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A B S T R A C T

Improving the energy-efficiency of our building stock is critical to meeting our worldwide sustainability goals. In
response to this need, two key tools have emerged to help engineers, building scientists and energy managers
understand building energy usage and derive energy-efficiency solutions: data analytics and simulation. While
both data analytics and simulation hold significant promise, we lack a clear understanding on the use, barriers
and expectations of both in the building energy management decision-making process. This study conducts a
nationwide survey of 448 building energy management professionals in the United States to help elucidate: 1)
what impacts the adoption of data analytics and simulation among building energy management professionals;
2) in what phases of the building energy management decision-making process are data analytics and simulation
currently used; and 3) what are the barriers of use for data analytics and simulation and how can they be
improved to better support building energy management decision-making. Overall, results indicate that pro-
fessional domain plays a large role in associating the uses, barriers and expectations for data analytics and
simulation. Results also indicate that data analytics and simulation could be coupled to leverage functionality as
they are used in similar phases of the decision-making process. Lastly, results point to opportunities for im-
proving the applicability of data analytics and simulation tools as well as training for both. In the end, this study
aims to provide a quantitative basis for improving the efficacy and integration of data analytics and simulation in
the building energy management domain.

1. Introduction

Buildings consume 40% of the total U.S. energy use, more than any
other sector, making enhancing the energy-efficiency of the built en-
vironment integral to our long-term sustainability goals. Engineers,
building scientists and building energy managers have at their disposal
two key tools to characterize building energy usage and derive energy-
efficiency solutions: data analytics and simulation. Data analytics le-
verages building data that is becoming more and more widely available
through “open data” and “smart city” initiatives to build analytical
models that extract insights on the energy performance of a building.
Simulation utilizes physics-based methods to model the complex ther-
modynamics of a building and enables effective and convenient as-
sessment of how changes to building design and/or operations impact
energy usage.

While both data analytics and simulation hold significant promise
for the improvement of building energy management, widespread
adoption and usage of both has been limited. Often key decision-makers

in the building energy management domain lack the background and
experience in data analytics and/or resources to create, interpret and
translate results of complex simulations into actionable insights. As a
result, it is of critical importance to gain a deeper and more compre-
hensive understanding of how building energy management profes-
sionals1 utilize data analytics and simulation. We currently lack a
comprehensive and in-depth analysis of the use, barriers and expecta-
tions of data analytics and simulation in the building energy manage-
ment decision-making process and therefore are limited in our ability to
design new tools that can achieve widespread adoption in practice.

This study aims to deepen our understanding on the use of data
analytics and simulation in the building energy management domain
through analysis of a nationwide survey of 448 building energy man-
agement professionals. Specifically, we aim to focus on: 1) what im-
pacts the adoption of data analytics and simulation among building
energy management professionals; 2) in what phases of the building
energy management decision-making process are data analytics and
simulation currently used; and 3) what are the barriers to use for data
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analytics and simulation and how can they be improved to better
support building energy management decision-making. The rest of the
paper is organized as follows: Section 2 reviews current literature and
emphasizes the importance of the proposed survey and associated
analysis. Section 3 introduces the survey design, administration and
analysis procedure. Section 4 presents all the results of the survey
analysis and discusses key findings. Section 5 concludes the paper,
summarizing limitations and proposing future work.

2. Related work

Previous work has analyzed the usage and applications of both data
analytics and simulation in the building energy management domain. In
this paper, we define simulation as the process of virtually reproducing
and representing building energy performance and behaviors over time
and data analytics as the process for obtaining raw data from buildings
and translating it into insights useful for building energy management
decision-making. Simulation is currently used to model energy perfor-
mance of buildings like lighting systems [1,2] HVAC (Heating, Cooling,
and Air Conditioning) systems [3] and computational fluid dynamics
[4]. Data analytics is mainly used to monitor and estimate building
energy saving potentials through energy use pattern recognition [5],
prediction and classification of energy consumption behaviors [6] and
occupancy schedules [7], control optimization [8] and benchmarking
for energy use efficiency [9]. Both simulation and data analytics are
also applied to model energy use at the urban scale [10].

While both simulation and data analytics are utilized in the building
energy management domain, previous research investigating their
current usage and barriers to widespread adoption has been limited. A
number of studies have used survey analyses to understand the usage
and adoption trends of simulation in building energy management [11],
the challenges that potentially block its application [12], user needs
and function requirements for different use cases [13] and data ex-
change and interoperability [14]. Previous work has also sought to
validate simulation methods and programs by testing and comparing
their modeling results under variousconditions [15–18]. Other studies
have focused on defining sustainable energy performance indicators in
simulation [19], reviewing methods of modeling building energy sys-
tems [20] and using surveys to compare pros and cons of certain si-
mulation programs [21,22]. However, many of the previous compar-
ison studies have short-term implications due to the need for constantly
improving simulation tools that meet the changing demands of building
energy management [23]. Some studies highlighted the barriers to
adopting simulation tools [24] and suggested requirements to enhance
their future development [25]. Conversely, the application of data
analytics to support building energy management is in its nascent stage
of development and therefore little research has been undertaken to
study current challenges of adoption and usage. One study proposed
tools to better inform energy benchmarking models [26]. While another
review paper discussed challenges and opportunities for increased
adoption of data analytics in the design and optimization process [27],
however, it drew conclusions primarily from interviews with a small
number of optimization experts. Previous review work has focused on
the summarization of technical advantages and trends of analytical
techniques for building energy management but limited in its discus-
sion as to how those techniques are being used by professionals
[28–30]. This limited body of work further underscores the need for a
deeper understanding of how data analytics is being utilized across
multiple building energy management domains and what barriers are
preventing more widespread adoption. As a result, the proposed study
aims to focus on understanding the overarching usage trends, adoption
barriers and potential areas of improvement for both data analytics and
simulation in building energy management.

