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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Cities account for over 75% of all primary energy usage in the world with buildings making up the bulk of this usage. It is well 
acknowledged that the building energy usage is greatly impacted by urban context and thus understanding the relationships between 
building energy use and surrounding urban systems is critical for more energy efficient and holistic planning. This paper proposes 
a Data-driven Urban Energy Analytics (DUE-A) workflow to investigate and quantify the relationships between building energy 
usage and the spatial proximity of other urban systems. A case study of 530 buildings in a mid-size city in the Unites States is 
conducted to validate the performance of the workflow and demonstrate the statistical significance of relationships between 
building energy use and spatial proximity of other systems. Results show that spatial proximity of other buildings, roads and trees 
can have both positive and negative impacts on the mean, variability and distribution of building energy usage, and indicate that 
more holistic planning and design of cities could unlock urban energy efficiency and low-carbon municipal pathways.   
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1. Introduction 

Cities account for more than 75% global energy use with the majority of this consumption coming from buildings 
[1]. As a result, enhancing the energy efficiency of the urban built environment is critical for meeting the world’s 
climate change and sustainability goals. Due to the development of new information technologies, massive amounts 
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of data are now being collected on an array of urban systems and thus opening up opportunities to analyze and optimize 
urban energy use that was previously not possible. Urban building energy efficiency is impacted by surrounding urban 
systems, including adjacent buildings (e.g, due to occupant dynamics), roads (e.g., due to vehicles), and trees (e.g., 
due to shading and winds) [2-4]. While previous work has acknowledged the impact surrounding systems can have 
on urban building energy use, a systematic study and quantification of the impact spatial proximity of surrounding 
urban systems has on energy usage is lacking. This paper proposes a Data-driven Urban Energy Analytics (DUE-A) 
workflow to investigate and quantify the relationships between building energy usage and the spatial proximity of 
other urban systems. The DUE-A workflow contains two steps: (1) extract features on spatial proximity for each 
building through a series of physical relationship learning algorithms; (2) model the relationships between building 
spatial proximity features and energy use features through multivariate multiple regression.  

2. Literature Review 

Urban building energy use is significantly impacted by urban context [5]. One important factor of urban context is 
the spatial proximity of a building to other urban systems like other buildings, vegetation, and roads. For example, a 
building’s outside temperature could be abnormally high due to urban heat island effects caused by close proximity to 
adjacent buildings [6] or due to shadows and shading [2]. Previous work [7] has also demonstrated an “inter-building 
effect” (IBE) for lighting related energy usage. Air flow is another key element that drives building heat transfer (e.g., 
convection), humidity, cooling, and ventilation loads [3] and can be influenced by nearby buildings and trees [4].  

Previous research has analyzed how spatial proximity of a building in respect to other urban systems impacts 
building energy usage at the micro and macro level. At the micro level, Howard et al. analyzed the spatial distributions 
of building energy consumption by end use and found use patterns across zip codes in New York city [8]. Keirstead 
and Calderon developed an optimization based method to capture the spatial variations in energy use at both the whole 
city and the district scale [9]. Zhu et al. studied spatial-temporal patterns of fuel and electricity consumptions in the 
residential sector of China [10]. However, these studies all focused on spatial impacts on energy use of large scale 
building stock, no insights for individual buildings can be extracted and it is still unclear how a building’s spatial 
proximity to other systems impact its energy use. At the macro level, Han et al. designed an urban building network 
model to investigate complex mutual impacts within spatially proximal buildings [11]. Bouyer et al. analyzed 
differences of building energy use by the presence of trees in the surrounding configuration [12]. Perini and Magliocco 
investigated the effects of surrounding vegetation on building energy use and found effects are more significant with 
higher temperatures and lower relative humidity [13]. While these studies provided insights into how other urban 
systems specifically impact individual building energy usage, they are limited in their ability to holistically analyze 
and quantify the impact spatial proximity to multiple urban systems has on building energy use. As a result, we propose 
a Data-driven Urban Energy Analytics (DUE-A) workflow capable of systematically modeling and quantifying the 
relationships between building energy usage and the spatial proximity of other urban systems. 

