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Abstract. Understanding and accurately modeling species distributions lies at the heart of
many problems in ecology, evolution, and conservation. Multiple sources of data are increasingly
available for modeling species distributions, such as data from citizen science programs, atlases,
museums, and planned surveys. Yet reliably combining data sources can be challenging because
data sources can vary considerably in their design, gradients covered, and potential sampling biases.
We review, synthesize, and illustrate recent developments in combining multiple sources of data for
species distribution modeling. We identify five ways in which multiple sources of data are typically
combined for modeling species distributions. These approaches vary in their ability to accommo-
date sampling design, bias, and uncertainty when quantifying environmental relationships in species
distribution models. Many of the challenges for combining data are solved through the prudent use
of integrated species distribution models: models that simultaneously combine different data
sources on species locations to quantify environmental relationships for explaining species distribu-
tion. We illustrate these approaches using planned survey data on 24 species of birds coupled with
opportunistically collected eBird data in the southeastern United States. This example illustrates
some of the benefits of data integration, such as increased precision in environmental relationships,
greater predictive accuracy, and accounting for sample bias. Yet it also illustrates challenges of com-
bining data sources with vastly different sampling methodologies and amounts of data. We provide
one solution to this challenge through the use of weighted joint likelihoods. Weighted joint likeli-
hoods provide a means to emphasize data sources based on different criteria (e.g., sample size), and
we find that weighting improves predictions for all species considered. We conclude by providing
practical guidance on combining multiple sources of data for modeling species distributions.

Key words:  citizen science; data fusion, ecological niche model; habitat suitability model; integrated model;
spatial point process; Special Feature: Data Integration for Population Models, species distribution model.

by exotic species (Palaoro et al. 2013) or land clearing for

INTRODUCTION energy production (Evans et al. 2010), improve biological

Understanding species distributions is essential to ecol-
ogy, evolution, and conservation biology. In this context,
species distribution models (SDMs) are often used to
understand environmental relationships and predict spe-
cies distributions in both environmental and geographic
space (Elith and Leathwick 2009). These models have been
used to project potential effects of climate change (Case
and Lawler 2017), identify areas with high risk of invasion
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inventories (Raxworthy et al. 2003), understand niche
conservatism (Wiens et al. 2010), and guide a variety of
conservation decisions (Guisan et al. 2013).

The usefulness of species distribution models can
nonetheless be limited by the data used in model build-
ing, which often contain relatively limited information
and several sources of bias (Norris 2004, McCarthy et al.
2012). Common sources of species data include pres-
ence—only, presence-absence, and abundance data, which
can arise from either planned surveys or opportunistic
sampling. Each of these data sources has potential
strengths but each can also have observation errors (e.g.,
presence—absence data may be better described as “detec-
tion—nondetection” data in some cases; MacKenzie et al.
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2002), which we address below. Presence-only data,
which often come from opportunistic sampling based on
museum specimens, biological inventories or some citi-
zen science programs, are frequently used for modeling
species distributions (Graham et al. 2004, Dickinson
et al. 2010). Such data are useful because they typically
capture a large spatial extent, are readily available, and
sometimes include a large amount of data; however, they
often suffer from three key issues. First, sample selection
bias is common (Phillips et al. 2009, Fourcade et al.
2014) where opportunistic sampling occurs in areas that
are easily accessible (e.g., near roads). Second, imperfect
detection in areas that are visited can arise, and there
is often limited information to account for this issue
(Hefley et al. 2013). Third, because absences are not
available, only measures of relative suitability/probability
can typically be modeled (but see Dorazio 2012, Royle
et al. 2012). In contrast to presence-only data, presence—
absence and abundance data are often the target of more
rigorous planned surveys. Planned surveys may be less
affected by sample selection bias and are frequently
designed to estimate detection probabilities (Rota et al.
2011, Lawson et al. 2014), such that absolute probabili-
ties of occurrence or estimates of abundance are often
possible. However, data from planned surveys frequently
suffer from small amounts of data and limited geo-
graphic extent in comparison to opportunistic, presence-
only data.

To improve our understanding of species distributions,
it is tempting to combine multiple data sources when
modeling species distributions. Indeed, combining multi-
ple data sources for modeling species distributions has
increased substantially in recent years (Fig. 1). In these
situations, data are combined for a variety of reasons.
For instance, the amount of data on species locations
may be limited in planned surveys, particularly for rare
species, such that data sources are sometimes pooled to
increase sample size (Fletcher et al. 2016). Increasingly
available “big data” sets in ecology may provide oppor-
tunities in this way (e.g., La Sorte et al. 2018). In addi-
tion, some data sources may have biases that can be
alleviated by combining a second data source that does
not contain the same limitations (Dorazio 2014).
Despite this increasing interest, appropriately combining
multiple data sources can be challenging because each
data source typically has different assumptions and
biases, and each may provide different information on
species distribution. Recent advances in species distribu-
tion modeling have focused on how to better integrate
these different sources of data to make more reliable pre-
dictions and statistical inference (Dorazio 2014, Fithian
et al. 2015, Talluto et al. 2016, Pacifici et al. 2017).

Here, we review and synthesize approaches for com-
bining multiple sources of data to identify environmental
relationships and predict species distributions. We then
illustrate the implementation of combining data using
an example that couples planned survey data on 24 bird
species with eBird data collected by citizen scientists
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Fic. 1. Combining data is an increasingly common topic in

species distribution modeling. Shown is the number of articles
that were captured using the search phrase for combining and/
or integrating data (blue; see text) and the number of articles
that actually combined spatial data on species distribution
(presence-only, presence—absence, abundance data; orange).

(Sullivan et al. 2014) in the southeastern United States.
This example highlights ways in which integrated species
distribution models may be useful, but also emphasizes
some potential challenges to combining data. We con-
clude by providing practical guidance for combining
data in species distribution modeling.

A diversity of approaches to combining data in species
distribution models

We reviewed articles to determine how multiple types
of data have been combined within species distribution
models. We focused on models that use disparate sources
of information collected at different localities across a
region of interest that are then combined to model spe-
cies distributions. Other approaches have combined data
at the same locations to estimate occupancy and abun-
dance better by using different sources of information
on detectability (e.g., Miller et al. 2011, Hefley et al.
2015, Zipkin et al. 2017). These approaches have either
not focused on mapping species distributions or do not
link different types of distribution data collected across
space, so we do not focus on them here. However, much
of what we discuss is relevant to these and other models
that combine data sources.

Methods.—We compiled articles within the IST Web of
Science on January 19, 2018 by using a search phrase
that captures several terms for combining data: (“infor-
mative prior*” or “pool* data” or “data pool*” or “inte-
grat* data” or “data integrat*” or “combin* data” or
“data combin*” or “multiple data” or “data fusion” or
“integrated” or “integrates”) and (“species” or “animal”
or “plant”) and (“distribution model*” or “occupancy
model*” or “abundance model*” or “integrated data
model*” or “hierarchical Bayes*”). This search resulted
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in 353 articles. We consider these articles to be a repre-
sentative sample of data integration within species distri-
bution modeling, but acknowledge that this search likely
did not capture all articles on this topic.

We retained all articles within this search that used
2+ data sources on species distribution for the response
variable within a species distribution model (N = 155).
Species distribution data included presence-only, pres-
ence—absence, abundance, and density data, with and
without information on observation errors (e.g., imper-
fect detection and/or misidentification). For example, we
use the term “presence—absence data” as a general term
to reflect situations where observations errors may or
may not have occurred.

With these articles, we then compiled information on
how data were combined to model species distributions.
Information included whether data sources were treated
differently in modeling or were simply pooled, the steps
of modeling (e.g., sequential or simultaneous modeling
of data sources), whether data sources were considered
as response variables only or response and predictor
variables, whether sample design and/or potential bias
of each data source was considered, and the overarching
modeling frameworks used (e.g., hierarchical modeling).

