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ABSTRACT 

Many designers and researchers have grappled with the problem of optimally locating 
buildings and use types in a neighborhood-scale development. But little work has used data-
driven optimization to aid in creating urban design schemes. The paradigm of single-use 
Euclidian zoning has heavily impacted the way our neighborhoods, cities, and suburbs are 
designed, resulting in the physical separation of uses. However, as we grapple with emerging 
issues of environmental and social sustainability in cities, there is a pressing need to consider 
alternative urban designs that require less dependence on personal automobiles and that foster 
healthier cities. In this paper, we develop a methodology for (1) automatically assessing the 
walkability of neighborhoods by adopting a common walkability metric and (2) optimizing the 
layout of buildings and amenities across a known grid in order to maximize the walkability 
metric. We apply this methodology to a case study of the Potrero Hill neighborhood in San 
Francisco, California. We find that, in comparison to the existing layout that can be characterized 
by Euclidian-style separation of uses, the optimized layout suggests distributing amenities across 
the street network, resulting in a two-fold increase in walkability. This tool and analysis have the 
potential to provide computational and data-driven support for urban designers and researchers 
hoping to understand and improve the walkability of urban spaces. 

INTRODUCTION 

The design and planning of urban spaces has a long and storied history, with ideas about the 
best use of urban space dating to Ancient Rome. Some of the earliest plans for cities—including 
Paris, London, and Washington, D.C.—were created by master-builders or architects with the 
backing of government. Today, almost all cities implement some form of urban planning vis-à-
vis rules about building form, use, and location (Best 2016). 

Single-use zoning, also known as Euclidian zoning—in which cities are divided into areas 
with specific rules for building height, use, and density—became possible and prevalent after the 
landmark case Village of Euclid v. Amber Realty Co. in 1926 (Wickersham 2000). In the period 
following World War II, the physical separation of functional uses in cities became both feasible 
and desirable due to increased rates of property ownership and use of the personal automobile 
(Best 2016). Even in dense cities, single-use zoning replaced existing mixed-use developments 
(Jacobs 1961). However, recent environmental and social concerns (e.g., the public and planetary 
health consequences of automobile pollution) have led urbanists, local governments, and city 
planners to rethink rigid Euclidian rules. One important reason is that developments with a mix 
of uses reduce residents’ dependence on personal vehicles. Aside from the obvious 
environmental implications, urbanists such as Jane Jacobs (1961) have argued that increased use 
of sidewalks and reduced dependence on cars create vibrant, socially resilient communities. As a 
result, the study and desirability of walkable communities have increased greatly in recent years. 
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Recently, we have also seen a vast surge in urban data resources and computing power. 
Given these resources, researchers now have a unique opportunity to put these concepts of ideal 
urban form to the test. This dual paradigm of evolving urban planning concepts and maturing 
cyber- physical analysis has the potential to validate or entirely upend the consensus of what 
makes a city effective. As a result, there is a pressing need to explore how computing tools such 
as optimization can augment current decision-making processes around zoning and rule-making 
in urban areas. Given the complexity of city planning—which includes street and path layouts, 
building geometries, and use types—various approaches must be explored. In this paper, we 
develop a methodology for maximizing the walkability of a neighborhood-scale development by 
choosing the layout of buildings in an existing street grid, given the number of buildings, each 
building’s prescribed use, and possible lots for placing each building. In a case study, we 
compare the existing layout of a neighborhood in San Francisco, CA with an optimized layout 
that distributes key urban amenities quite differently. 

BACKGROUND 

Recent urban design research has identified the concept of walkability as a key metric in 
addressing environmental and social sustainability concerns in cities. Porta and Renne (2005) 
include interconnectedness and accessibility of the street network as a critical component of their 
tool for assessing the sustainability of urban form. Furthermore, they argue that in addition to 
these street network characteristics, the community must colocate a diversity of land uses so that 
multiple uses can be accessed by walking. 

Some studies have used heuristic algorithms to optimize the walkability of neighborhood-
sized developments. These heuristics produce best-practice guidelines for walkable communities 
built on architectural and urban design expert knowledge (Southworth 2005). While these 
guidelines can be important and effective tools for urban designers in their planning work, they 
lack an objective score that can be automatically calculated and applied quickly to various design 
alternatives. Exploiting automated computational tools can greatly expand the solution space and 
reveal previously overlooked options. 