From a methodological perspective, previous works [31,32] have
largely been interview based or case studies, which by design have a
limited number of participants. Some studies divided participants into

pre-defined professional groups (e.g. architect and engineer) [33,34],
obscuring nuances between the many diverse professionals in the
building energy management domain. Currently, the literature is
lacking analysis of a diverse and representative sampling of building
energy management professionals with varying positions, years of ex-
periences and responsibilities. Also, while some studies explored gen-
eral trends of information technologies (e.g. Building Information
Modeling) [35–38], most of such studies only considered a single use of
either data analytics or simulation. In many cases, data analytics and
simulation are complementary in nature [39] and energy and en-
vironmental data is particularly useful for building energy model cali-
bration [40,41]; therefore, their usage should be studied in tandem.
Thus, this paper aims to contribute to current literature by studying the
usage and barriers to adoption of data analytics and simulation in
tandem through the use of an original, detailed survey of building en-
ergy management professionals. In doing so, we aim to identify areas of
improvement for both approaches to maximize their adoption and im-
pact on the area of building energy management.

3. Methodology

The methodology of this paper is divided into 3 sections: survey
design, survey administration and survey analysis. The first two sec-
tions describe the iterative process by which the survey was developed
and distributed to collect data from professionals in the building energy
management domain. The last section describes how the computational
bootstrap method was used to identify patterns and draw conclusions
from the survey results.

3.1. Survey design

To gather data on professionals’ opinions about current use, barriers
and expectations of data analytics and simulation in building energy
management, an online self–administered survey (Appendix A) was
developed and distributed to building energy management profes-
sionals across the United States. Professionals were provided a link to
the survey with a short description of the objective of the survey over
email. The research team has gone through several iterations to test the
validity of survey questions in order to minimize bias and mis-
interpretation of the survey questions.

The first part of the survey collects demographic information of
participants, including organization, current position, years of experi-
ence, region, professional domain and decision-making team size. The
quality of professionals’ responses was controlled and examined to
ensure the authenticity, diversity and representativeness of response
data. The second part of the survey uses Likert scales and multiple-
choice questions [42] to understand the status quo of data analytics for
building energy management related decision-making. The collected
information includes the level of use of data analytics in decision-
making, the frequency of use of data analytics to support decision-
making, the usefulness of data analytics in different phases of decision-
making, the main barriers blocking the use of data analytics in decision-
making and the expectations for further improvement. Similarly, the
third part of the survey utilizes Likert scales and multiple-choice
questions to understand the status quo of simulation for building energy
management related decision-making. The collected information in-
cludes the level of use of simulation in decision-making, the frequency
of use of simulation to support decision-making, the usefulness of si-
mulation in different phases of decision-making, the main barriers
blocking the use of simulation in decision-making and the expectations
for further improvement. We also note that our survey does not speci-
fically ask the types of buildings being managed by each participant.
However, based on the organizational af- filiations of the participants
we can infer that the majority of partici- pants manage commercial
buildings and university buildings.
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3.2. Survey administration

Energy professionals were randomly and conveniently selected from
members of USGBC (U.S. Green Building Council), ASHRAE (American
Society of Heating, Refrigerating and Air-Conditioning Engineers),
IFMA (International Facility Management Association), BCA (Building
Commissioning Association) and AEE (Association of Energy
Engineers). In total, 448 complete responses were received from two
rounds (Round A and Round B) of survey distribution and response
collection.

Round A used the original survey design with all 20 questions in 4
webpages for approximately 1/3 randomly selected building energy
management professionals. The participants had to click three “next”
buttons to finish all the questions. In this round, the complete response
rate was only 5%. More than 50% of the participants who opened the
survey quit after the second page, suggesting they may only stay fo-
cused for up to 2 pages of questions and lose interest after seeing the
second “next” button. In general, we observed that the professionals
lack incentives and patience for additional efforts (e.g., clicking several
“next” buttons) to finish the survey.

To motivate the building energy management professionals to spend
more time completing the survey, the survey distribution method was
updated in Round B for the remaining 2/3 of professionals based on a
previously developed survey design philosophy [43]. The 20 questions
were divided into two parts and sent to participants in two stages. The
first stage contained 11 questions in 1 page, asking for demographic
information and opinions about the current practice and frequency of
use for both data analytics and simulation to support building energy
management decision-making. Some survey design features were also
improved to help participants quickly and clearly finish the questions.
For example, each line had 85 characters, using high contrast with no
color (7%–8% males are color-blind) [44]. Helvetica font was used in
order to keep consistency over different browsers. The website and logo
of the research team were provided in case the participants had any
questions or curiosity. After the first stage, we sent a follow-up email to
those who completed all the questions to appreciate their contributions.
We also requested them to complete the second stage containing the
remaining 9 question in 1 page, including usefulness, main barriers and
improvement criteria of both data analytics and simulation to support
building energy management decision-making. Through this two-stage
method, the research team successfully built more trust with partici-
pants and made them feel that their responses were indeed important to
this research project. The building energy management professionals
gained more incentives and interest for completing the survey. Some of
them even helped distribute the survey to their networks and provided
more contact information for potential participants. The response rate
was improved to 18% in Round B.