Results.—From the sample of articles, there were five
common approaches to combining data (Fig. 2). First,
the most common approach was simply to pool data
without regard to data source and/or sampling issues
(Palaoro et al. 2013), or through post hoc criteria for
pooling data (Underwood et al. 2010). This approach
accounted for 73% of all articles that combined data.
Second, separate, independent models were sometimes
built from different data sources, and then predictions
were combined or compared (e.g., ensembles; 11% of
articles; Douma et al. 2012, Case and Lawler 2017).
Third, in some cases (8% of articles), models were devel-
oped for one data source with a second auxiliary data
source (e.g., ancillary information about the species that
was used as a predictor for modeling the focal data set)
being included in model building, commonly through
the use of a covariate or offset (Merow et al. 2016, Regos
et al. 2016). Fourth, in a Bayesian context, one data
source may be used to derive informed priors for model-
ing a second data source (1% of articles; Marcantonio
et al. 2016, Talluto et al. 2016). Finally, formal data
integration was implemented (9% of articles), where
explicit data models were developed for each data source
and combined to estimate model parameters through
the use of joint likelihoods (i.e., the product of individual
likelihoods for each data source). We describe these
models as “integrated species distribution models”
(ISDMs) (Fletcher et al. 2016, Koshkina et al. 2017).

Contrasting approaches for combining data

Approaches for combining data vary in their ability to
account for sampling issues, to connect different
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response variables between data sources, and to account
for uncertainty (Table 1). To highlight these differences,
we first describe inhomogeneous point process (IPP)
models for modeling species distributions (Warton and
Shepherd 2010). Several algorithms used for modeling
species distributions (e.g., logistic regression, Maxent,
boosted regression trees) can be viewed as estimating,
with varying degrees of accuracy, parameters of an IPP
(Warton and Shepherd 2010, Aarts et al. 2012, Renner
and Warton 2013, Renner et al. 2015). In addition, dif-
ferent sources of data, including presence-only, pres-
ence—absence, and abundance data, can be formally
connected in the context of IPP models (Miller et al.
2019). These connections facilitate understanding the
benefits and limitations of different ways to combine
multiple sources of data.

The IPP species distribution framework.— As a data-gen-
erating mechanism, a realization (i.e., random draw)
from an IPP generates random points in geographic
space. The IPP is a natural choice to model a species dis-
tribution using idealized data (e.g., exact coordinates of
individuals, perfect detection, known sampling area)
and it provides a well-grounded foundation for exten-
sions to less-ideal data. The probability density function
of a realization from an IPP is
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which simplifies to e JsHsras [T, A(s:), where s; is a vec-
tor that contains the coordinates of the /" individual
location. The spatially varying intensity function A(s)
controls the expected number and location of the ran-
dom points within the study area S. An important quan-
tity in Eq. 1 is the integrated intensity function,
J A(s)ds, which can be used to show the connection
between exact point locations (presence-only data) and
grid-based locations (presence—absence and abundance
data).

Regression-type models (e.g., Poisson regression) can
then be constructed by assuming (1) a probability distri-
bution for the response variable and (2) a deterministic
relationship between predictor variables (covariates) and
the expected value of the response variable. The IPP can
be formulated as a regression model by assuming the
intensity function depends on location-specific covari-
ates x(s) (i.e., the covariates at location s) as

log(A(s)) = By +x(s)'B, ()

where B is the intercept and p = (B, . . ., Bp)’ is a vector
of regression coefficients associated with the p covari-
ates. We note that these covariates can reflect conditions
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Fic. 2. Combining data for predicting species distributions. Across 353 articles reviewed, (a) there were five general approaches
to combining data. First, simple pooling occurred, where different data sources were combined and a single model was fit. Second,
independent distribution models were fit to different data sources and results were combined, either through ensemble techniques
or through masking/clipping. Third, auxiliary data (not directly species occurrence or abundance) were used in modeling building,

typically through the use of covariates or offsets. Fourth, one data source was used to create an informative prior for modeling the
primary data source in a Bayesian modeling framework. Finally, multiple data sources were formally integrated by developing sepa-
rate data models for each source that could then be combined, typically through the use of joint likelihoods. (b) The overall fre-
quency of each approach and (c) the frequency of each approach over time.

at s or within the neighborhood of s using a buffer or
kernel to summarize covariates (e.g,. McCarthy et al.
2012, Chandler and Hepinstall-Cymerman 2016).

The connection between presence-only data, which
tend to be the exact coordinates of where individuals
occurred, and presence—absence and count data, which
tend to be assigned to grid cells, can be understood by
using a statistical technique known as the change of sup-
port (Cressie and Wikle 2011, Pacifici et al. 2019). The
support of a probability distribution is the set of all ran-
dom values that can be generated. For example, the

support of the Poisson distribution is the set of all non-
negative integers: {0,1,2, ..., co}. The support of the IPP
in Eq. 1 is the infinite set of all possible locations within
the study area (S). In contrast, the support of count data
is limited to a finite number of grid cells where the ran-
dom variable is the number of points within each cell.
The IPP can be formally connected to count data by
changing the support from a continuous spatial support
to a discrete spatial support. By applying a change of
support, the number of points (y;) contained within the
th grid cell (4;) becomes a Poisson random variable
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TaBLE 1. Some characteristics of different approaches for combining data.
Simple Independent  Auxiliary Informed Integrated

Characteristic pooling models data priors models
Can account for different sampling issues No Yes Yes Yes Yes
Can account for variation in spatial or No Yes No Yes Yes

temporal support among data
Can account for uncertainty from both data sources No No No Yes Yes
Can allow for different predictors No Yes Yes Yes Yes

for each data source
Sequential vs. simultaneous modeling of data sources ~ Simultaneous Sequential Sequential ~ Sequential ~ Simultaneous

yj ~ Poisson /X(s)ds , 3)
A

7

where the expected number of points is [ 4 A(s)ds. Pres-
ence—absence data are related to count data by recording
the grid cells where y; = 0 or y; > 0. This can be accom-
plished using a well-known relationship between Poisson
and Bernoulli random variables

~ [Ms)ds
1 (y.i > 0) ~Bernoulli{ 1 —e ¥ , )

where 7(y; > 0) is an indicator function that takes on a
value of 1 if the species is present and 0 if the species is
absent.

Because the IPP can be used to describe several distri-
bution modeling frameworks and provides a means to
relate different response variables (Eqs. 3 and 4), the IPP
and its extensions provide a formal means to compare the
benefits and limitations of different approaches for com-
bining data to species distributions, as we shall see below.

Simple pooling.—Pooling of data is common when using
opportunistic presence-only data that are collated from
different sources (e.g., museum specimens, biological
inventories; Domisch et al. 2016). In these situations,
different data sources are combined to model species dis-
tribution without explicit acknowledgement of the data
sources in the modeling process. Although simple pool-
ing can be helpful to increase the number of point occur-
rences used for modeling, data sources often vary in
their sampling designs, types of bias, and response vari-
ables with different attributes (e.g., variation in spatial
or temporal support, or the variation in spatial grain
and time frame of samples), such that simple pooling
may be of limited value.

When presence-only, presence—absence or count data
are pooled, it is not clear which distribution should be
used to model the combined data. For example, if pres-
ence-only data and count data are indiscriminately
pooled, then either the Poisson distribution or the IPP
could be chosen; however, both require ad hoc manipu-
lation of the data. To use the IPP for count data, one

must deaggregate counts and assign the points within
each grid cell to a spatial location, thus generating loca-
tion error (Hefley et al. 2017). Conversely, to use the
Poisson distribution one must assign the exact locations
contained within the presence-only data to a grid cell (of
potentially arbitrary size), which can lead to unwar-
ranted conclusions when the inference at the location of
individuals differs from the inference at the grid cells
(Hefley et al. 2017).

