and combine this analysis with general
circulation model simulations (Figs. 1 and 2). δ18O and δ13C of
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pedogenic carbonate nodules are used as a proxy for variations
of soil water δ18O and δ13C, and hence carry information about
hydroclimate and vegetation (17). Changes in soil water δ18O are
a function of elevation, moisture condition, moisture source, and
rainout history (18). The δ13C of pedogenic carbonate is a
function of concentration and δ13C of atmosphere CO2, and δ13C
of soil respired CO2. Variations of the latter is primarily domi-
nated by the photosynthetic pathway favored by different plant
species (C3, C4, or crassulacean acid metabolism photosynthesis)
(19), which in turn is modulated by the environmental conditions
experienced by plants during growth (20).
To evaluate hydroclimate sensitivity to changes in meridional

SST structure, Andean uplift, and expansion of C4 grasses, we
carried out a suite of six prescribed SST experiments using a
complex general circulation model ECHAM5-JSBACH-wiso
(21–23) with Miocene boundary conditions (Materials and
Methods). Due to the sparsity of SST estimates, an accurate
meridional SST gradient for the interval of 10–7 Ma is unavail-
able (24). To cope with uncertainties in changes in SST gradients
and CO2, we conducted three sensitivity experiments sampling
potential ranges of CO2 decline and steepening of equator-to-
pole SST gradient (EP-grad) from moderate (modCO2, by 180
ppm; modGrad, by 5 °C) to a great magnitude (greatCO2, by 280
ppm; greatGrad, by 7 °C) (3). Simulation results are reported as
difference between sensitivity experiments and the control.

Results
Geochemical Record of Paleoenvironmental Changes in the Central
Andes. In the central Andes, changes in oxygen isotopic compo-
sitions in the Miocene and Pliocene record are a result of
changes in both surface elevation and coevolving regional cli-
mate and paleoenvironmental conditions (25–28). We selected
records from sedimentary basins (Fig. 1) that achieved elevations
and topography similar to modern largely before the LMC (29–
31). Local topography was formed at different times due to the
different tectono-morphic setting of the basins considered in this
study (Fig. 1B). For example, structural, sedimentological, and
thermochronological data from the Angastaco Basin, in the
Eastern Cordillera (EC) of the central Andes, show that the local
orographic barrier to the east of the basin was not uplifted until
∼4 Ma (32), whereas the shift in stable isotope data occurs at
∼6 Ma (33). Similarly, the range east of the Santa Maria Basin

(Cumbre de Calchaquies) did not reach topography significant
to act as an effective rain shadow before ∼3 Ma (34). In general,
local orographic effects are not expected to produce universal
shifts in stable isotope values at the LMC boundary.

0 1.0 2.0 3.0 4.0
Elevation (km)