3.3. Survey analysis

After collecting all responses, data cleaning was performed to re-
move responses with: 1) more than half questions unanswered, 2) no
demographic information provided, 3) complete time less than 3min-
utes, 4) poor verbatim “straightline” answers, and 5) obviously incon-
sistent answers. Afterwards, the survey analysis was organized to in-
vestigate three interconnected research questions: 1) what impacts the
adoption of data analytics and simulation among building energy
management professionals; 2) in what part of the building energy
management decision-making process are data analytics and simulation
currently used; and 3) what are the barriers to use for data analytics and
simulation and how can they be improved to better support building
energy management decision-making (Fig. 1). The first research ques-
tion analyzes the impacts of demographics on the frequency and level of
use for data analytics and simulation. The second research question
investigates the impact of level of use for data analytics and simulation
on their perceived importance during the different phases of building

energy management decision-making. The third research question seeks
to understand how different levels of use for data analytics and simu-
lation impact the barriers to use and how the barriers to use affect the
expectations for improvement (Fig. 2).

In order to answer the above three research questions, we aim to
analyze the association between a categorical answer for one question
(the dependent variable) with a set of answers for other questions
(independent variables) using logistic regression models, as done in
previous work which analyzed survey results related to decision-
making in building energy-efficiency retrofits [45]. The dependent
variable can either have two values (e.g., selected or not) or multiple
unique values (e.g., Likert scale selection). For example, if 1 represents
the option is selected (with the probability of p) and 0 represents the
option is not selected (with the probability of 1-p), the ratio p/(1-p) is
the odds and the logit is the logarithm of the odds (log odds). The logit
transformation can be mathematically formulated as:

=logit p ln p
p

( )
1

Logistic regression models the linear relationships between log odds
of answers for the dependent variable and answers for the independent
variables, as follows:

= + +ln p
p

x e
1

Where x is a vector of answers for the independent variables that could
have potential impacts on the answer for the dependent variable. β is
the vector of coefficients and the exponentials of β indicate the effects
of the independent variables on the odds ratio of dependent variable. e
is the error term. When there are more than two unique values for the
dependent variable, one-vs-rest (OvR) is applied. Maximum Likelihood
Estimation (MLE) [46] is applied to estimate the coefficients.

To probabilistically analyze the regression results (e.g. what hap-
pens if we acquire the data again), this paper employs bootstrapping
with logistic regression. Bootstrapping allows random resampling from
a sample with replacement. It requires fewer assumptions of the data
distribution, residuals and variance, sample size, etc., making it ideal
for smaller and skewed samples. Sampling with replacement treats the
data as a proxy for the true population. Each resampled data is called a
bootstrap sample and a bootstrap replicate is the value of the statistic
computed from the bootstrap sample, which is a simulated replica of
the original data acquired by bootstrapping. It has been mathematically
demonstrated that the empirical bootstrap analysis is more reliable and
consistent than theoretical analysis [47].

Using bootstrapping method for logistic regression, this paper re-
samples responses from the response pool, runs logistic regression as
described above and computes the statistics of interest (e.g. coefficients
and statistical significance), in order to generalize calculations.
Hypothesis testing is done by clearly stating the null hypothesis (the
coefficient is equal to 0), generating many sets of simulated data as-
suming the null hypothesis is true, computing coefficients for each si-
mulated data set and analyzing the percentage of coefficients that are
either below or above 0 in order to compute the statistical significance.
Consistent with convention related to survey analysis, we utilized a
significance threshold of 0.05 (sig. p < 0.05).

4. Results and analysis

The survey responses reveal a wide distribution of organizations,
regions, current positions, years of experience and professional domains
(Fig. 3 and Fig. 4). Since building energy management domains are
essentially interconnected, one professional might work on different
domains simultaneously and is allowed to select more than one domain
that she/he thinks is relevant to her/his daily work. N stands for the
percentage of a specific selection among all responses. It can be seen
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that more participants come from Private organization (N=71.21%)
than Public organizations (N=28.79%). The possible positions include
Engineers (N= 49.33%), Managers (N= 26.34%), Directors
(N= 17.41%), Principals (N=0.89%) and Presidents (N = 6.03%). The
years of experience range from 1 to 20 + years, grouped as follows: 1–5
years (N=12.50%), 5–10 years (N= 24.77%), 10–20 years
(N= 25.45%) and 20+ years (N=37.28%). Participants come from
all regions of the country, including Northeast (N=29.69%), West
(N= 28.35%), Midwest (N=21.43%) and South (N=20.54%). The
professional domains cover fourteen building energy management re-
lated areas. Most participants work in the areas of Building systems and
equipment (N=94.41%), Building operations and maintenance
(N= 81.70%) and Building commissioning and energy auditing
(N= 79.46%), while fewer participants are involved in the areas of

Building occupancies (N= 20.98%), Grid optimization and demand re-
sponse (N= 21.88%) and Community and neighborhood management
(N= 15.63%). From these statistics, it can be seen that the responses
are diverse and encompass a wide range of organization types, current
positions, years of experience, professional domains and regions.