Combining independent models.—Species distribution
modeling has a long history in combining or contrasting
predictions from different models. For instance, ensem-
ble modeling techniques are frequently applied to com-
bine predictions from different modeling algorithms
(Aratjo and New 2007). With respect to multiple data
sources, the focus is on developing independent models
for each data source and then combining them in some
way. This two-step process can be useful for understand-
ing how different data sources can vary in terms of sta-
tistical inference and predictions. However, independent
models do not allow for “sharing” of information across
data sources to estimate parameters more accurately. In
addition, it is difficult to combine parameter estimates
formally. For example, count data may be modeled using
Poisson regression, whereas the IPP may be used to
model presence-only data. Both Poisson regression and
the IPP model can be used to estimate coefficients, but
unless the models have a common spatial support (i.e.,
the same spatial resolution) the coefficients are not
directly comparable. Unless the change of support is
applied, Poisson regression explains how the expected
abundance among grid cells changes because of spatial
covariates, but coefficient estimates are scale dependent
and inference is only valid for the spatial resolution of
the grid cells. IPP regression coefficients, however,
explain how the intensity function (a continuous func-
tion with infinite resolution) varies over continuous
space, which can be linked to abundance at any spatial
resolution. Because the spatial scale of inference differs,
comparisons of parameters and statistical inference
between the two models should be avoided.

Using auxiliary data.—The use of auxiliary data has
been commonly applied in two ways. First, some models
have included one species as a covariate to explain the
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distribution of another species (Araujo and Luoto 2007,
Trainor and Schmitz 2014). Second, some modeling
approaches have included secondary data to inform
modeling the species of interest (e.g,. range maps;
Merow et al. 2017). This latter approach has varied con-
siderably. For example, Petitpierre et al. (2016) used
information from a global SDM to inform background
(pseudoabsence) point selection for a local SDM.
Merow et al. (2016) linked prior sources on the relative
rate of observing a species occurrence and dispersal-
related information data by including it as an offset term
in the IPP (Eq. 2). This relationship provides a straight-
forward means to incorporate auxiliary data. But, simi-
lar to combining independent models, it is often unclear
how variation in the spatial or temporal support of the
data can be accounted for when modeling the primary
data source.

Incorporating informed priors.— The use of informed pri-
ors in ecological models has been suggested for many
years (Ellison 1996), although in practice it has rarely
been implemented when combining data for species dis-
tribution modeling, where only 1% of the articles we
reviewed used this approach (Fig. 1). In this case, one
source of data is used to provide a prior distribution for
one or more parameters when modeling the second data
source. Using informed priors requires that the model
for the first set of data (used to obtain the prior) has the
same parameters as the model for the second source of
data. For example, a prior derived from Poisson regres-
sion of counts should not be used as a prior for IPP
regression with presence-only data (unless the change of
support was used for the Poisson regression model).
Using informed priors is similar to the use of joint likeli-
hoods in integrated models (Pawitan 2001; see Inte-
grated distribution models). For instance, when using
informed priors, the posterior distribution is propor-
tional to the product of the likelihood for the second
source of data and the prior, which is technically equiva-
lent (in a Bayesian paradigm) to the use of joint likeli-
hoods as the product of two component likelihoods
based on each data source (see Integrated distribution
models). Practical differences include that in this case
the approach is sequential and requires priors for all
parameters, whereas with the use of joint likelihoods
estimation is simultaneous and need not use priors
(Table 1).

Integrated distribution models.—Integrated species dis-
tribution models (ISDMs) have focused on two ways in
which different types of distribution data can be for-
mally combined. First, models have integrated coarse-
grain data, such as atlas data, with fine-grain data to
downscale predictions of models (Keil et al. 2014). Sec-
ond, models have been developed to link data of differ-
ing quality of information and amount, with a focus on
linking presence-only data with other data sources to
address known limitations of this data type (Dorazio
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2014, Fithian et al. 2015). Overall, this approach has
several desirable characteristics (Table 1) and has been
shown to improve estimates of environmental relation-
ships and predictions of species distributions
(Appendix S1: Table S1), so we provide more detail on
this approach.

Models that integrate coarse-grain and fine-grain data
aim to link presence—absence or count data being col-
lected at different scales. For example, Keil et al. (2014)
developed a model that links coarse-scale gridded atlas
data with fine-scale points. The IPP framework can be
used to link data of differing resolutions in this way. Let
a; be presence—absence data collected at i =1,2,....n,
coarse-grain grid cells and let b; be presence-absence
data collected independently of ¢; at j = 1,2,. .., nyp fine-
grain grid cells. Separate (independent) binary regression
models for each scale could be proposed as follows:

—f?»(s)ds
aj~ Bernoulli(l —e ) ) (5)

~ [ Ms)ds

b;~Bernoulli [ 1 —¢ ¥ , (6)

where A; and B; are the grid cells associated with a; and
b;, respectively. Parameters associated with the intensity
functions, such as the regression coefficients p in Eq. 2,
can be estimated using standard techniques, such as
maximum-likelihood estimation.

Because the models for both course-grain and fine-
grain data (Eqs. 5 and 6) share a continuous spatial sup-
port, parameters associated with the intensity function,
such as the regression coefficients § in Eq. 2, are directly
comparable. Independent estimation, however, does not
enable “sharing” of information across data sources to
estimate regression coefficients more accurately. Simul-
taneous estimation remedies this problem, and the likeli-
hood function provides a means for integrating two or
more statistical models that share common parameters
(Pawitan 2001).

Successful use of multiple sources of data requires
carefully considering not only the spatial support, but
also the differences in data collection methods. For
example, when combining presence—absence data from
planned surveys with presence-only locations obtained
from opportunistic surveys, it is important to consider
bias that may result from spatially heterogeneous search
effort. To appropriately combine presence—absence data
with presence-only data, Fithian et al. (2015) proposed
the following model:

- [ A(s)ds
aj~ Bernoulli(l —e M ) ) (7

y ~IPP(A(s)b(s)), ®)
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where ¢g; is the presence—absence data collected at grid
cell 4; and y is a matrix that contains the coordinates of
the exact locations of the jth individuals. The number of
locations of presence-only data may depend on location-
specific factors that influence search effort (e.g., distance
to nearest road). To account for this issue, Fithian et al.
(2015) included a spatially varying thinning function
b(s) that allows for the possibility of some individuals
being missed (when b(s) < 1) or counted more than once
(when b(s) > 1; see also Dorazio 2014). Similar to the
intensity function, b(s) may depend on covariates. The
Fithian et al. (2015) model can also accommodate count
data by replacing Eq. 7 with Eq. 3.

In many situations, both data sources are observed
with error. For example, it is common that presence—
absence data from planned surveys are contaminated
with false-negative errors. There is a large literature on
models that account for the data collection process (ter-
med “observation models” or “data models”) when
modeling presence—absence or count data, which include
the well-known occupancy and N-mixture models
(MacKenzie et al. 2002, Royle 2004). Models that
account for the data collection process are often
expressed hierarchically and include a level for the unob-
served true presence—absence or counts. The true counts
are typically modeled with a Poisson distribution; thus
Eq. 3 can be used. Similarly, the true presence or
absence can be modeled with Eq. 4. This approach com-
bines presence-only data with abundance and/or pres-
ence—absence data, but it also explicitly accounts for
imperfect detection (Dorazio 2014, Koshkina et al.
2017).