A few recent studies have explored the notion of optimizing physical layouts of structures in 
real-world environments. Razavialavi and Abourizk (2017), for example, developed a genetic 
algorithm framework for optimizing layout on a construction site. Rakha and Reinhart (2012) 
developed a generative modeling platform that assesses different parametric urban massing 
forms for walkability. They adopt the walkability scoring system discussed in Carr et al. (2010) 
as the metric for optimization, and they utilize a genetic algorithm to optimize walkability by 
placing different uses. This previous quantitative optimization work, while valuable in advancing 
the role of computing in assessing urban form, has not been applied to evaluate the performance 
of existing urban areas. Furthermore, the implications of the walkability optimization results 
have not been fully explored, especially in their relationship to conventional wisdom about 
effective urban design. 

METHODOLOGY 

The purpose of the methodology outlined in this section is to maximize a quantitative 
walkability metric of a neighborhood-scale development given constraints about the number and 
possible locations for each building type. The methods we outline here can be used to compare 
optimized layout of buildings and amenities with alternative designs, including those created 
through heuristics or those that already exist in cities. 
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Our approach follows a procedure with three main steps: 
1. Problem definition—define the walkability objective function and how it is measured, 

and define the solution space (i.e., possible locations of buildings) as well as the 
constraints (i.e., number of each building type available). 

2. Generate random designs—develop a routine for creating a population of randomly 
generated designs, which are defined by the locations of each building type. 

3. Optimize design—assess designs, create a new set of designs based on the best 
performers, and repeat until convergence. 

Problem Definition 

In order to accomplish the ultimate goal of maximizing walkability, we first need a 
walkability metric and a set of variables that can be changed to vary this metric. In this paper, we 
adopt the metric discussed in Rakha and Reinhart (2012) and hereafter refer to it as the Street 
Score. The Street Score is a value between 0 and 100, and it is calculated for one residential unit 
at a time. In its most general form, the Street Score ( S ) is calculated as the sum of walking 
distance scores between each residential unit and a prescribed number of different amenities 
(e.g., parks, restaurants, grocery) as follows: 

  1

1 100A
a aa

S
A 

  w s   

where the vector aw   is the weighting vector for amenity a  and the vector as   is the distance 
score vector for amenity a  (defined below). The vectors w  and s  can have different sizes for 
each amenity, but the size of aw  is always equal to the size of as . This difference in vector sizes 
is simply a function of the fact that the implementation of the Street Score metric can specify 
different numbers of each amenity to consider in the scoring (e.g., 2 coffee shops vs. 20 
restaurants). The distance score is calculated as a function of the walking distance ( x ) from the 
residential unit to the amenity under consideration. This walking distance must be defined 
according to the street grid (e.g., in a perpendicular north-south, east-west grid, the distance 
would be the L1 norm, or the “Manhattan” walking distance). For instance i  of amenity a , the 
distance score is calculated as follows: 
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for walking distance x , where 1d , 2d , and 3d   are set by the user. The result is a score, based on 
the distance, that is scaled between 0 and 1. 

The design variables for the problem are the locations of buildings and amenities. The 
categories of buildings/amenities can be set according to the individual problem, but it is 
important to note that the initial work by Rakha and Reinhart used residential units, restaurants, 
generic shops, coffee shops, bookstores, banks, grocery stores, parks, schools, and entertainment 
venues. In this initial work, we simplify the design space by defining specific lots at which 
different buildings of different sizes can be placed. 

 Computing in Civil Engineering 2019 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

St
an

fo
rd

 U
ni

ve
rs

ity
 o

n 
08

/2
2/

19
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



Computing in Civil Engineering 2019 457 

© ASCE 

Optimization 

Given a calculable objective function (Street Score) and design variables (locations of build- 
ings/amenities), the next step is to perform optimization. We utilize a genetic algorithm, as these 
have been shown in previous work to be effective in optimizing physical layouts with large 
solution spaces (Rakha and Reinhart 2012; Razavialavi and Abourizk 2017). Each step in the 
genetic algorithm requires creating a routine specific to this specific problem setting. These 
subroutines are outlined in this subsection. To initialize the population, we must be able to create 
random designs. Given a street grid with possible lots as well as a building stock with numbers 
of available building/amenity types, we can randomly assign each building type to a lot. For 
implementation, it can be simplest to randomly assign larger amenities—that may take up 
multiple lots—first, working from largest amenities to smallest. Once an initial population is 
created, a Street Score can be calculated for each neighborhood design. To adapt the Street Score 
methodology from a single residential unit to an entire neighborhood, we randomly sample 
residential units from a neighborhood, calculate the Street Score for each, and average the 
results. Given Street Scores calculated for all neighborhood designs, we can select parents that 
will help us create future generations. Different selection criteria can be utilized, including 
truncation selection, tournament selection, and roulette wheel selection, as discussed in 
Kochenderfer (2018). 