4.1. RQ1: factors affecting the adoption of data analytics and simulation

In order to investigate what factors impact the adoption of data
analytics and simulation in building energy management, we first
compared the effect of various demographic factors, such as organiza-
tion, years of experience, current position, region and professional
domain on the frequency of use of both data analytics (Table 1) and
simulation (Table 2). The exponentials of coefficients, which indicate
the effects of the independent variable on the odds ratio of the de-
pendent variable, were also calculated. A positive coefficient indicates
an increase in the odds of selection for the dependent variable while a
negative coefficient indicates a decrease in odds of selection for the
dependent variable. Only coefficients with p-value< 0.05 were re-
ported. Overall, the professional domain had the most significant im-
pact on the adoption of data analytics and simulation.

The logistic regression tests reveal that amongst all positions,
Managers have an increase of 68.2% increase in the odds to Always use
data analytics (coef= 0.52, sig= 0.01). Participants working in the
domain of Building occupancy are also likely (85.9% increase in odds) to
Always use data analytics (coef= 0.62, sig= 0.02), while those
working in Building additions, alterations and retrofitting (coef= 0.49,
sig= 0.03, 63.2% increase in odds) and Energy finance and market
(coef= 0.43, sig= 0.04, 53.7% increase in odds) are likely to
Sometimes (half of the time) use data analytics. This could be because
these domains have more data available for analysis and decision-
making [48]. Participants in Building operations and maintenance are
likely to Never adopt the use of data analytics (coef= 0.40, sig= 0.03,
49.2% increase in odds), as perhaps the development of building op-
erations and maintenance is not very mature in the practice of col-
lecting and analyzing data [49]. This presents an opportunity for in-
creased adoption of data analytics as Building operations and
maintenance could greatly benefit by using it to monitor energy usage
during the life of the building, as has been done for many buildings
after occupancy [50]. There is no significant positive impact of orga-
nization, years of experience or region on the frequency of use. No
demographic factor significantly influences the odds of Often and

Fig. 1. The overall research objectives and research questions of this study.

Fig. 2. The relationships between the three research questions investigated and
the various components of the survey. The direction of the arrow indicates the
relationship modeled by a logistic regression from the independent variable to
the dependent variable.
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Seldom use of data analytics.
Participants from several domains are likely to Sometimes (half of the

time) use simulation: Building occupancies (coef= 0.65, sig= 0.01,
91.5% increase in odds), Energy finance and market (coef= 0.40,
sig= 0.05, 49.2% increase in odds) and Grid optimization and demand
response (coef= 0.62, sig= 0.01, 85.9% increase in odds). Building
systems and equipment (coef= 0.55, sig= 0.02, 73.3% increase in odds)
and Building commissioning and auditing (coef= 0.68, sig= 0.01, 97.4%
increase in odds) are likely to Never or Seldom (coef = 0.57, sig = 0.02,
76.8% increase in odds) use simulation. Participants working in the
Building operations and maintenance domain are likely to Often (more

than half of the time) use simulation (coef= 0.63, sig= 0.01, 87.8%
increase in odds). They are more likely to use simulation than data
analytics (data analytics: Never). There is no significant impact on fre-
quency of use by organization, current position, years of experience or
region. The results show that no demographic factor significantly in-
fluences the odds of use Always regarding simulation.

Next, we aim to deepen our understanding of what impacts the
adoption of data analytics and simulation in building energy manage-
ment by analyzing their level of use. The different levels of use are
classifications of technologies based on their different requirements of
specialty, knowledge and tools for implementation in building energy

Fig. 3. Number of participants by organization, current position, years of experience and region.

Fig. 4. Number of participants by professional domain.
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management. From a descriptive analysis perspective, the bootstrap-
calculated confidence intervals were equivalent to the equation-based
confidence intervals. Generally, data analytics is often used for com-
putationally light analysis. The most common use for data analytics is
Manual or spreadsheet oriented calculations (N= 83.93%), followed by
Qualitative and descriptive interpretations (N= 69.64%) and Data pro-
cessing tools and simple models (N= 66.5%). Data analytics is used less
for computationally heavy processes such as Statistical analysis, data
mining and learning, complex datasets (N=25.67%) or Real-time analysis,
deep learning2 and predictive models, limited datasets (N= 26.56%).
While the level of use of data analytics is more distributed, simulation is
clearly used most commonly to Perform quick energy estimate and ana-
lysis (N=88.62%) and second to Create virtual building components and
compare design alternatives (N=52.90%). It is used least to Analyze
impacts of the model (N=29.24%). After the descriptive analysis, we
then compared the effect of various demographic factors on the level of
use of both data analytics and simulation (Table 3 and Table 4).

Participants from Private organizations are more likely to use data
analytics for Manual or spreadsheet oriented calculations (coef= 0.71,
sig= 0.00, 103.4% increase in odds), while participants from Public
organizations are more likely to use it for Qualitative and descriptive
interpretations (coef= 0.22, sig= 0.05, 24.6% increase in odds) or Data
processing tools and simple models (coef= 0.31, sig= 0.04, 36.3%

increase in odds). This could be due to the fact that professionals from
Public organizations are encouraged to explore more advanced tech-
nologies [51]. Principals are more likely to use data analytics for less
computationally complex uses such as Qualitative and descriptive inter-
pretations (coef= 0.70, sig= 0.0, 101.4% increase in odds), Manual or
spreadsheet oriented calculations (coef= 0.42, sig= 0.00, 52.2% in-
crease in odds) and Data processing and simple models (coef= 0.67,
sig= 0.03, 95.4% increase in odds), since the responsibilities of Prin-
cipals primarily consist of strategic tasks, like many executive roles in
industry settings [52]. Participants with 10-20 years of experience in
the building industry are more likely to use data analytics for simpler
tasks such as Manual or spreadsheet oriented calculations (coef= 0.45,
sig= 0.02, 56.8% increase in odds), while participants with 5-10 years
of experience also use it for that (coef= 0.43, sig= 0.04, 53.7% in-
crease in odds) as well as for Data processing tools and simple models
(coef= 0.38, sig= 0.02, 46.2% increase in odds). This could be due to
the fact that the new generation of building energy professionals are
more exposed and trained on advanced technologies and tools [53].