80oW 60oW 40oW

20
o N

40
o N

0o N

A B

PE balance (mm/month)
-20 0 20 40 60 80

Sierras 
Pampeanas

80oW 60oW 40oW

Altiplano-Puna
Plateau

SM
CQ

a 

b  
c 
d  Subandes
e  
f g
h  
i 

ANG

Iglesia

Sierras 
Pampeanas

Altiplano - EC

EC

Precordillera Fig. 1. (A) Ten-minute elevation map of South
America. (B) Mean annual precipitation minus evap-
oration (PE balance) map with locations of stable
isotope studies used in Figs. 2 and 3. Precipitation
and evaporation are averaged over 1980–2000 period
using data fromModern-Era Retrospective Analysis for
research and applications project. (MERRA, ref. 56);
with location of the basins used in this study (ANG,
Angastaco; CQ, Porta Corral Quemado; SM, Santa
Maria); proxies are from (a) (31); (b, c) (63, 64); (d) (36);
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Fig. 2. Compilation of datasets for (A) fossil enamel δ13C (12, 67) and (B)
fossil crown height (69, 70) from South America. Symbols correspond to
different specimens sampled from different latitudes within our region of
interest (15–35°S) emphasized by the colored circles. Vertical dashed lines
and gray bars identify the average and SDs in expected enamel δ13C values
for pure C3 feeders (∼−11/per mil), conservative upper limit for C3 feeders in
arid environments (∼−8 per mil), and pure C4 feeders (∼+3.5 per mil), re-
spectively (68). (B) Graph showing changes in the proportion of hypselodont
(i.e., ever-growing teeth) taxa in different assemblages from northern,
central, and southern Andes. The proportion of Elodont Mammalian Taxa at
Fossil Localities in South America is presented in SI Appendix, Table S1.
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δ18O and δ13C records are geographically grouped between 15
and 25°S, 25 and 30°S, and 30 and 35°S based on documented
isotopic signatures for individual basins before (light color),
during (medium color), and after the LMC (dark color) (Fig. 3).
Under present-day conditions, the 15–35°S band features balanced
precipitation minus evaporation (Fig. 1B), and mixed woodland
and grassland ecosystems (35). δ18O records from the Altiplano
and northern sector of the EC, between 15 and 25°S, show an
overall negative shift (Fig. 3). This shift is statistically significant at
northern sites (17–18°S) on the Altiplano (Fig. 3B, one-way
ANOVA, P < 0.05), where carbonate δ18O values decrease by
∼2‰ possibly reflecting a large drop in temperature (∼10 °C) and
surface uplift (26, 31). However, based on our climate simulations
(shown later), this large drop is also attributable to the more 18O-
depleted moisture associated with the enhanced moist convection in
the Intertropical convergence zone (ITCZ). Carbonate δ13C values
(Fig. 3A) show a clear increase of ∼3‰ from pre-LMC to LMC in
northern regions (17–18°S), which we attribute to enhanced aridity,
reduced plant cover, and reduced soil respiration rates; these con-
ditions would lead to a greater penetration of atmospheric CO2 into
soils, thereby increasing δ13C values in pedogenic carbonates (18).
Low-elevation records (Subandes) from 15 to 25°S imply a com-
bined effect of cooling, more 18O-depleted precipitation, and more
variable climate conditions (36), although carbonates from other
sites and post-LMC deposits are needed to generate a complete
record of environmental response across this event.