Once parents are selected, crossover and mutation must be implemented to create new 
generations. The process for crossover is detailed in Algorithm 1. The notion is to randomly 
choose the location of each building/amenity from the parents’ locations for that 
building/amenity. First, all non-residential buildings are selected from the parents and placed, 
and then the residential units are filled in randomly. The concept of simulated annealing can be 
incorporated into the overall genetic algorithm through modification of simple crossover (and 
mutation), as discussed in Adler (1993). In simulated annealing crossover, a child is created from 
two parents, and it is always accepted if it performs better than the parents. If it performs worse 
than its parents, it is accepted with a probability that shrinks over generations. Formally, the 
child is accepted with the following probability: 

 
 Δ /

1 Δ 0
 

 ,1 Δ 0S t

S
min e S

 




  

 

where ΔS  is the difference between the child’s Street Score and the best of the parents’ Street 
Scores, and t  is a temperature value that decreases according to an exponential annealing 
schedule, which makes use of the following decay factor:  1 ( )k kt t

 , where   is a user-defined 
parameter. 

The algorithm for mutation is shown in Algorithm 2. Mutation is only performed on a child 
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with probability given as a parameter in the overall genetic algorithm. When it is performed, a 
given number of randomly chosen non-residential buildings/amenities are swapped with 
residential buildings/amenities. Mutation is implemented in this way because the relative 
locations of residential units and non-residential amenities are the key drivers in the Street Score 
function. Simulated annealing can also be applied to mutation, using the original individual and 
the mutated individual as the candidates for acceptance. Crossover and mutation are used to 
create new generations of neighborhood designs. In the overall algorithm, we track the best 
performing individuals to determine the overall most walkable neighborhood design. 

 
Figure 1. Potrero Hill existing layout with amenities and their weight vectors. 

CASE STUDY: POTRERO HILL, SAN FRANCISCO, CALIFORNIA 

To evaluate the proposed optimization methodology and test it on a real-world urban area, 
we apply it to an existing neighborhood-scale urban design in the Potrero Hill area of San 
Francisco, California. The grid we consider in this case study is 9 blocks by 3 blocks and roughly 
320,000 m2 in area. Figure 1 shows the abstracted study space, the amenities that are present in 
the design space, and weight vector associated with each amenity (as described above). These 
amenities are found and categorized through a manual audit of the space using Google Maps. 
The categorizations and weights in this study largely follow those in Rakha and Reinhart’s 
previous work, which were chosen based on their analysis of both importance and the need for 
choice (as lengths of the weight vectors indicate how many of each amenity are considered in the 
calculation of the Street Scores). We increased the weight for the park amenity given its 
prominence in the existing design. Furthermore, consistent with Rakha and Reinhart, we did not 
consider offices to be an amenity. 

To convert the physical layout to an abstract layout with appropriate dimensions and with 
lots for placing buildings and amenities, we used the osmnx package (Boeing 2017) for Python. 
We made certain assumptions in order to simplify the abstract representation of the 
neighborhood. Based on our assessment of the study area, we assume that, on average, there are 
32 possible lots in each block. We also assume that the park and the schools each occupy one full 
block—where a full block is defined as the lots entirely contained by four intersections. 
Furthermore, we assume that all other building types each occupy one lot. It is important to note 
that this last assumption could be easily changed such that different building/amenity types take 
up different numbers of lots and/or partial lots to reflect multi-use development. For this study, 
however, we aimed to keep the abstract neighborhood representation as simple as possible in 
order to focus on optimization and interpretation. 

For calculating the Street Score, we need to set values for the parameters 1d , 2d , and 3d  
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(discussed above). Given the geometry of the neighborhood, we set 1 50d m , 2 300d m , and

3 1600d m . It is important to note that these values are smaller than they are in Rakha and 
Reinhart’s initial work. We choose smaller values because the physical distances in our case 
study are much smaller than those in the Rakha and Reinhart study, and therefore it would be 
relatively difficult to achieve a perfect Street Score. For the existing urban layout, we calculate 
the Street Score to be 31.8. 

 
Figure 2. Comparison of implementations with varying degrees of simulated annealing. 

 
Figure 3. Optimized neighborhood layout. 

In order to optimize this layout, we execute the genetic algorithm outlined above. The first 
step in this algorithm is to generate an initial population. We first generate a random population 
of neighborhood designs and assess their Street Scores. The random design routine first chooses 
random blocks for placing the park and schools, since these amenities take up full blocks. It then 
chooses random lots for placing all other amenities, and finally it fills up the remaining lots with 
residential units. After generating a population of 1,000 individuals, we calculate the Street Score 
for each. The resulting distribution has a mean of 52.1 and a standard deviation of 3.4. 