There is a bifurcation for participants in Building operations and
maintenance who use data analytics either for Qualitative and descriptive
interpretations (coef= 0.52, sig= 0.01, 68.2% increase in odds) or Real-
time analysis, deep learning and predictive models, limited datasets
(coef= 0.54, sig= 0.02, 71.6% increase in odds); there are fewer in-
between significant uses. This is an interesting finding which reflects
how the work of energy professionals in this domain have diverged
[54]. Participants in Community and neighborhood management are more
likely to use data analytics forManual or spreadsheet oriented calculations
(coef= 0.58, sig= 0.05, 78.6% increase in odds) and Data processing
tools and simple models (coef= 0.95, sig= 0.01, 158.6% increase in

Table 1
Coefficients of factors that may affect adoption of data analytics (bold with gray background highlight indicates sta-
tistically significant results at the 0.05 level, the first number is the value of coefficient, and the number in parenthesis
is the percentage increase in odds, calculated by the exponential of coefficient).

Table 2
Coefficients of factors that may affect adoption of simulation (bold with gray background highlight indicates statis-
tically significant results at the 0.05 level, the first number is the value of coefficient, and the number in parenthesis is
the percentage increase in odds, calculated by the exponential of coefficient).

2 Deep learning is more computationally intensive and thus has higher
hardware requirements (e.g. GPU) compared to traditional machine learning,
representing a different level of use of data analytics in building energy man-
agement.
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Table 3
Coefficients of factors that may affect level of use of data analytics (bold with gray background highlight indicates
statistically significant results at the 0.05 level, the first number is the value of coefficient, and the number in par-
enthesis is the percentage increase in odds, calculated by the exponential of coefficient).

Table 4
Coefficients of factors that may affect level of use of simulation (bold with gray background highlight indicates sta-
tistically significant results at the 0.05 level, the first number is the value of coefficient, and the number in parenthesis
is the percentage increase in odds, calculated by the exponential of coefficient).
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odds), which makes sense as data analytics is often used for larger,
urban scale modeling [55]. Participants in Grid optimization and demand
response are also more likely to use data analytics for Real-time analysis,
deep learning and predictive models, limited datasets (coef= 0.55,
sig= 0.04, 73.3% increase in odds), conforming the cutting-edge
nature of their work [56,57].

Several demographic types use simulation significantly to perform
Quick energy estimate and analysis, including: Private organizations
(coef= 0.52, sig= 0.02, 68.2% increase in odds), Public organizations
(coef= 0.45, sig= 0.02, 56.8% increase in odds), Principals
(coef= 0.21, sig= 0.02, 23.4% increase in odds), 10-20 years experi-
ence (coef= 0.50, sig= 0.00, 64.9% increase in odds), Midwest
(coef= 0.49, sig= 0.03, 63.2% increase in odds) and South regions
(coef= 0.49, sig= 0.05, 63.2% increase in odds), Building additions,
alterations, and retrofitting (coef= 0.78, sig= 0.00, 118.1% increase in
odds) and Community and neighborhood management professionals
(coef= 0.77, sig= 0.05, 116.0% increase in odds). Principals are also
likely to use simulation to Create virtual building components and compare
design alternatives (coef= 0.98, sig= 0.00, 166.4% increase in odds), a
job that people in that position are likely to perform for higher level
decision-making, similar to strategy roles for company board directors
[58]. Participants with 1 to 5 years of experience are most likely to use
simulation to Examine sensitivity and effects of key parameters
(coef= 0.46, sig= 0.05, 58.4% increase in odds). Sensitivity analysis is
a more complicated simulation tool and it makes sense that younger
employees trained with more cutting-edge technologies might have
more experience with newer, more technical processes. This trend is
representative of a larger notion of adolescents becoming proficient
with technology at a young age [59].

Professionals in Building materials use simulation to Analyze climatic
and neighboring impacts (coef= 0.40, sig= 0.03, 49.2% increase in
odds), which makes sense as materials can affect urban microclimate
and building energy use [60]. Community and neighborhood management
are likely to use it to Create virtual building components (coef= 0.51,
sig= 0.05, 66.5% increase in odds), while District systems and lot fa-
cilities mostly use simulation to Examine sensitivity and effects of key
parameters (coef= 0.42, sig= 0.03, 52.2% increase in odds). We pos-
tulate that this is the case as models have emerged that now enable
neighborhood and urban scale simulation and analysis [61,62].

Overall, our results indicate several trends in respect to factors in-
fluencing the adoption of data analytics and simulation for building
energy management:

• Professional domain plays a significant effect on adoption of data
analytics and simulation, but in general, position, years of experi-
ence and region do not.
• Most demographic factors (with the exception of region) have an
effect on the adoption of data analytics for less computationally
complex uses. Professional domain affects the adoption of data
analytics at all levels of use.

• The use of simulation is more consistent than data analytics across
demographic factors. It is common for professionals to use simula-
tion sometimes and its primary use is quick energy estimates and
analysis.

