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ABSTRACT

Understanding the spatial and temporal distribution of energy consumption in cities is critical
to facilitate the identification of potential energy saving opportunities and planning of new
renewable and integrated district energy systems. Previous work analyzing urban building energy
usage has been largely limited to either modeling of individual buildings at granular temporal
scales (i.e., hourly or less) or an entire stock of urban buildings at the yearly temporal scale.
While such analyses are valuable, their lack of both spatial and temporal granular modeling
limits their applicability in planning and design of integrated district energy systems. This paper
proposes a new urban building energy model that produces hourly demand profiles for the
building stock of New York City (NYC) using only open publicly available data. First, we utilize
a machine learning model to predict annual energy consumption of NYC'’s entire building stock
from a subset of buildings that have publicly available annual energy usage data. We validate
this part of the model using city-wide electricity data from New York Independent System
Operator (NYISO). Results show that random forests have the best building-level prediction
accuracy with a mean log squared error of 0.293. Next, we apply a novel optimization algorithm
to construct temporal granular hourly profiles using the Department of Energy's commercial and
residential simulation building reference sets, and the predicted annual energy values from the
random forests model. Results indicate that we are able to achieve an error rate of ~10% (MAPE)
in comparison to the overall hourly electricity profile of NYC. Moreover, we found that our
iterative approach demonstrates that error rates diminish as buildings are added to the aggregated
profile, which underscores the merits of applying our proposed method to model the entire
building stock of a city rather than an individual building. In the end, our proposed method takes
the first step of large-scale spatial and highly granular temporal characterization of urban
building energy usage.

INTRODUCTION

As buildings in cities consume between 30-70% of total primary energy use, many
municipalities are focused on better understanding their usage patterns to find ways to reduce or
shift their demand (Chen et al. 2017). Increased adoption of renewables are creating a stronger
need to not only understanding the spatial patterns of building energy consumption, but also their
temporal patterns. With this information, policy makers, engineers, and utilities can identify
buildings that may benefit from energy efficiency retrofits, new storage technologies, or access
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to district energy systems. New publicly available datasets are providing more information about
urban morphologies, enabling a better understanding of energy usage and building
characteristics. This paper proposes a method for modeling the hourly energy demand of
individual buildings across New York City (NYC) using public data and machine learning
models. We first construct a machine learning model to predict the annual energy use of each
building in NYC using a small sample of buildings with publicly available energy use data. We
then map each building in the city to three building archetypes in the U.S. Department of
Energy’s (DoE) reference building dataset. Finally, we construct hourly loads for each building
by fitting a weighted average of these three building types’ load curves, adjusting for weather
and weekday effects. Lastly, we validate the proposed model using city-wide electricity hourly
demand data from the New York Independent System Operator (NYISO) to obtain a sense of
error associated with the constructed load profiles.

RELATED WORK

Previous work has analyzed energy usage dynamics in cities, with several focusing on NYC
as a case-study. Howard et al. proposed a methodology to model building-level annual energy
use intensities by downscaling zip code level energy data using a linear model (Howard et al.
2014). While valuable in understanding general spatial trends of energy usage, a limitation of
this work was the lack of validation of individual building loads. Another study (Robinson et al.
2017) built a machine learning model using a subset of building-specific energy usage data but
results were validated only at the individual building level. Finally, Kontokosta and Tull
proposed a machine learning model that also utilized a subset of publicly available building data
and validated it at both the building and zip-code level (Kontokosta and Tull 2017). Results of
this work demonstrated that linear regression performed best at the zip-code level while a
support vector machine model performed best at the building-level. The model proposed in this
paper extends these previous works by constructing an integrated machine learning and
optimization method that predicts annual energy loads and then translates these loads into hourly
profiles for individual buildings.

PROPOSED MODEL AND RESULTS

The overarching objective of this study is to construct an urban building energy model that
calculates the hourly load profiles for every building in New York City (NYC). Figure 1 breaks
the analysis down into two primary steps: 1) Constructing annual building-level energy estimates
for all buildings in NYC using machine learning techniques using real annual energy
consumption data from about 15,000 buildings; 2) Converting annual energy loads into hourly
demand profiles using archetypal simulation model outputs and a novel optimization algorithm.