Once models are formulated for each data source, the
joint likelihood for the integrated model is the product
of the of the component likelihoods:

M
L(,0) = [ Ln(B.01), ©
m=1

where f are shared parameters (among component likeli-
hoods) explaining A(s) of the IPP and 0,, are parameters
associated with the observation process of the m'" data
set (e.g., probability of detection for presence—absence
data) and are typically not shared. Combining likeli-
hoods using the product requires the assumption of
independence among the data sets; however, this
assumption could be relaxed (Pawitan 2001).

This framework is quite flexible and many extensions
have been considered (Appendix S1: Table S1). For
instance, Fithian et al. (2015) applied regularization to
the parameter estimation of their model and noted that
inclusion of basis functions, such as splines, would be
straightforward to implement. Regularization is a
method to reduce overfitting and perform model selec-
tion, which often increases predictive performance of
species distribution models (Gaston and Garcia-Vinas
2011). Pacifici et al. (2017) developed a similar frame-
work that also accounted for spatial dependence through
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the use of a conditional autoregressive structure, which
is another common issue that arises in species distribu-
tion models that may affect inferences on a wide variety
of problems (Fletcher and Fortin 2018). Giraud et al.
(2016) applied a similar set of ideas to model entire com-
munities of species.

An illustration with breeding birds across the
Southeastern United States

To illustrate the use of combining data in distribution
models, we link data from planned surveys on bird com-
munities in managed forests across the southeastern
United States with eBird data. The motivation for these
planned surveys was to understand how variation in for-
est management impacts bird communities, with a focus
on forest management practices being considered for
bioenergy production (Gottlieb et al. 2017). Reliable
estimates of bird occurrence were needed to understand
effects of land-use change from bioenergy, which were
investigated in detail in Gottlieb et al. (2017). However,
there was also interest in making projections of potential
effects across the region, given the potential for large-
scale land-use changes arising from an increase in bioen-
ergy in the southeastern United States (Galik and Abt
2016). Here, we focus on using these data to project spe-
cies distributions across the region; see Gottlieb et al.
(2017) for inferences on bioenergy.

Methods.—We sampled birds at 78 sites across three
breeding seasons, April-July, 2013-2015 (Fig. 3a). Sam-
pling occurred in slash (Pinus elliottii)y and loblolly
(Pinus taeda) pine plantations and mature, naturally
regenerated longleaf (Pinus palustris) pine savannas
among three geographic strata within the Southeastern
Plains and Southern Coastal Plains ecoregions in Flor-
ida, Georgia, and Alabama. At each site, we surveyed
birds along two, 200 x 100 m transects between April 1
and June 30 of each year. Each transect was surveyed on
three sampling visits separated by approximately 4
weeks, with each transect being surveyed twice on each
visit to account for variation in imperfect detection.
Here, we pooled information from the two surveys
within each visit, such that our detection history
included three samples per site. These data can be mod-
eled with a scale-invariant occupancy model of Koshk-
ina et al. (2017), which adjusts the general occupancy
model (MacKenzie et al. 2002) with Eq. 4. See
Appendix S1 for more details.

Our second data source came from eBird (Sullivan
et al. 2014). eBird records include the time, date, and
location of bird observations. eBird data can potentially
be modeled in two ways. First, data can be modeled
assuming it provides presence-only information. Second,
data can be modeled as presence—absence data (or more
appropriately, “detection-nondetection” data), because
much of the eBird data includes a complete “checklist”
of all species on the survey. Here, we treat eBird
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Fic. 3. An example for integrating data in distribution
models for 24 species of breeding birds in the southeastern Uni-
ted States. (a) Study area for planned surveys, where line tran-
sects at 78 sites stratified across three regions were surveyed
over multiple visits. Green shading illustrates forest cover across
the region. (b) Presence-only data from eBird across the region
(n = 120,484 observations across 24 species). (¢) Distance from
urban areas (log-transformed; dark red = closer to urban
areas). Note the similarity of ¢ to detections from eBird in b.

observations as presence-only data. We downloaded
eBird data for species locations from April to June,
2013-2015, the time period of planned surveys (Fig. 3b).
We only considered eBird locations within 100 km of the
planned surveys occurring during the sampling year. We
selected 100 km because biomass for bioenergy is
expected to be extracted within approximately 75—
100 km from biomass plants (Evans et al. 2013). Using
this extent resulted in 120,484 observations across the
species considered, with sample size varying from 1,400
to 11,900 per species. These data were then considered
using the IPP model with a spatially varying thinning
function (Eq. 8).

We fit independent SDMs and contrast these models to
an ISDM. We fit models to 24 species of birds (all species
that were detected in >25% of planned surveys;
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Appendix S1: Table S2). We chose this cutoff to allow for
adequate estimation of the influence of covariates that
may affect both occupancy and detection probability in
point transect data, which suffered from relatively small
sample sizes in comparison to the eBird data. For our
presence-only model, we generated quadrature (i.e., back-
ground) points by overlaying a 2-km grid across the study
area (n = 46,573 points; Renner et al. 2015). Our inte-
grated model used a joint likelihood to combine the pres-
ence-only and site-occupancy models (Eq. 9).

Different data sets may vary substantially in sample
size as ours do here. This may lead to the larger-sized
data set dominating the results because the integrated
joint log-likelihood function is additive (Eq. 9), such
that the larger data set contributes more to the joint like-
lihood. Data weighting is a potential solution for possi-
ble bias arising from variation in the quality and amount
of different data sources used in integrated models
(Francis 2011). To address this potential issue, after fit-
ting the ISDM we altered it to include a weight, w, on
the joint likelihood function as:

log(L(B,0)) =wlog(Lpo (B, 0po))

10
+ (1= w)log(Lpa (B, 0pa)), "

where 0 < w < 1, such that w = 0.5 would be equivalent
to no weighting. We profiled across values of w (ranging
from 0.005 to 0.995) for each species and assessed the
utility of different weights using three-fold block valida-
tion (see below; Wang and Zidek 2005).

For ISDMs, we considered several covariates. We used
the 2011 National Landcover Dataset (Homer et al.
2015) to calculate the proportion of forest (pooling
deciduous, mixed, and conifer forest categories) and
agriculture in the landscape, calculated at a 1-km buffer
scale (we initially considered 0.5-5 km scales, but scales
were highly correlated; Fletcher and Fortin 2018), as well
as Easting and Northing coordinates (s) calculated from
the center of transects for detection data. In general, we
expected that the proportion of forest would have posi-
tive effects on most-species, and the proportion of agri-
culture would have negative effects. We included Easting
and Northing coordinates to accommodate broad-scale
spatial variation in species distributions across the
region. For sample selection bias in eBird data, we con-
sider distance to urban areas (Fig. 3c). For imperfect
detection, we considered a linear effect of date (1 = Jan
1; 365 = Dec 31). Prior analysis of point transect data
provided little support for nonlinear effects of date on
detectability (only 1 of 31 species in Gottlieb et al. 2017
had a nonmonotonic relationship of date), so we only
included a linear effect here. All covariates were centered
and scaled for analysis.

We evaluated the utility of models with the use of
threefold block validation (Wenger and Olden 2012),
where we built models with two of the geographic
regions considered and predicted onto a third region not
considered in model building (where we partitioned both
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data sources). We assessed predictive accuracy using the
area under the ROC curve (AUC) statistic and block-
validated log-likelihoods (Fithian et al. 2015). AUC is a
commonly used statistic for model discrimination,
whereas block-validated log-likelihoods better capture
model calibration (Lawson et al. 2014). Models were
implemented using the code provided in Koshkina et al.
(2017), extended to account for data weighting (Eq. 10).