4.2. RQ2: utilization of data analytics and simulation in the decision-
making process

We aim to understand the utilization of data analytics and simula-
tion during the seven phases of the building energy management de-
cision-making process (Fig. 5). Survey participants indicated the use-
fulness on a scale of 1–5 (1= least useful, 5=most useful). Both data
analytics and simulation are considered more useful for Phase 2: Discuss
the scope of decision-making, Phase 5: Get feedback and determine princi-
ples to judge and Phase 4: Generate proposals and alternatives. Data ana-
lytics is less useful for Phase 6: Validate and prove the proposals and al-
ternatives and Phase 3: Gather information and improve awareness of
situation, while simulation is less useful for Phase 7: Evaluate the deci-
sion-making and Phase 6: Validate and prove the proposals and alternatives
(in order of perceived importance).

We used logistic regression tests to analyze in which phases of the
decision-making process data analytics and simulation are most useful
(Table 5 and Table 6), based on the level of use. Overall, data analytics
and simulation are both most significant for Phase 1: Perceive and
identify problems, Phase 4: Generate proposals and alternatives and Phase
5: Get feedback and determine principles to judge. Simulation is also sig-
nificant for Phase 3: Gather information and improve awareness of situa-
tion.

For Qualitative and descriptive interpretations, data analytics is very
useful (4) for Phase 1: Perceive and identify problems (coef= 0.39,
sig= 0.04, 47.7% increase in odds), most useful (5) for Phase 4:
Generate proposals and alternatives (coef= 0.53, sig= 0.0, 69.9% in-
crease in odds) and very useful (4) for Phase 5: Get feedback and de-
termine principles to judge (coef= 0.38, sig= 0.04, 46.2% increase in
odds). For Statistical analysis, data mining and learning, complex datasets,
it is most useful (5) for Phase 1: Perceive and identify problems
(coef= 0.44, sig= 0.0, 55.3% increase in odds) and Phase 4: Generate
proposals and alternatives (coef= 0.41, sig= 0.02, 50.7% increase in
odds) while Real-time analysis, deep learning and predictive models, limited
datasets is very useful (4) in Phase 5: Get feedback and determine principles
to judge (coef= 0.39, sig= 0.05, 47.7% increase in odds). For partici-
pants who use data analytics for Data processing tools and simple models,
it is only somewhat useful (2) for Phase 5: Get feedback and determine
principles to judge (coef= 0.36, sig= 0.05, 43.3% increase in odds).

We then investigated in which phases of the decision-making pro-
cess simulation is most useful for (Table 6), based on the level of use.
For participants that use simulation to Create virtual building components
and compare design alternatives, it is very useful (4) for Phase 3: Gather
information and improve awareness of situation (coef= 0.46, sig= 0.04,
58.4% increase in odds). Testing hypothesis and assumptions is most useful

Fig. 5. The seven phases of the building energy management decision-making process.
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Table 5
Usefulness of data analytics in each phase of decision-making process by level of use (bold with gray background
highlight indicates statistically significant results at the 0.05 level, the first number is the value of coefficient, and the
number in parenthesis is the percentage increase in odds, calculated by the exponential of coefficient).

Table 6
Usefulness of simulation in phases of decision-making process based on level of use (bold with gray background
highlight indicates statistically significant results at the 0.05 level, the first number is the value of coefficient, and the
number in parenthesis is the percentage increase in odds, calculated by the exponential of coefficient).

C. Srivastava, et al. Building and Environment 157 (2019) 139–164

147



(5) for Phase 5: Get feedback and determine principles to judge
(coef= 0.59, sig= 0.0, 80.4% increase in odds) and only somewhat
useful (2) for Phase 1: Perceive and identify problems (coef= 0.57,
sig= 0.00, 76.8% increase in odds). For the use Examine sensitivity and
effects of key parameters, simulation is very useful (4) in Phase 5: Get
feedback and determine principles to judge (coef= 0.43, sig= 0.05,
53.7% increase in odds), while Analyzing climatic and neighboring im-
pacts is very useful (4) for Phase 3: Gather information and improve
awareness of situation (coef= 0.31, sig= 0.05, 36.3% increase in odds)
and only somewhat useful (2) for Phase 4: Generate proposals and alter-
natives (coef= 0.51, sig= 0.03, 66.5% increase in odds). The associa-
tion of usefulness of data analytics and simulation across project design
phases suggests there might be opportunities to further improve the
integration of technologies in the building design domain [63].

Overall, our analysis indicates that:

• When data analytics is used for qualitative or statistical analysis, it is
most useful to Perceive and identify problems identification (Phase 1)
and Generate proposals and alternatives (Phase 4). When doing both
qualitative and real-time analysis, data analytics is most useful to Get
feedback and determine principles to judge (Phase 5).
• Simulation is most useful to Gather information and improve awareness
of situations (Phase 3) when creating alternatives or analyzing im-
pacts. It is also very useful to Get feedback and determine principles to
judge (Phase 5) when testing assumptions or doing sensitivity ana-
lysis.
• Simulation and data analytics were found to be useful for similar
phases in the decision-making process and therefore opportunities
may exist for integrated tools that are capable of leveraging both
methods.

4.3. RQ3: barriers and suggestions for improvement of data analytics and
simulation

The next set of questions identify the barriers associated with using
data analytics (Table 7) and simulation (Table 8) in building energy
management decision-making. The most common barrier for data
analytics is Low data quality, inaccurate and missing data (N= 68.08%),
while the least common barrier is Unexpected volume, velocity, and
variety of data (N= 38.39%). These barriers are consistent across cur-
rent position, years of experience and professional domain. The most
common barrier for simulation is Effort and time required to build models
(N= 79.69%) and the least common barrier is Diverse simulation pro-
grams and algorithms, inconsistent performances (N=37.05%).