3. Methodology 

3.1. Feature extraction of building spatial proximity properties 

First, the DUE-A workflows extracts features of building spatial proximity properties through a series of physical 
relationship learning algorithms elucidated in [14]. Based on the geometric properties, urban systems are divided into 
three categories: polygonal (e.g., buildings), linear (e.g., roads) and point (e.g., trees). Based on this categorization, 
the relationship learning algorithm utilize an iterative process to determine whether a spatial proximity exists between 
two urban elements. For example, the relationship between two buildings is learned by calculating the projection of a 
building (building B) on a side of a target building (building A) as presented in the following vector equation: 

r = a+t(b-a) = a+tv                                                                         (1) 
Where v=b-a. a and b are the vertices of the side (given as vectors) and 𝑡𝑡 is a scaling parameter. The equation of a 

line segment which is perpendicular to the side ab and passes through a vertex (e.g., 𝑝𝑝1) of building B is: 
r1 = p1 + t2v'                                                                             (2)                                           
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of data are now being collected on an array of urban systems and thus opening up opportunities to analyze and optimize 
urban energy use that was previously not possible. Urban building energy efficiency is impacted by surrounding urban 
systems, including adjacent buildings (e.g, due to occupant dynamics), roads (e.g., due to vehicles), and trees (e.g., 
due to shading and winds) [2-4]. While previous work has acknowledged the impact surrounding systems can have 
on urban building energy use, a systematic study and quantification of the impact spatial proximity of surrounding 
urban systems has on energy usage is lacking. This paper proposes a Data-driven Urban Energy Analytics (DUE-A) 
workflow to investigate and quantify the relationships between building energy usage and the spatial proximity of 
other urban systems. The DUE-A workflow contains two steps: (1) extract features on spatial proximity for each 
building through a series of physical relationship learning algorithms; (2) model the relationships between building 
spatial proximity features and energy use features through multivariate multiple regression.  

2. Literature Review 

Urban building energy use is significantly impacted by urban context [5]. One important factor of urban context is 
the spatial proximity of a building to other urban systems like other buildings, vegetation, and roads. For example, a 
building’s outside temperature could be abnormally high due to urban heat island effects caused by close proximity to 
adjacent buildings [6] or due to shadows and shading [2]. Previous work [7] has also demonstrated an “inter-building 
effect” (IBE) for lighting related energy usage. Air flow is another key element that drives building heat transfer (e.g., 
convection), humidity, cooling, and ventilation loads [3] and can be influenced by nearby buildings and trees [4].  

Previous research has analyzed how spatial proximity of a building in respect to other urban systems impacts 
building energy usage at the micro and macro level. At the micro level, Howard et al. analyzed the spatial distributions 
of building energy consumption by end use and found use patterns across zip codes in New York city [8]. Keirstead 
and Calderon developed an optimization based method to capture the spatial variations in energy use at both the whole 
city and the district scale [9]. Zhu et al. studied spatial-temporal patterns of fuel and electricity consumptions in the 
residential sector of China [10]. However, these studies all focused on spatial impacts on energy use of large scale 
building stock, no insights for individual buildings can be extracted and it is still unclear how a building’s spatial 
proximity to other systems impact its energy use. At the macro level, Han et al. designed an urban building network 
model to investigate complex mutual impacts within spatially proximal buildings [11]. Bouyer et al. analyzed 
differences of building energy use by the presence of trees in the surrounding configuration [12]. Perini and Magliocco 
investigated the effects of surrounding vegetation on building energy use and found effects are more significant with 
higher temperatures and lower relative humidity [13]. While these studies provided insights into how other urban 
systems specifically impact individual building energy usage, they are limited in their ability to holistically analyze 
and quantify the impact spatial proximity to multiple urban systems has on building energy use. As a result, we propose 
a Data-driven Urban Energy Analytics (DUE-A) workflow capable of systematically modeling and quantifying the 
relationships between building energy usage and the spatial proximity of other urban systems. 