Results.—When contrasting parameter estimates among
models for 24 species, four general patterns emerged.
First, eBird data showed strong evidence of sample
selection bias, where coefficients for distance from urban
areas were significantly negative for all 24 species
(Fig. 4a; Appendix S1: Table S3). Second, numerical
maximization algorithms did not converge for site-occu-
pancy models of four species (blue grosbeak, pileated
woodpecker, downy woodpecker, mourning dove; see
Appendix S1: Table S2 for scientific names), although
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(Appendix S1: Tables S4, S5), thereby allowing inference
on these species. Third, integrating data sets improved
the precision of parameter estimates relative to occu-
pancy models (Fig. 4b), although precision did not
increase relative to presence-only models (Fig. 4a). In
addition, for parameters that did not have shared infor-
mation between data sets, such the use of distance to
urban areas as a spatial sample bias covariate in pres-
ence-only data and date as a detectability covariate, esti-
mates and associated uncertainty tended to be similar
between integrated models and each independent model
(Fig. 4). Fourth, estimates from the integrated models
were largely driven by the abundant presence-only data
when weighting was not explicitly considered (Fig. 4a).
This effect became more severe as the amount of eBird
data increased, where parameter estimates of the ISDM
tended to shrink toward the estimates from the presence-
only IPP model (Fig. 4 inset).

Given that the integrated joint log-likelihood function

integrated models did converge for these species is additive (Eq. 9), the component from the eBird IPP
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model appeared to be contributing much more to the
joint likelihood, driving the results in the integrated
model. When using a weighted joint likelihood (Eq. 10),
we found that, for most species, providing greater weight
to occupancy data increased predictive performance
(Fig. 5a), based on both AUC and block-validated log-
likelihoods. Note that for the few species where weight-
ing presence-only data was preferred (e.g., w > 0.5),
these species tended to be those for which site-occu-
pancy models did not converge (e.g., blue grosbeak,
pileated woodpecker). Parameter estimates were rela-
tively stable with changes in w until w reached relatively
small values (<0.1); at these small values, parameter esti-
mates and associated uncertainty were pulled toward
estimates from occupancy (Appendix S1: Figs. S1, S2,
Table S6). In general, there was a weak negative correla-
tion with the best w selected and the amount of eBird
data used for each species (r; = —0.34 based on AUC;
r¢ = —0.14 based on block-validated log-likelihoods).

Using the most supported weight for joint likelihoods,
we found that ISDMs tended to predict species distribu-
tions similar to or better than using presence-only data,
with ISDMs having higher AUC and block-validated
log-likelihoods for 21 and 23 species, respectively
(Fig. 5b). When contrasting ISDMs to occupancy mod-
els, there was more mixed support, where 14 species of
20 species (where algorithms converged for occupancy
models) were better predicted with ISDMs based on
AUC, while ISDMs tended to predict distributions bet-
ter than occupancy models based on block-validated
log-likelihoods for all species considered.

DiscussioN

Our review and synthesis identified that there are sev-
eral ways to combine data for modeling species
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distributions. These approaches vary in the ability to
account for a variety of issues. Integrated models based
on the IPP framework that formally link different types
of data have several desirable properties, providing per-
haps the most flexible framework for combining data
(Table 1). Our illustration with 24 bird species across the
southeastern United States provides a comprehensive
example of these benefits.

Multiple data sources and the value of data integration

Data sources vary in the amount and reliability of
information for modeling species distributions. We con-
trasted detailed planned surveys that allowed for esti-
mating imperfect detection, but were limited in the
number of samples, with presence-only data from eBird
that was plentiful but suffered from biases associated
with distance from urban areas. We note that checklist
data can also be used from eBird, which provides poten-
tial information on species absence but does not provide
a clear means for estimating imperfect detection (Pacifici
et al. 2017). We found that there was much greater preci-
sion in estimated environmental relationships from eBird
data, which was largely driven by the greater sample size
of those data. Yet the ability of models based on pres-
ence-only data to predict to new regions (i.e., transfer-
ability; Wenger and Olden 2012) was relatively limited.
Integrated models generally improved predictions, but
evaluation of data weighting emphasized that the occu-
pancy data should be weighted more than presence-only
data for improving model predictions (Fig. 5).

Data integration has generally been shown to
improve distribution models (Appendix S1: Table S1) in
two major ways. First, precision of estimated environ-
mental relationships generally increases. Second, predic-
tive performance of models can also increase. Data
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Weighting of joint likelihoods and block validation. (a) Distribution of best weights, w, based on AUC Area under the ROC

curve; (a metric of discrimination) and block-validated log-likelihoods (a metric of calibration) for 24 species, where smaller values indicate
greater weights to the occupancy component of the integrated model (ISDM). (b, ¢) Differences in predictive performance of presence-
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integration can also solve several long-standing prob-
lems with modeling distributions. For instance, the
development of ISDMs was largely motivated by the
need to improve presence-only data and resulting mod-
els (Dorazio 2014, Fithian et al. 2015, Bradter et al.
2018) where presence-only data do not provide informa-
tion on species prevalence, limiting the potential to esti-
mate the probability of occurrence (Guillera-Arroita
et al. 2015). Data integration has been argued to
improve modeling through the potential ability to better
account for sample selection bias (Fithian et al. 2015)
and for estimating abundance or occurrence across
regions through integrated intensity functions (Hefley
and Hooten 2016).

Big data, citizen science, and data weighting

Big data are increasingly used for modeling species
distributions. The term “big data” is broadly used to
describe large digital datasets arising from recent
advancements in information technology and data
acquisition (Jin et al. 2015). These big data are increas-
ingly available for ecologists as biological observations
are now being generated, captured, and processed at
unprecedented scales and rates through citizen science
(such as eBird), remote sensing, and other means
(Hashem et al. 2015, La Sorte et al. 2018). Although
big data provide a wealth of information, the use of big
data presents a number of challenges such as massive
volumes, high dimensionality, and sampling biases
(Dickinson et al. 2010, Tye et al. 2017). Statistical
advances have been developed for dealing with these
issues, for example, by using species distribution models
applied to spatiotemporally restricted extents and
adapting to variation in sampling intensity (Fink et al.
2010). ISDMs, however, provide untapped potential for
combining big data with data generated from more tar-
geted surveys to balance the tradeoffs between different
sources of bias and improve model performance and
inference.

Despite the potential advantages of integrating differ-
ent data sources for species distribution modeling, sev-
eral challenges remain. When integrating data for
species distribution modeling, disparity in the amount of
data from different sources can lead to one data source
contributing substantially more to the joint likelihood
than another data source. The problem of data weighting
for integrated population models has been emphasized
in fisheries (Francis 2017, Punt 2017, see also Saunders
et al. 2019), and a variety of data weighting schemes
have been considered. For example, individual data
points have been weighted based on measures of vari-
ability (e.g., SD, CV of data used to generate abundance
indices) or sample size (e.g., number of fish caught for
compositional data) for each sampling unit (Francis
2011, Punt 2017). Entire data sources, rather than indi-
vidual data points, have also been weighted based on
sample size and measures of variability of the data
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sources (Francis 2011). Some types of weighting have
been shown have desirable asymptotic properties in max-
imum-likelihood estimation (Wang and Zidek 2005), but
more work is needed on this issue for ISDMs particu-
larly because there can be precision-bias tradeofts in esti-
mation when integrating data sources. Two practical
issues for data weighting are (1) the weighting scheme
used and (2) the values of weights.

In our example, we applied a simple proportional
weighting scheme to each component likelihood. This
approach provides a practical way to weight two data
sources differentially, causing parameter estimates of the
integrated model to shift toward estimates of the inde-
pendent model that has greater weight (Appendix S1:
Figs. S1, S2). However, other considerations are rele-
vant. For example, the spatial resolution of the observa-
tional data will often vary, as will the models used to
integrate such data. Likelihood functions for presence-
only data are at a point level when using IPP models,
whereas occupancy data occur at a coarser resolution.
This difference in sampling resolution could be consid-
ered in weighting schemes. An alternative way to view
the problem is to consider formally that the data sources
vary in reliability and formulate likelihood functions
that accommodate variation in reliability (Lele and Das
2000, Lele and Allen 2006).