Logistic regression tests were also conducted to examine how the
perceived barriers are related to the different levels of use. Regarding
data analytics, the tests reveal that for the use of Qualitative and de-
scriptive interpretations, the biggest barrier is Low data quality, inaccurate
and missing data (coef= 0.32, sig= 0.05, 37.7% increase in odds),
which is intuitive given the nature of qualitative analysis. ForManual or
spreadsheet oriented calculations, the main barriers are Lack of timely and
relevant data (coef= 0.51, sig= 0.01, 66.5% increase in odds) and
Unexpected volume, velocity and variety of data (coef= 0.46, sig= 0.04,
58.4% increase in odds). These are understandable barriers for manual
calculations and spreadsheet-based analyses, which often only capture
one moment in time, unlike real-time data [64] and can also become
cumbersome to deal with for large datasets [65]. There were no sig-
nificant barriers for the computationally complex levels of use (i.e.,
Data processing tools and simple models; Statistical analysis, data mining
and learning, complex datasets; and Real-time analysis, deep learning and
predictive models, limited datasets).

Table 7
Barriers for data analytics based on level of use (bold with gray background highlight indicates statistically significant
results at the 0.05 level, the first number is the value of coefficient, and the number in parenthesis is the percentage
increase in odds, calculated by the exponential of coefficient).

Table 8
Barriers for simulation based on level of use (bold with gray background highlight indicates statistically significant
results at the 0.05 level, the first number is the value of coefficient, and the number in parenthesis is the percentage
increase in odds, calculated by the exponential of coefficient).
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In the use of simulation to Create virtual building components and
compare design alternatives, the main barrier is Inaccurate and unreliable
simulation results (coef= 0.32, sig= 0.05, 37.7% increase in odds),
which conforms to a previous finding that accuracy is one of the pri-
mary issues with energy simulation [66]. The use of simulation to Ex-
amine sensitivity and effects of key parameters often faces a Lack of ex-
pertise to analyze input-output relationship (coef= 0.40, sig= 0.01,
49.2% increase in odds), a common barrier in sensitivity analysis for
building energy analysis [67].

Finally, we analyzed how the use of data analytics and simulation
can be improved to better support decision making. Participants rated
various criteria on a scale of five-level importance for the different
areas of improvement in data analytics (Table 9). From the descriptive
results, it can be seen the most important expectations are Ease of in-
terpretation and follow-up, Informative conclusions extracted and Integra-
tion of data from different sources. Improvement related to Flexible tar-
geting and navigation and Quick and easy evaluations of alternatives are
relatively less important. Participants also rated the importance of
various criteria on a scale of five for the different areas of improvement
in simulation (Table 10). The most important expectations are Accuracy
and robustness, Reduced uncertainty and Simple input methods for review
and modification. Less important for decision-making are High model
resolution and Results analysis (such as statistical analysis or summaries).

Logistic regression tests analyzing the expectations for improvement
based on the perceived barrier for data analytics reveal that for the
barrier of Unexpected volume, velocity and variety of data, it is Extremely
important to improve Criteria 8: Graphing and visualization (coef= 0.34,
sig= 0.03, 40.5% increase in odds) and Very important to improve
Criteria 10: Transparency of analytics process, e.g. assumptions, limita-
tions, risks (coef= 0.71, sig= 0.0, 103.4% increase in odds). The re-
sults indicate the perceived importance of graphing and visualization in
data analytics for building energy management, which conform to some
currently ongoing initiatives to mitigate the lack of strong visual re-
presentation for big data in general [68–70]. None of the other barriers
have significant impacts on criteria for improvement.

Logistic regression tests analyzing the expectations for improvement
based on the perceived barrier for simulation reveal that for the barrier
of Inaccurate and unreliable simulation results, it is Extremely important to
improve Criteria 2: Simple input methods for review and modification
(coef= 0.33, sig= 0.04, 39.1% increase in odds) and Moderately im-
portant to improve Criteria 5: High model resolution (coef= 0.33,
sig= 0.04, 39.1% increase in odds). This finding supports previous
works that demonstrated it can be difficult to rerun simulations in the
case of inaccurate results if the input or modification methods are
complicated [71] and that unreliable simulation results can be caused
by low resolution models [72]. None of the other barriers have

Table 10
Criteria for improvement based on barrier with simulation (bold with gray background highlight indicates statistically
significant results at the 0.05 level, the first number is the value of coefficient, and the number in parenthesis is the
percentage increase in odds, calculated by the exponential of coefficient).

Table 9
Criteria for improvement based on barrier with data analytics (bold with gray background highlight indicates statis-
tically significant results at the 0.05 level, the first number is the value of coefficient, and the number in parenthesis is
the percentage increase in odds, calculated by the exponential of coefficient).
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significant impacts on criteria for improvement.
Overall, our analysis indicates several key trends related to barriers

and areas of improvements for data analytics and simulation:

• Professionals using data analytics for less computationally complex
uses (qualitative and descriptive interpretations, Manual or
spreadsheet oriented calculations) are more likely to face barriers
with the software related to Inaccurate, unexpected or irrelevant data.
• Professionals using simulation for computationally complex uses
such as Examine sensitivity and effects of key parameters are more
likely to face barriers of Insufficient expertise and inexperience to
analyze data, while professionals using it for more straightforward
uses such as Create virtual building components and compare design
alternatives are likely to face barriers of Inaccurate and unreliable si-
mulation results.
• For data analytics, the barrier of Unexpected volume, velocity and
variety of data is most strongly correlated with a desire to improve
the Graphing and visualization and Transparency of analytical process.
• For simulation, the barrier of Inaccurate and unreliable simulation
results is most strongly correlated with a desire to improve Simple
input methods for review and modification and High model resolution.