Carbonate δ18O values from all basins between 25 and 30°S
(Fig. 3D and SI Appendix, Fig. S1) show universal positive shifts
of ∼2–3‰ (one-way ANOVA, P < 0.05). Nonetheless, these
δ18O values display large variability between records before the
LMC, which likely documented strong seasonality and local en-
vironmental conditions (7). From pre-LMC to post-LMC, the
δ13C data from these basins (Fig. 3C and SI Appendix, Fig. S1) show
strong variability and a general shift toward higher values during
the LMC (one-way ANOVA, P < 0.05). The magnitude of this
shift is highest in the north (∼5‰, Angastaco Basin; Fig. 3C)
and decreases to the south (∼2‰, Santa Maria and Corral
Quemado Basins; Fig. 3C). Post-LMC δ13C values remain high
except in the Santa Maria Basin where values drop to pre-LMC
levels. The variability in δ13C values may reflect seasonal pre-
cipitation patterns (and local paleotoporaphy) in each basin
being distinct enough to generate appreciable differences in
floral composition (i.e., C3-C4 abundance). The positive shift in
δ13C values likely reflects an increase in aridity and expansion of
C4 plants, which is more pronounced in central EC basins. The
δ13C values were high south of 25°S even before the LMC, in-
dicating overall dry conditions and presence of C4 grasses as
supported by high δ13C values (>−8.0‰) of fossil tooth enamel
(Fig. 2A) from several different clades of herbivorous South
American mammals (7, 33, 37). In the Corral Quemado Basin,
C4 grasses or open, arid habitats were likely widespread and
persistent during the LMC (Fig. 2 C and E), and expanded after
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Fig. 3. Boxplots of carbon (A, C, and E) and oxygen
(B, D, and F) isotope data for pedogenic carbonates
from localities in Bolivia (15–23°S) and Argentina
(25–35°S). Red arrow: statistically significant positive
shift; blue arrow: statistically significant negative
shift (Dataset S1). Boxes define the distribution of
data, marking the upper (+25%) and lower (−25%)
quartiles, with a vertical line within each box mark-
ing the median of the population. The width of the
box defines the interquartile distance (IQD). Hori-
zontal lines extending from each box mark max and
min values falling within 1.5× the IQD beyond the
upper and lower quartiles; any points exceeding this
range (outliers) are plotted as circles. Within the
basins or locations sampled from the three selected
latitudinal ranges (15–20°S, 25–30°S, 32–35°S), data
are binned into samples preceding the LMC (lightest
color, 7–9 Ma), during the LMC (middle color, 5–7
Ma), and after the LMC (darkest color, 5–3 Ma). For
samples from Bolivia and basins to the south, records
covering the entire before, during, and after the
LMC interval are not available. Vertical dashed line
and gray-shaded bar behind it define a conservative
estimated cutoff (−8.2‰) and ±1σ (0.6‰) between
floras composed of 100% C3 plants (arid-adapted)
versus those floras that include an appreciable
amount of C4 plants for the interval from 20 Ma to
present (mean and 1σ calculated from Supplemen-
tary Dataset S1 in ref. 68).
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the LMC at ∼4 Ma (7, 37), potentially attributable to an increase
in summer-dominated rainfall (7). Although data from the
Iglesia Basin are scattered, sedimentology and paleopedology
suggest generally semiarid conditions during the Late Miocene,
with slightly more humid conditions between ∼9.5 and 7 Ma (38)
before the LMC, and then transitioning toward more arid con-
ditions during the LMC. δ13C values were high since ∼19 Ma
(>−8‰) and increased slightly during the LMC, suggesting the
predominance and possibly a small expansion of C4 plants or
arid, open habitats between 7 and 4.5 Ma (37).
Basins from 30 to 35°S (Fig. 1B) show δ18O and δ13C values

typical of dry conditions since the Early Miocene (Fig. 3 E and F
and SI Appendix, Fig. S1) with high δ13C values suggesting a
substantial amount of C4 grasses in the ecosystem. Both δ18O and
δ13C values show little change across LMC, indicating fairly stable
hydroclimate and grassland ecosystems. These basins may have
already been arid and had an abundance of C4 vegetation or open
habitats before the LMC. Palynological samples from sites in
northern Argentina (25 to 35°S) support this trend, showing spa-
tial variation with lower diversity and a greater number of open-
habitat and xerophytic species (Poaceae, Asteraceae, Fabacea) to
the south and much higher diversity of forest-indicator taxa
(Podocarpaceae, Nothofagaceae) to the north and east (39). Over
time, pollen records show a transition from riparian forests and
grasslands in the Early and Middle Miocene to seasonally dry
forests and savannas during the Pliocene and Pleistocene (39).

Simulated South America Climate Changes Across LMC. On land,
annual mean changes in precipitation minus evaporation [Δ(P-
E)] shows small increases induced by different ranges of cooling
at the LMC (7% in modCO2 + modGrad, and 11% in both
modCO2 + greatGrad and greatCO2 + greatGrad) (SI Appendix,
Fig. S4 A–C) yet with strong heterogeneity attributable to indi-
vidual or combined influences from land–sea thermal contrast,
distribution of topography, and stationary wave propagation
(40). Increase in annual mean Δ(P-E) is a combined effect of
reduction of evaporation by 3–5%, and increase in precipitation
by 4–7% primarily in response to changes in EP-grad. Across
South America, Δ(P-E) is the strongest during the austral sum-
mer (December to February) with net surplus across the Amazon
Basin and deficit to the south and southeastern side (Fig. 4 A–C).
This austral summer moisture deficit results from reduction in
moisture transport from tropical Amazon and tropical Atlantic
toward subtropics (Fig. 4, left column), following changes in 850
hPa circulation (Fig. 4, right column). This reduction can be
explained by the weakening of the South American low-level jet
(Fig. 4 A′–C′). Corresponding to Δ(P-E), simulated soil water
δ18O (δ18Osw) values decrease between 15 and 25°S, and in-
crease in the subtropics between 25 and 35°S. This pattern
magnifies with greater increase in EP-grad.
Uplift of the Andes leads to increase in summer precipitation