To determine weight values, we used a cross-valida-
tion technique (Wang and Zidek 2005). This post hoc
approach was helpful for guiding decisions for predic-
tive accuracy. Other approaches to assigning weights
could be considered based on the knowledge of the
system. For instance, one may wish to downweight
presence-only data, given its known limitations relative
to data from planned surveys (cf. Francis 2017). Simi-
larly, data with known sampling selection bias could
be downweighted to reduce—but not eliminate—the
contribution of those data to modeling efforts. In such
situations, determining the magnitude of downweight-
ing may still require either an objective technique, such
as cross-validation, or could be driven by subjective
criteria (such as expert opinion). Evaluating the
impacts of different weighting schemes and advancing
better ways to increase the efficacy of data integration
are needed.

Guidance

The rapid growth of combining data for modeling spe-
cies distributions (Fig. 1) and the flexibility of integrated
distribution models make it tempting to apply these
techniques. Here we provide some guidance regarding
prudent applications of combining data.

1) When combining data, avoid simple pooling and use
caution with combining independent models. Simple
pooling of different data sources masks differences in
sampling designs (spatial, temporal, and observa-
tional differences). Although independent models
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can be useful for qualitative comparisons, quantita-
tive integration can be inappropriate because such
models often focus on subtly different quantities and
vary in spatial and temporal support.

2) Use observation models that honor sampling
designs of different data sources whenever possible.
The use of observation models is highly relevant to
many problems in ecology (Royle and Dorazio
2008), and it has been repeatedly shown that SDMs
that account for imperfect detection improve infer-
ences and model predictions (Rota et al. 2011,
Lahoz-Monfort et al. 2014). Given that different
sources of data will likely vary in the degree and
type of observation errors (Dorazio 2014, Hefley
and Hooten 2016, Ruiz-Gutierrez et al. 2016), using
observation models may be particularly important
when integrating disparate data sources. In a similar
way, accounting for sampling bias and design can
help improve integration of data sources (Fithian
et al. 2015).

3) When combining data, match data temporally. Most
integrated modeling approaches that have been
applied have implicitly assumed a temporally con-
stant environment (Schank et al. 2017). Here we
truncated eBird data to match the sampling time
frame of planned surveys. Although these models
can be extended to spatio-temporal frameworks
(Hefley and Hooten 2016), in practice it may be chal-
lenging to couple data collected on very different
timescales, such as presence-only data from museum
specimens spanning decades and planned surveys
spanning a short period of time (e.g., 1 yr).

4) Consider variation in the amount and reliability of
different data sources. Because data sources can vary
tremendously in data amount, caution should be
used when combining data. Weighting joint likeli-
hood functions is a practical way to place greater
emphasis on one data source.

5) Broad-scale programs, such as eBird, should consider
incorporating planned surveys as part of their sam-
pling strategy. This could be particularly useful for
monitoring programs (e.g., biological atlases, camera
trap surveys) that have semipermanent sampling
locations or grids. In these cases, having a secondary
sampling strategy focused on different types of data
collection would open the possibilities of using
ISDMs for more reliable inferences.

Finally, we note that there may be many situations
where integrating data sources may not be needed. Inte-
grating planned survey data is expected to frequently
improve presence-only modeling, both in terms of identi-
fying environmental relationships and mapping species
distributions, because of the added information in
regards to species prevalence and the potential to isolate
sample selection bias better (Dorazio 2014). However,
in situations where planned survey data are plentiful and
cover the geographic extent of interest, there may be

ROBERT J. FLETCHER JR. ET AL.

Ecology, Vol. 100, No. 6

little gained in combining it with presence-only informa-
tion that may be less reliable.

Conclusions

Combining data has great potential to improve
understanding of species distributions and predictive
models. We focused on linking distributional data only,
but other types of formal data integration could occur
to better predict the dynamics of species distribution
(Miller et al. 2019, Van Schmidt et al. 2019). By
integrating multiple sources of information into the
modeling process, greater insights into environmental
relationships and the mechanisms driving species distri-
butions can occur. With the rapid rise in data avail-
ability, we expect integrated models will provide an
increasingly common and powerful approach for
addressing problems of species distributions and ongo-
ing environmental change.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Agri-
culture, USDA-NIFA Initiative Grant No. 2012-67009-20090
and the University of Florida’s School of Natural Resource
and Environment. We thank B. Brosi, H. Ober, L. Smith, I.
Gottlieb, M. Nunez-Regueiro, and numerous field technicians
for their assistance. We thank many landowners and land man-
agers who allowed access to their properties, especially Lon-
cala, Inc., and Resource Management Service LLC. T. Arnold,
C. Merow, and two anonymous reviewers provided useful sug-
gestions, which greatly improved and clarified the ideas pre-
sented here.

LITERATURE CITED

Aarts, G., J. Fieberg, and J. Matthiopoulos. 2012. Comparative
interpretation of count, presence—absence and point methods
for species distribution models. Methods in Ecology and Evo-
lution 3:177-187.

Araujo, M. B., and M. Luoto. 2007. The importance of biotic
interactions for modelling species distributions under climate
change. Global Ecology and Biogeography 16:743-753.

Aratjo, M. B., and M. New. 2007. Ensemble forecasting of spe-
cies distributions. Trends in Ecology & Evolution 22:42-47.

Bradter, U., L. Mair, M. Jonsson, J. Knape, A. Singer, and T.
Snall. 2018. Can opportunistically collected citizen science
data fill a data gap for habitat suitability models of less com-
mon species? Methods in Ecology and Evolution 9:1667—
1678.

Case, M. J,, and J. J. Lawler. 2017. Integrating mechanistic and
empirical model projections to assess climate impacts on tree
species distributions in northwestern North America. Global
Change Biology 23:2005-2015.

Chandler, R., and J. Hepinstall-Cymerman. 2016. Estimating
the spatial scales of landscape effects on abundance. Land-
scape Ecology 31:1383-1394.

Cressie, N., and C. K. Wikle. 2011. Statistics for spatio-tem-
poral data. John Wiley and Sons, Inc., Hoboken, New Jersey,
USA.

Dickinson, J. L., B. Zuckerberg, and D. N. Bonter. 2010. Citizen
science as an ecological research tool: challenges and benefits.
Annual Review of Ecology, Evolution, and Systematics 41:
149-172.



June 2019

Domisch, S., A. M. Wilson, and W. Jetz. 2016. Model-based
integration of observed and expert-based information for
assessing the geographic and environmental distribution of
freshwater species. Ecography 39:1078-1088.

Dorazio, R. M. 2012. Predicting the geographic distribution of
a species from presence-only data subject to detection errors.
Biometrics 68:1303-1312.

Dorazio, R. M. 2014. Accounting for imperfect detection and
survey bias in statistical analysis of presence-only data. Glo-
bal Ecology and Biogeography 23:1472-1484.

Douma, J. C., J. P. M. Witte, R. Aerts, R. P. Bartholomeus, J. C.
Ordonez, H. O. Venterink, M. J. Wassen, and P. M. van Bode-
gom. 2012. Towards a functional basis for predicting vegeta-
tion patterns; incorporating plant traits in habitat
distribution models. Ecography 35:294-305.

Elith, J., and J. R. Leathwick. 2009. Species distribution models:
ecological explanation and prediction across space and time.
Annual Review of Ecology Evolution and Systematics
40:677-697.

Ellison, A. M. 1996. An introduction to Bayesian inference for
ecological research and environmental decision-making. Eco-
logical Applications 6:1036-1046.