5. Limitations and future work

While this study aims to take a first-step in deepening our under-
standing of how data analytics and simulation are used in the building
energy management decision-making process, several limitations exist.
First, while the survey population is large and diverse enough to yield
statistically significant and meaningful results, future work that in-
creases the sample size and a more even distribution across various
demographic factors could enable more detailed and less biased in-
sights. For example, the percentage of engineers is much higher than
other positions and more participants have 10 + years of experience. A
larger and more diverse sample of survey participants would also en-
able the use of various analytical methods that require more data (e.g.,
Ridge regression, Lasso regression, association rule mining) and capable
of uncovering more nuanced insights. In addition, in this paper only the
statistically significant coefficients were presented and discussed, de-
tailed and deep analysis of the insignificant coefficients is not included.
Further study is thus necessary to dive into each logistic regression and
uncover new insights on the multi-correlations of the answers to the
questions. Second, only building energy management professionals fo-
cused on the O&M phase in the United States were surveyed, thus the
results might be biased to the special conditions in the American
building energy management domains represented in the O&M phase.
More worldwide responses could significantly improve the representa-
tiveness of the analysis for the whole life-cycle of building energy
management and could be taken up in future work. Additionally, the
effects and implications of the proposed analysis could be further en-
hanced by coupling the survey data with other data from interviews or
focus groups from both the U.S. and other countries around the world.
Third, while this paper compares the same phases of the building en-
ergy management decision-making process for data analytics and si-
mulation, the uses, barriers and expectations for improvement are not
exactly equivalent, demonstrating the existence of different require-
ments and demands for data analytics and simulation as the decision-
making process proceeds. As a result, the process of integrating data
analytics and simulation to complement each other and improve actual
decision-marking regarding building energy management still remains

unanswered and could be the scope of future research.

6. Conclusions and implications

In order to establish a comprehensive and clear understanding
about the use, barriers and expectations of data analytics and simula-
tion in each phase of the building energy management decision-making
process, this paper analyzes a nationwide survey completed on 448
building management professionals; the responses are diverse and re-
presentative. The three main foci of the survey analysis include: 1) what
impacts the adoption of data analytics and simulation in building en-
ergy management; 2) in what phases of the energy management deci-
sion-making process are data analytics and simulation currently used;
and 3) what are the barriers to use for data analytics and simulation and
how can they be improved. The survey analysis employs bootstrapped
logistic regression to improve the reliability and consistency of analysis
results. Overall, our study reveals several key insights:

• Professional domain plays a large role in driving the uses, barriers
and expectations for data analytics and simulation tools.
• Data analytics and simulation are most used in similar phases of the
decision-making process and can be coupled to leverage their
functions.
• The accuracy of results needs to be improved for both data analytics
and simulation tools.
• Professionals need more and improved training, especially for si-
mulation tools.

This study represents one of the first works to survey building en-
ergy management professionals across the United States about their use,
barriers and expectations of both data analytics and simulation. The
results provide a quantitative basis for both academia and industry to
improve the efficacy of these tools and integrate their functions such
that the adoption of data analytics and simulation is increased within
the building energy management domain. Both data analytics and si-
mulation are tools that will undoubtedly play a crucial role in im-
proving the energy-efficiency of our building stock and thus will have a
substantial impact on our ability to meet the world's sustainable energy
goals.
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Appendix B

Table 1
Coefficients of factors that may affect adoption of data analytics (bold with gray background highlight indicates sta-
tistically significant results at the 0.05 level).
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Table 2
Coefficients of factors that may affect adoption of simulation (bold with gray background highlight indicates statis-
tically significant results at the 0.05 level).
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Table 3
Coefficients of factors that may affect level of use of data analytics (bold with gray background highlight indicates
statistically significant results at the 0.05 level).

C. Srivastava, et al. Building and Environment 157 (2019) 139–164

153



Table 4
Coefficients of factors that may affect level of use of simulation (bold with gray background highlight indicates sta-
tistically significant results at the 0.05 level).

C. Srivastava, et al. Building and Environment 157 (2019) 139–164

154



Table 5
Usefulness of data analytics in each phase of decision-making process by level of use (bold with gray back-
ground highlight indicates statistically significant results at the 0.05 level).
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Table 6
Usefulness of simulation in phases of decision-making process based on level of use (bold with gray background
highlight indicates statistically significant results at the 0.05 level).
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Table 7
Barriers to adopt data analytics based on level of use (bold with gray background highlight indicates statistically
significant results at the 0.05 level).

Table 8
Barriers to adopt simulation based on level of use (bold with gray background highlight indicates statistically sig-
nificant results at the 0.05 level).
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Table 9
Criteria for improvement based on barriers to adopt data analytics (bold with gray background highlight indicates
statistically significant results at the 0.05 level).
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Table 10
Criteria for improvement based on barriers to adopt simulation (bold with gray background highlight indicates sta-
tistically significant results at the 0.05 level).
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