and P-E across the Andes and southern Brazil, but decrease of
summer precipitation and P-E northward, reflecting the south-
westward migration of the moist convection attributable to the
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Fig. 4. Austral summer (December to February)
850-hPa circulation climatology, and changes in soil wa-
ter δ18O due to enhanced equator-to-pole SST gra-
dient and CO2 decline during the LMC (A–C). (A′–C′):
the same as A–C, but for Δ(P-E) and circulation
changes from the control pre-LMC simulation. Proxy
carbonate δ18O shifts are colored in A to C by red:
positive, blue: negative, white: no clear signal. Proxy
site locations are colored with latitudes: red: 15–25°S,
magenta: 25–30°S, and blue: 32–35°S. Hatched areas
show differences from the control case significant at
P < 0.1.
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enhancement of the South American low-level jet (41, 42) (SI
Appendix, Fig. S3). However, this hydroclimate response is as-
sociated with widespread negative soil water δ18O shift across the
subtropical South America, which cannot explain the proxy re-
cords. In contrast, we simulate a negative shift in summer P-E,
and a positive shift in soil water δ18O in the southern Brazil and
central Andes in response to the replacement of forests with
grassland across subtropical South America (SI Appendix, Fig.
S3). This shift is indicative of the positive feedback between rain
band–desert boundary, and forest–grassland surface albedo
contrast, reminiscent of the vegetation-regional atmospheric
circulation coupling proposed for the Sahel–Sahara region (43).

Evidence for Changes in Hydroclimate Associated with Hadley
Circulation Strengthening. Sensitivity experiments with different
magnitudes of CO2 decline and steepening of EP-grad show
enhanced precipitation surplus and moisture convergence to-
ward the ITCZ and midlatitude storm track, but enhanced pre-
cipitation deficit and moisture divergence from subtropics; Δ(P-E)
and circulation changes suggest strengthened Hadley circula-
tion (HC) on annual and austral summer average (SI Appendix,
Figs. S4 and S5). Based on the consistency between proxy car-
bonate δ18O shifts across the LMC between 15 and 35°S and
simulated spatial pattern of δ18Osw changes during austral
summer across the same region (Fig. 4), we suggest that proxy
carbonate δ18O shifts likely reflect strengthened HC, epitomized
in South America by an enhanced ITCZ and subtropical aridi-
fication. Our conclusion is also based on the known seasonal
preference of soil carbonate formation. Soil carbonate typically
forms during rapid degassing of CO2 from soil water, which
occurs primarily during warm and dry periods of the year (44).
Hence, simulated austral summer δ18Osw changes are likely
more representative of changes in proxy carbonate δ18O records.

Discussion
Our study highlights the importance of global climate changes on
Late Miocene stable isotope proxies from the central Andes,
instead of simply changes in topography and elevation. The HC
strengthening can explain the ecosystem transition at the LMC
aided with CO2 decline and vegetation albedo–regional circula-
tion coupling. The subtropical aridification of South America
may favor more drought-tolerant C4 plants compared with C3
plants. This advantage of C4 plants can be further amplified by
vegetation–regional circulation coupling, which is shown to en-
hance aridity at the forest–grassland transition when subtropical
forests are replaced with grasses in our experiment (SI Appendix,
Fig. S3). CO2 fertilization may have also supported pre-LMC
forest environment (45), and the efficiency of C4 photosynthe-
sis over C3 photosynthesis under low-CO2 conditions [up to 250
ppm (46)] could have accelerated the ecosystem transition to-
ward C4 plants in response to CO2 decline.
Our finding contrasts with the CO2 driven hydrological