Evans, J. M., R. J. Fletcher, Jr., and J. Alavalapati. 2010. Using
species distribution models to identify suitable areas for bio-
fuel feedstock production. Global Change Biology Bioenergy
2:63-78.

Evans, J. M., R. J. Fletcher, Jr., J. R. R. Alavalapati, A. L.
Smith, D. Geller, P. Lal, M. Acevedo, D. Vasudev, J. Cal-
abria, and T. Upadhyay. 2013. Forestry bioenergy in the
southeast United States: implications for wildlife habitat
and biodiversity. National Wildlife Federation, Merrifield,
Virginia, USA.

Fink, D., W. M. Hochachka, B. Zuckerberg, D. W. Winkler, B.
Shaby, M. A. Munson, G. Hooker, M. Riedewald, D. Shel-
don, and S. Kelling. 2010. Spatiotemporal exploratory mod-
els for broad-scale survey data. Ecological Applications
20:2131-2147.

Fithian, W., J. Elith, T. Hastie, and D. A. Keith. 2015. Bias cor-
rection in species distribution models: pooling survey and col-
lection data for multiple species. Methods in Ecology and
Evolution 6:424-438.

Fletcher, R. J., R. A. McCleery, D. U. Greene, and C. A. Tye.
2016. Integrated models that unite local and regional data
reveal larger-scale environmental relationships and improve
predictions of species distributions. Landscape Ecology
31:1369-1382.

Fletcher, R. J., Jr., and M. J. Fortin. 2018. Spatial ecology and
conservation modeling: applications with R. Springer,
Switzerland.

Fourcade, Y., J. O. Engler, D. Roedder, and J. Secondi. 2014.
Mapping species distributions with MAXENT using a geo-
graphically biased sample of presence data: a performance
assessment of methods for correcting sampling bias. PLoS
ONE 9:¢97122.

Francis, R. 2011. Data weighting in statistical fisheries stock
assessment models. Canadian Journal of Fisheries and Aqua-
tic Sciences 68:1124-1138.

Francis, R. 2017. Revisiting data weighting in fisheries stock
assessment models. Fisheries Research 192:5-15.

Galik, C. S., and R. C. Abt. 2016. Sustainability guidelines and
forest market response: an assessment of European Union
pellet demand in the southeastern United States. Global
Change Biology Bioenergy 8:658-669.

Gaston, A., and J. I. Garcia-Vinas. 2011. Modelling species dis-
tributions with penalised logistic regressions: A comparison with
maximum entropy models. Ecological Modelling 222:2037-2041.

SPECIAL FEATURE: DATA INTEGRATION FOR POPULATION MODELS Article €02710; page 13

Giraud, C., C. Calenge, C. Coron, and R. Julliard. 2016. Capi-
talizing on opportunistic data for monitoring relative abun-
dances of species. Biometrics 72:649-658.

Gottlieb, I. G. W.,, R. J. Fletcher, M. M. Nunez-Regueiro, H.
Ober, L. Smith, and B. J. Brosi. 2017. Alternative biomass
strategies for bioenergy: implications for bird communities
across the southeastern United States. Global Change Biol-
ogy Bioenergy 9:1606-1617.

Graham, C. H., S. Ferrier, F. Huettman, C. Moritz, and A. T.
Peterson. 2004. New developments in museum-based infor-
matics and applications in biodiversity analysis. Trends in
Ecology & Evolution 19:497-503.

Guillera-Arroita, G., J. J. Lahoz-Monfort, J. Elith, A. Gordon,
H. Kujala, P. E. Lentini, M. A. McCarthy, R. Tingley, and B.
A. Wintle. 2015. Is my species distribution model fit for pur-
pose? Matching data and models to applications. Global
Ecology and Biogeography 24:276-292.

Guisan, A. et al. 2013. Predicting species distributions for con-
servation decisions. Ecology Letters 16:1424-1435.

Hashem, I. A. T., I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani,
and S. U. Khan. 2015. The rise of “big data” on cloud com-
puting: Review and open research issues. Information Sys-
tems 47:98-115.

Hefley, T. J., D. M. Baasch, A. J. Tyre, and E. E. Blankenship.
2015. Use of opportunistic sightings and expert knowledge to
predict and compare Whooping Crane stopover habitat. Con-
servation Biology 29:1337-1346.

Hefley, T. J., B. M. Brost, and M. B. Hooten. 2017. Bias correc-
tion of bounded location errors in presence-only data. Meth-
ods in Ecology and Evolution 8:1566-1573.

Hefley, T. J., and M. B. Hooten. 2016. Hierarchical species dis-
tribution models. Current Landscape Ecology Reports 1:87—
97.

Hefley, T. J., A. J. Tyre, D. M. Baasch, and E. E. Blankenship.
2013. Nondetection sampling bias in marked presence-only
data. Ecology and Evolution 3:5225-5236.

Homer, C., J. Dewitz, L. M. Yang, S. Jin, P. Danielson, G. Xian,
J. Coulston, N. Herold, J. Wickham, and K. Megown. 2015.
Completion of the 2011 national land cover database for the
conterminous United States—Representing a decade of land
cover change information. Photogrammetric Engineering and
Remote Sensing 81:345-354.

Jin, X. L., B. W. Wah, X. Q. Cheng, and Y. Z. Wang. 2015. Sig-
nificance and challenges of big data research. Big Data
Research 2:59-64.

Keil, P, A. M. Wilson, and W. Jetz. 2014. Uncertainty, pri-
ors, autocorrelation and disparate data in downscaling of
species distributions. Diversity and Distributions 20:797—
812.

Koshkina, V., Y. Wang, A. Gordon, R. M. Dorazio, M. White,
and L. Stone. 2017. Integrated species distribution models:
combining presence-background data and site-occupancy
data with imperfect detection. Methods in Ecology and Evo-
lution 8:420-430.

La Sorte, F. A., C. A. Lepczyk, J. L. Burnett, A. H. Hurl-
bert, M. W. Tingley, and B. Zuckerberg. 2018. Opportuni-
ties and challenges for big data ornithology. Condor
120:414-426.

Lahoz-Monfort, J. J., G. Guillera-Arroita, and B. A. Wintle.
2014. Imperfect detection impacts the performance of species
distribution models. Global Ecology and Biogeography
23:504-515.

Lawson, C. R., J. A. Hodgson, R. J. Wilson, and S. A. Richards.
2014. Prevalence, thresholds and the performance of pres-
ence—absence models. Methods in Ecology and Evolution
5:54-64.



Atrticle e02710; page 14

Lele, S. R., and K. L. Allen. 2006. On using expert opinion in
ecological analyses: a frequentist approach. Environmetrics
17:683-704.

Lele, S. R., and A. Das. 2000. Elicited data and incorporation
of expert opinion for statistical inference in spatial studies.
Mathematical Geology 32:465-487.

MacKenzie, D. L., J. D. Nichols, G. B. Lachman, S. Droege, J.
A. Royle, and C. A. Langtimm. 2002. Estimating site occu-
pancy rates when detection probabilities are less than one.
Ecology 83:2248-2255.

Marcantonio, M., M. Metz, F. Baldacchino, D. Arnoldi, F.
Montarsi, G. Capelli, S. Carlin, M. Neteler, and A. Rizzoli.
2016. First assessment of potential distribution and dispersal
capacity of the emerging invasive mosquito Aedes koreicus in
Northeast Italy. Parasites & Vectors https://doi.org/10.1186/
s13071-016-1340-9

McCarthy, K. P, R. J. Fletcher, C. T. Rota, and R. L. Hutto.
2012. Predicting species distributions from samples collected
along roadsides. Conservation Biology 26:68-77.