Data Collection and Cleansing

For this study, we focused on NYC due to its size, number of buildings, and availability of
publicly available energy data as part of its local building benchmarking initiative (i.e., Local
Law 84). For step 1 of our method, we utilized the 2016 energy data disclosed as part of Local
Law 84 which contains about 15,000 buildings. We opted to use total building energy data since
the disclosed electricity data contained more missing data and erroneous values. Building
characteristic data was obtained from the publicly available Primary Land Use Tax Lot Output
(PLUTO) dataset. The PLUTO dataset contains building features for every tax lot in NYC and
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contains over 1 million buildings. Since the data from these two sources were quite messy, an
extensive data cleansing process was performed. First, total site energy use was computed for
each building in the LL84 dataset by multiplying the site energy use intensity (EUI) by the
building area. Outliers were identified by finding all points that were outside four times the
interquartile range for site EUI and then removed. Finally, any site EUI below one was also
removed. For the PLUTO dataset, a number of features were constructed. The log transformation
was applied to ten separate features and appended to the dataset. In addition, fractions of floor
space by use type were also calculated and added to the final dataset. A total of 38 features were
included in the final dataset. Before modeling, all missing values were imputed using predictive
mean matching (note, that less than 1% of data was missing from features that are used in our
model) (Landerman et al. 1997). The MICE package in R was used to generate multiple
imputations for the incomplete data through Gibbs sampling. The classification and regression
tree methodology was used due to its flexibility in handling missing data and ability to find non-
linear relationships.

Annual Annual Hourly
Building-level Machine Building-level Optimization Building-level
Energy Data Learning Energy Data Algorithm Energy Data

(n=15k) (n=1million) (n=1million)

Figure 1 - Overview of proposed urban building energy model.

For step 2 of our method, archetypal hourly building loads were obtained from reference
building simulations models developed by the U.S. Department of Energy (DoE) (Office of
Energy Efficiency & Renewable Energy (EERE) n.d.). We collected data for all 16 commercial
building types and 2 residential building types (high and medium energy usage) under the TMY3
(typical meteorological year, version 3) conditions for Central Park. Additionally, we added one
more hand constructed profile to this reference set which we named “Datacenter” that modeled
energy usage as a flat energy curve. Each simulated building energy profile included a
breakdown of loads by total facility electricity use, electricity for heating, electricity for cooling,
electricity for interior lighting, electricity for interior equipment, total facility gas use, gas for
heating, gas for interior equipment, and gas for water heating. The reference building simulations
are based on typical meteorological years and do not normalize energy usage profiles to specific
weather conditions in a given year. In order to overcome this limitation, we collected 2016
hourly weather data for NYC using the OpenWeatherMap website. Finally, hourly electricity
demand for NYC was collected from the New York Independent System Operator (NYISO); this
data is used to calibrate the urban building energy model. Several data points were missing for
the NYISO hourly electricity load and were linearly imputed based upon the nearest two hours of
load. Before modeling, we accounted for the 2016 leap year by appending 24 hours of data to the
DOE reference buildings dataset for February 29th, which we assumed took on the same values
as the previous day’s load.

Step 1: Predicting Annual Building Loads Using Machine Learning

Following a similar approach presented by Robinson, et al., we deployed four commonly
utilized machine learning models (i.e., lasso regression, random forest, gradient boosting, and
support vector machines) to predict the annual energy use of building in NYC (Robinson et al.
2017). For each model, we use 5-fold cross validation to prevent overfitting and ensure our
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models are generalizable. The mean squared error (MSE) is used to assess the fit of our model
N

2
where MSE =%Z( V= yi) . Here, y is the log transformation of annual building energy use
i=1
(in kBtu), p is the predicted output from the model, N is the total number of buildings and i
refers to a specific building. We used the log transformation as this is common in the literature
when modeling annual building consumption due to the wide energy consumption range and the
heteroskedastic nature of building data (Kontokosta and Tull 2017; Yang et al. 2018). Each
model examined has a different set of hyperparameters that can be tuned to increased
performance. All tuning was performed in R using the ‘caret’, ‘glmnet’, ‘svm’, ‘randomForest’,
and ‘xgboost’ packages. Lasso regression has one hyperparameter (lambda) which is a
regularization term based on the L1 norm (Tibshirani 1996). To pick our final lasso model, we
performed a linear search and selected the value with the lowest resulting cross-validation error.
For random forests, gradient boosting, and support vector machines, we did a grid search over 12
different combinations of hyperparameters. The summary of the four examined models and the
MSE from the best set of hyperparameters is shown in Table 1. All of the models had fairly
similar performance, but the random forest model proved to be the best, therefore the results
from this model was utilized in the second step of our method.

Table 1 -Summary of the hyperparameters examined for each of the models as tested using
5-fold cross-validation. The shown error rates are for the models with the lowest cross-
validation MSE after performing the grid search and selecting the optimal final
hyperparameters.