We implement a version of truncation selection in the genetic algorithm to bias toward the 
better performing individuals. We first sort the individuals by decreasing Street Score (since we 
are maximizing). We then choose from the best performing individuals, but we also ensure that a 
randomly chosen set of the remaining population is incorporated in the selected group in order to 
protect against local minima. The mutation and crossover routines are implemented as discussed 
in the Methodology section. On a small population, we test three versions of the genetic 
algorithm, each with different levels of use of the concept of simulated annealing. In the baseline 
case, we do not include simulated annealing, but we test two other cases: one in which simulated 
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annealing is incorporated into mutation, and another in which simulated annealing is 
incorporated into both mutation and crossover. When simulated annealing is incorporated, we 
use the exponential annealing schedule with 3 / 4   . The results from this test are shown in 
Figure 2 (where GA represents ‘genetic algorithm’ and SA represents ‘simulated annealing’). As 
we can see, the genetic algorithm with simulated annealing incorporated into mutation performs 
the best. 

Once deciding that simulated annealing should only be applied to the mutation step, we 
execute the genetic algorithm with the following parameters: 1,000 designs points in a single 
population, 100 generations, 5% probability of mutation, 500 parents, 4 children per parent pair, 
and initial annealing temperature of 10. The optimization convergence is shown in Figure 2. The 
best performing individual found after all generations are scored has a Street Score of 68.7. This 
is a little more than a two-fold increase from the existing layout (which was 31.8) and a roughly 
32% increase over the random layouts. The final optimized layout is shown in Figure 3. 

DISCUSSION AND CONCLUSIONS 

Results of our analysis indicate that the average Street Score for the randomly generated 
layouts is significantly higher than the Street Score for the existing neighborhood layout. Perhaps 
even more surprising, the existing layout’s score is about 6 standard deviations below the 
randomly generated layouts’ mean score. It is important to note here that the existing layout 
score could start to approach the random layout score if the parameters 1d , 2d , and 3d  are 
increased. However, this finding still suggests a significant difference between the random and 
existing layouts. This is partially explained by the fact that the existing layout is reminiscent of 
the planning notion of Euclidian zoning. In the existing layout, the shop and restaurant uses are 
generally clustered in the lower right hand side of the grid. This clustering negatively impacts the 
Street Scores for any residential units located relatively far from the cluster (in our case, the 
houses on the upper left). Additionally, the grocery amenity in the existing layout is located all 
the way in the upper left corner of the grid, having a similar effect on the scores for residential 
units on the bottom right. 

The optimization routine seems to converge around a maximum about 32% higher than the 
random layout. This optimized layout (as seen in Figure 3) has a much more dispersed layout of 
amenities. Importantly, the park and grocery amenities are located quite centrally in the grid. In 
addition, the schools are distributed on the left and the right, and the restaurants and shops tend 
to be distributed evenly across the entire grid. This makes intuitive sense: the more distributed 
amenities are, the higher chance that all residential units will be proximate to at least one of each 
amenity—questioning the benefits of Euclidean zoning for walkability in urban neighborhoods. 

The main limitations in this work result from the various assumptions that were involved in 
setting some of the scoring parameters, including the distance parameters and the weighting 
parameters. Future work should consider which parameter values are most appropriate for 
different problem settings. However, while assumptions had to be made, the results still suggest 
important differences between the existing Euclidian-style layout and the more mixed layout 
suggested through optimization. Another limitation of this work is that the optimization and 
analysis were solely focused on an existing neighborhood layout in a real neighborhood. While 
the optimization could be easily applied to a neighborhood designed from scratch, a few things 
would need to be known before optimization: the street grid, the number of each 
building/amenity, and the possible lots for building/amenity placement. Future work should 
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consider the problem of co-optimizing the street grid and possible locations along with building 
placement, as this might provide further insights into the optimal design for the urban fabric. 

Finally, the findings from this analysis should not be the sole input when designing a new 
layout or assessing the performance of an existing layout. To be sure, there are metrics other than 
walkability that should be seriously considered when designing an urban space, such as 
proximity of amenities to transit stops, public health effects, or expected economic activity. The 
relative colocation of a polluting factory with a grocery store may increase walkability, but it 
could have dire consequences for public health. Similarly, it may improve walkability to 
distribute amenities across a given area, but for canonical economic reasons such as those first 
suggested in Hotelling’s law (Hotelling 1929), it may be more economically profitable for two 
similar businesses to be located near each other. While the work presented in this paper cannot 
provide a sole rationale for designing a neighborhood one way versus another, it can provide 
helpful input for urban designers, engineers, and city governments in considering new layouts or 
evaluating existing ones. 
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