Merow, C., J. M. Allen, M. Aiello-Lammens, and J. A. Silander.
2016. Improving niche and range estimates with Maxent and
point process models by integrating spatially explicit informa-
tion. Global Ecology and Biogeography 25:1022-1036.

Merow, C., A. M. Wilson, and W. Jetz. 2017. Integrating
occurrence data and expert maps for improved species
range predictions. Global Ecology and Biogeography
26:243-258.

Miller, D. A., J. D. Nichols, B. T. McClintock, E. H. C. Grant,
L. L. Bailey, and L. A. Weir. 2011. Improving occupancy esti-
mation when two types of observational error occur: non-
detection and species misidentification. Ecology 92:1422—
1428.

Miller, D. A. W,, K. Pacifici, J. S. Sanderlin, and B. J. Reich.
2019. The recent past and promising future for data integra-
tion methods to estimate species’ distributions. Methods in
Ecology and Evolution 10:22-37.

Norris, K. 2004. Managing threatened species: the ecological
toolbox, evolutionary theory and declining-population para-
digm. Journal of Applied Ecology 41:413-426.

Pacifici, K., B. Reich, D. Miller, and B. Pease. 2019. Resolving
misaligned spatial data with integrated distribution models.
Ecology 100:¢02709.

Pacifici, K., B. J. Reich, D. A. W. Miller, B. Gardner, G.
Stauffer, S. Singh, A. McKerrow, and J. A. Collazo. 2017.
Integrating multiple data sources in species distribution
modeling: a framework for data fusion. Ecology 98:840-
850.

Palaoro, A. V., M. M. Dalosto, G. C. Costa, and S. Santos.
2013. Niche conservatism and the potential for the crayfish
Procambarus clarkii to invade South America. Freshwater
Biology 58:1379-1391.

Pawitan, Y. 2001. In all likelihood: statistical modeling and
inference using likelihood. Oxford University Press, Oxford,
UK.

Petitpierre, B., K. McDougall, T. Seipel, O. Broennimann, A.
Guisan, and C. Kueffer. 2016. Will climate change increase
the risk of plant invasions into mountains? Ecological Appli-
cations 26:530-544.

Phillips, S. J., M. Dudik, J. Elith, C. H. Graham, A. Lehmann,
J. Leathwick, and S. Ferrier. 2009. Sample selection bias and
presence-only distribution models: implications for back-
ground and pseudo-absence data. Ecological Applications
19:181-197.

Punt, A. E. 2017. Some insights into data weighting in inte-
grated stock assessments. Fisheries Research 192:52-65.

Raxworthy, C. J., E. Martinez-Meyer, N. Horning, R. A.
Nussbaum, G. E. Schneider, M. A. Ortega-Huerta, and A.

ROBERT J. FLETCHER JR. ET AL.

Ecology, Vol. 100, No. 6

T. Peterson. 2003. Predicting distributions of known and
unknown reptile species in Madagascar. Nature 426:
837-841.

Regos, A., M. D’Amen, N. Titeux, S. Herrando, A. Guisan,
and L. Brotons. 2016. Predicting the future effectiveness of
protected areas for bird conservation in Mediterranean
ecosystems under climate change and novel fire regime sce-
narios. Diversity and Distributions 22:83-96.

Renner, I. W, J. Elith, A. Baddeley, W. Fithian, T. Hastie, S. J.
Phillips, G. Popovic, and D. 1. Warton. 2015. Point process
models for presence-only analysis. Methods in Ecology and
Evolution 6:366-379.

Renner, I. W,, and D. 1. Warton. 2013. Equivalence of MAX-
ENT and Poisson point process models for species distribu-
tion modeling in ecology. Biometrics 69:274-281.

Rota, C. T., R. J. Fletcher Jr., J. M. Evans, and R. L. Hutto.
2011. Does accounting for detectability improve species dis-
tribution models? Ecography 34:659-670.

Royle, J. A. 2004. N-mixture models for estimating population
size from spatially replicated counts. Biometrics 60:108—
115.

Royle, J. A., R. B. Chandler, C. Yackulic, and J. D. Nichols.
2012. Likelihood analysis of species occurrence probability
from presence-only data for modelling species distributions.
Methods in Ecology and Evolution 3:545-554.

Royle, J. A., and R. M. Dorazio. 2008. Hierarchical modeling
and inference in ecology: the analysis of data from popula-
tions, metapopulations, and communities. Academic Press,
Cambridge, Massachusetts. USA.

Ruiz-Gutierrez, V., M. B. Hooten, and E. H. C. Grant. 2016.
Uncertainty in biological monitoring: a framework for data
collection and analysis to account for multiple sources of
sampling bias. Methods in Ecology and Evolution 7:900—
909.

Saunders, S. P., M. T. Farr, A. D. Wright, C. A. Bahlai, J. W.
Ribeiro, S. Rossman, A. L. Sussman, T. W. Arnold, and E. F.
Zipkin. 2019. Disentangling data discrepancies with inte-
grated population models. Ecology 100:¢02714.

Schank, C. J. et al. 2017. Using a novel model approach to
assess the distribution and conservation status of the endan-
gered Baird’s tapir. Diversity and Distributions 23:1459—
1471.

Sullivan, B. L. et al. 2014. The eBird enterprise: An integrated
approach to development and application of citizen science.
Biological Conservation 169:31-40.

Talluto, M. V. etal. 2016. Cross-scale integration of
knowledge for predicting species ranges: a metamodelling
framework. Global Ecology and Biogeography 25:238—
249.

Trainor, A. M., and O. J. Schmitz. 2014. Infusing considerations
of trophic dependencies into species distribution modelling.
Ecology Letters 17:1507-1517.

Tye, C. A., R. A. McCleery, R. J. Fletcher, Jr., D. U. Greene,
and R. S. Butryn. 2017. Evaluating citizen vs. professional
data for modelling distributions of a rare squirrel. Journal of
Applied Ecology 54:628-637.

Underwood, J. G., C. D’Agrosa, and L. R. Gerber. 2010.
Identifying conservation areas on the basis of alterna-
tive distribution data sets. Conservation Biology 24:162—
170.

Van Schmidt, N. D., T. Kovach, A. M. Kilpatrick, J. L.
Oviedo, L. Huntsinger, T. V. Hruska, N. L. Miller, and
S. R. Beissinger. 2019. Integrating social and ecological
data to model metapopulation dynamics in coupled
human and natural systems. Ecology 100:¢02711.

Wang, X. G. and J. V. Zidek. 2005. Selecting likelihood weights
by cross-validation. Annals of Statistics 33:463-500.


https://doi.org/10.1186/s13071-016-1340-9
https://doi.org/10.1186/s13071-016-1340-9

June 2019 SPECIAL FEATURE: DATA INTEGRATION FOR POPULATION MODELS Article €02710; page 15

Warton, D. 1., and L. C. Shepherd. 2010. Poisson point process ~ Wiens, J. J. et al. 2010. Niche conservatism as an emerging prin-

models solve the “pseudo-absence problem” for presence- ciple in ecology and conservation biology. Ecology Letters

only data in ecology. Annals of Applied Statistics 4: 13:1310-1324.

1383-1402. Zipkin, E. F., S. Rossman, C. B. Yackulic, J. D. Wiens, J. T.
Wenger, S. J., and J. D. Olden. 2012. Assessing transferability of Thorson, R. J. Davis, and E. H. C. Grant. 2017. Integrating

ecological models: an underappreciated aspect of statistical count and detection—nondetection data to model population

validation. Methods in Ecology and Evolution 3:260-267. dynamics. Ecology 98:1640-1650.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article at http://onlinelibrary.wiley.com/doi/
10.1002/ecy.2710/suppinfo


http://onlinelibrary.wiley.com/doi/10.1002/ecy.2710/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/ecy.2710/suppinfo