Models Hyperparameters Final Hyperparameters Final MSE
Lasso Lambda penalization: Lambda penalization: 0.312
Regression A=0:1 A=0.0104
Random Max Features: Max Features: 0.293
Forest 3,57 911 13 15,17, 5

19,21, 23, 25
Gradient # Boosting Iterations: # Boosting Iterations: 0.343
Boosting 1000, 2000, 3000, 4000 1000

Learning rate: Learning rate: 77 =0.0001

17 =0.01,0.001,0.0001
Support Kernel: Kernel: 0.316
Vector Linear Linear
Machines Penalty Factor: Penalty Factor: C=1

C=1,3,100 Insensitivity parameter:

Insensitivity parameter: =04

£=0.1,0.4,0.7,1.0

Step 2: Constructing Building Hourly Energy Demand Profiles

In order to construct hourly demand profiles from each building’s annual predicted energy
use (output of step 1), we leveraged the simulation results from the 19 DoE reference buildings.
First, we assign each building in NYC to 3 different reference profiles. The PLUTO dataset
contains its own definitions of building type that are broken down into 25 categories, where we
map each category to 3 different reference buildings. This one-to-three mapping was selected to
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reduce bias introduced by the authors. Let D,,, D,, and D,; denote the three DoE reference

buildings mapped to PLUTO building categoryi, wherei = {1,2,...,25}. Because energy
consumption varies among buildings even of the same type, different buildings will have
different demand profiles. Let Y, ; denote the hourly energy demand for building j of PLUTO

building categoryi, where ¥, , e R (there are H =8784 hours in the 2016 leap year). The

primary assumption in this step is that each building will follow a load profile that is a linear
combination of the 3 assigned DoE profiles. In addition, these profiles are adjusted for 2016
weather, with an hourly temperature vector 7' and a cooling-degree-hour vector C where

C' =max(0,7" —65) and ¢ is the hours in the year. Finally, a vector /¥ represents a final

adjustment for business days, which are given a value of 1, while all weekends and holidays are
given a value of 0. In total, 6 vectors define the energy consumption of each building.

Using the NYC electricity demand profile, denoted as e R*"* | we set up an optimization
problem which minimizes the difference between this profile and the aggregated building

profiles, given as 4 . The optimization selects parameter weightings, defined as ﬂf; , for each
building where & = {1,2,. ‘e 6} represents the 6 vectors that define a building’s consumption
profile. Given this problem formulation, and that Y, ; is a linear combination of the weighted

vectors, each building profile is scaled such that ZYf ; =1. To achieve this, the parameters ﬁfi
t

are found in relation to the scaled DoE, weather, and business day vectors. The 3 DoE vectors (
D,,, D,, and D,,) represent the building load, and therefore we set » D, => D!, => D/, =1;
t t t

3

the final load is then set as a weighted sum of the three vectors such that » 5, =1. The weather
k=1

and business day vectors are considered adjustments to the final load and are therefore scaled

such that ZT = ZC ' = ZW' =0 . We set up the optimization function to minimize the mean
t t t

absolute percentage error (MAPE) between the NYC electricity profile and the aggregated
building profiles as follows:

L 134N
mlnlmlze—Z—t
:B:k/ H =1 N

subject to Y, , = D, + f3.,D,,+ . Ds+ B T+p .C+pW

L2 i,j L3

A=Z(Yi,/‘*Ez‘,f)
i,j

Bik :%Zn:ﬂzk]
J
(ﬁlkj —,é[k)<€

The aggregated building load A is defined as the sum of the individual building profiles
multiplied by their annual energy use, defined as E, ;, which is given from the output of step 1.
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Step 2 ensures that each building’s total annual energy use is equal to the value predicted from
the previous step. Although we want to include variation in building profiles within the same
classi, these profiles should also be fairly similar since they serve similar functions. Therefore, a

constraint is placed on each ﬂfj such that this value cannot deviate away from the mean of ﬁik

(i.e., the mean over every building ; in class i for parameter £ ) by more thane =0.1.

Due to the high number of free parameters in the optimization function, validating the
constructed model can be difficult. Our solution was to construct an iterative approach that
allows us to understand the relationship between the error rate and the number of aggregated
building profiles as buildings are sequentially added to the model. To fit the model, a random
sample of 500 buildings is taken from the NYC dataset, where for each building, a random
search is conducted over one-hundred £, vectors (given the constraints outlined above) until

there is a decrease in the objective function (Solis and Wets 1981); otherwise a random vector is
selected. To account for variations in building schedules, a random shift of s ={-2,-1,0,1,2}
hours to each building profile was also implemented. The fitting procedure was repeated 60
times to examine the stability of the fit parameters between independent samples. This assumes
that a random subset of aggregated building profiles approximates that same profile of New York
City’s total electricity usage. The value of the objective function for each of the independent
trials — as buildings are added to the aggregated profile — can be seen in Figure 2.