changes proposed for present-day and near-future climate; rising
CO2 is thought to cause tropospheric moistening and enhance
the present-day P-E pattern (and hence subtropical drying) es-
pecially across the ocean assuming negligible contributions from
atmospheric circulation change (47). Instead, we found that low-
carbonate δ18O across subtropical South America before LMC
supports a wetter subtropical South America dominated by C3
grasses under a warm and potentially higher CO2 climate.
Consistent with a recent study (48), we suggest that hydroclimate
changes at geological timescale such as the LMC are likely
driven by atmospheric circulation changes, rather than fast CO2

radiative forcing or uniform SST warming, which are likely more
important to transient hydroclimate responses to rising CO2 (41,
49). In our simulations, enhanced meridional atmosphere cir-
culation reflects increase of atmospheric heat transport induced
by increase of EP-grad. Proxy records from South America
support this enhancement during the LMC, and hence, the po-
tentially positive relationship between EP-grad and HC strength
at geological timescale (50). This relationship implies weaker
HCs during warm climates with low EP-grad, which could have
played an important role in continental greening during periods
such as Eocene (51) and Pliocene (52). Recent studies suggest
that this shallow EP-grad may be related to marine stratocu-
mulus clouds. A large reduction in subtropical-midlatitude cloud
albedo results in large warming across the corresponding ocean
area, and hence a relaxed EP-grad (48, 52). Weaker HC sub-
sidence due to a low EP-grad may further lower the cloud albedo
across marine stratocumulus region by relaxing the boundary layer
inversion. This process implies a positive feedback among EP-grad,
HC strength, and marine cloud albedo. Recent HC expansion has
been partially attributed to changes in shortwave cloud-cooling ef-
fect in the midlatitudes (53). However, simulating low cloud feed-
backs to SST warming remains challenging (54), and changes in the
strength of HC (55) remain equivocal.
Strengthening of the HC during the LMC is supported by

biotic responses, which show increasing adaptation to arid en-
vironments with a northward progression over time. As with
earlier records from Patagonia (14, 56), pollen and phytolith
evidence attests to a complex and dynamic flora that was re-
sponsive to major changes in global climate. Although increasing
evidence has shown that the evolution of high-crowned teeth by
herbivorous mammals may not have been directly tied to the
expansion of grasslands (14, 57), the early appearance of this
trait in high-latitude faunas of South America supports an as-
sociation between hypsodonty and arid, open environments.
Acquisition of high-crowned teeth by these taxa means they
would have benefited from the expansion of arid habitats at the
LMC and would have been primed to take advantage of the
increased abundance of C4 grasses in the Late Miocene.

Materials and Methods
Stable isotope data used to compile Fig. 3 are available in Dataset S1. We run
the ECHAM5-JSBACH-wiso model (23, 58) at 2° horizontal resolution with 31
vertical atmospheric levels from surface to 10 hPa. The control experiment
utilizes published Miocene boundary conditions (topography, geography, and
vegetation) (59–62), 560 ppm CO2, and monthly SST climatologies matching
the reconstructed Miocene global meridional SST gradient estimated for the
interval of 17–11 Ma (SI Appendix). The sensitivity experiments feature mod-
erate CO2 decline by 160 ppm and moderate enhancement of equator-to-pole
SST gradient (EP-grad) from the control of ∼5 °C around the poles by a maxi-
mum of 5 °C around the poles (modCO2 + modGrad), a moderate CO2 decline
by 160 ppm and greater enhancement of EP-grad by a maximum of 7 °C around
the poles (modCO2 + greatGrad), and a greater CO2 decline by 280 ppm and
greater enhancement of EP-grad by 7 °C (greatCO2 + greatGrad) (SI Appendix).
In addition, two sensitivity experiments are carried out to feature end members
of rapid Andean uplift from ∼1.5 to ∼3 km at grid-mean model resolution and
subtropical grassland expansion (SI Appendix). Reported results are shown as
differences between the sensitivity and control run. Climatologies are calculated
for the last 30 y of a total of 40 model-year simulation for each experiment.
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