014 016 018 020
| 1 | |

MAPE (Objective Function)
012
1

T T T T
0 100 200 300 400 500

# Buildings

Figure 2 - The value of the objective function over 60 independent trials as buildings are
iteratively added to the aggregated load profile. The dark black line is the average trend.

Figure 2 shows that the error rate between the NYC profile and the aggregated profile, which
starts to plateau around 250 buildings; however we also observe that each trial contains a lot of
noise, especially when few buildings have been added to the aggregated profile. The large
amount of noise largely comes from the randomness of the buildings that have been added to the
profile. For example, the first 50 randomly selected buildings may have small energy demands
but the 51 building might be a skyscraper that dwarfs the cumulative demand of the previously
added buildings, making the fitted profile of this building especially important. If no parameters
are found to reduce the error between the aggregated profile and the NYC profile, this can lead to
a large increase in the objective function value.
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Figure 3 — (a) comparison between the NYC profile and the fit building loads for 2016; (b)
zoomed in view of comparison between the NYC profile and fit building loads for a typical
week in 2016

The fitted model comparing the aggregated building loads to the NYC electricity profile
(from NYISO) is seen in Figure 3a and 3b. It can be seen that the model captures the main trend
for NYC but struggles to capture certain anomalies, like the high spike that occurs near hour
1,600. It is important to note that the building profiles were scaled using their total energy
consumption data while the NYISO data is measuring the electricity consumption of the city;
however, such scaling allows us another opportunity to validate the model. First, the urban
energy model is completed by constructing hourly loads for every building in the city by
randomly sampling the S, ; vectors from the 60 independent trials for each buildings’ PLUTO

classi. For example, if building class i = 3 had a total of 250 examined buildings across the 60
trials, then the S, ; vectors for each building in the city of that class is determined by taking a

random sample from the 250 fitted 3, ; vectors. Every building in NYC now has a weighting of

3 DoE reference buildings. Each DoE building has a different fraction of total energy demand
that comes from electricity, which ranges from 34-94%. This large range is due to the fact that
residential buildings use a lot of natural gas for heating, resulting in a lower electricity use
fraction, while office buildings have a high electricity use fraction due to higher lighting loads.
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Since the output of step 1 is the total energy demand for each building in NYC, we determine the
total electricity demand by taking the weighted sum of electricity demand from each of the three
assigned DoE buildings. After summing the newly calculated electricity demand profiles for
each building in the city, we find that the demand totals 56.8 million MWH compared to the
NYISO ground truth load of 53.6 million MWH. This translates to an error of 5.9% for city-wide
electricity demand.

LIMITATIONS AND FUTURE WORK

The urban building energy model presented in this work makes several key assumptions.
First, it assumes that a small subset of building profiles in aggregate approximates the city-wide
profile for an entire city (i.e., New York City), and that building profiles are also scaled using
their total energy demand rather than electricity demand (due to data constraints). Second, it
assumes that each building profile is a linear combination of DoE reference building models.
Though each building profile is adjusted for weather and business day operations, the model is
not validated at the building-hourly level since this data is difficult to obtain. Despite such
limitations, this represents a first attempt at producing building-level hourly loads for electricity
and total energy demand for an entire city using only readily available public datasets. Future
work aims to streamline the optimization algorithm to make it less computationally intensive.
Moreover, we aim to construct new forms of validation by fitting the model to a 10 month period
of the 2016 NYISO data and testing the error rate on the unseen data from the remaining 2
months. Finally, we hope to obtain building-level hourly profiles for a handful of buildings and
use this to validate our proposed methodology.

CONCLUSION

This paper proposes an urban building energy model that determines hourly electricity and
total energy demand profiles for every building in New York City by integrating physics-based
simulation models and machine learning techniques. In doing so, our proposed model represents
a first-step towards a validated and highly granular spatio-temporal characterization of urban
building energy usage. A key feature of our proposed model is its reliance on only public and
readily available data thus making it highly extensible to the numerous city’s around the world
that have building benchmarking initiatives. With the world continuing to urbanize,
understanding the spatio-temporal dynamics of urban building energy use is integral to
facilitating our transition towards more efficient, sustainable, and integrated energy systems.
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