3. Methodology 

3.1. Feature extraction of building spatial proximity properties 

First, the DUE-A workflows extracts features of building spatial proximity properties through a series of physical 
relationship learning algorithms elucidated in [14]. Based on the geometric properties, urban systems are divided into 
three categories: polygonal (e.g., buildings), linear (e.g., roads) and point (e.g., trees). Based on this categorization, 
the relationship learning algorithm utilize an iterative process to determine whether a spatial proximity exists between 
two urban elements. For example, the relationship between two buildings is learned by calculating the projection of a 
building (building B) on a side of a target building (building A) as presented in the following vector equation: 

r = a+t(b-a) = a+tv                                                                         (1) 
Where v=b-a. a and b are the vertices of the side (given as vectors) and 𝑡𝑡 is a scaling parameter. The equation of a 

line segment which is perpendicular to the side ab and passes through a vertex (e.g., 𝑝𝑝1) of building B is: 
r1 = p1 + t2v'                                                                             (2)                                           
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Where t2 is a scaling parameter and v′ is a vector perpendicular to v. The point of intersection of r and r1 is found, 
which gives a unique value of t. If 0<t<1, the point of intersection of r and r1 lies on the side ab. Therefore, the 
projection of vertex p1 on the side ab is given by i1=t. Similarly, for other vertices p2, p3, … pn of the building A, the 
projections i2, i3, … in , could be calculated. Let maxp=max(i1,i2, i3, … in)  and minp=min(i1,i2, i3, … in) ; The 
projection of the building B on the side ab of building A element is defined as intersection of interval [minp,maxp] 
with interval [0,1]. The side of building A on which building B has the largest projection is identified as the side 
spatially proximate to building B. If the building B has the same projection on multiple sides of the building A, then 
we pick the side which is closer to building B. A spatial proximity relationship is then defined between building B 
and the proximate side of building A if the distance between them is less than the threshold. Similarly, trees and roads 
which are within the threshold distance of the building A can be identified along with the side of building B upon 
which they are located. After the algorithm iterates through all the buildings, the results are aggregated to construct a 
set of spatial proximity features for each building in respect to other buildings, trees and roads (see Table 1).  

Table 1. Spatial proximity features extracted for each building  

Spatial proximity features for buildings Spatial proximity features for trees Spatial proximity features for roads 
Number of proximate buildings (B_No) Number of proximate trees (T_No) Number of proximate roads (R_No) 
Maximum distance of proximate buildings (B_Max) Maximum distance of proximate trees (T_Max) Maximum distance of proximate roads (R_Max) 
Minimum distance of proximate buildings (B_Min) Minimum distance of proximate trees (T_Min) Minimum distance of proximate roads (R_Min) 
Mean distance of proximate buildings (B_Mean) Mean distance of proximate trees (T_Mean) Mean distance of proximate roads (R_Mean) 
Standard deviation of distance of proximate buildings 
(B_SD) 

Standard deviation of distance of proximate tress 
(T_SD) 

Standard deviation of distance of proximate roads 
(R_SD) 

Median distance of proximate buildings (B_Median) Median distance of proximate trees (T_Median) Median distance of proximate roads (R_Median) 
Interquartile range of distance of proximate buildings 
(B_IQR) 

Interquartile range of distance of proximate trees 
(T_IQR) 

Interquartile range of distance of proximate roads 
(R_IQR) 

Skewness of distance of proximate buildings 
(B_Skew) 

Skewness of distance of proximate trees 
(T_Skew) 

Skewness of distance of proximate roads 
(R_Skew) 

Kurtosis of distance of proximate buildings (B_Kur) Kurtosis of distance of proximate trees (T_Kur) Kurtosis of distance of proximate roads (R_Kur) 

3.2. Multivariate Multiple Regression 

Second, the DUE-A workflow models the relationships between building spatial proximity features (Section 3.1) 
and energy use through a multivariate multiple regression. Features are then extracted to represent the characteristics 
of building energy use, including median energy use (E_Median), mean energy use (E_Mean), standard deviation of 
energy use (E_Sd), interquartile range of energy use (E_IQR), mean absolute deviation of energy use (E_Meanad), 
median absolute deviation from median of energy use (E_Mad), skewness of energy use (E_Skew), and kurtosis of 
energy use (E_Kur). As a result, the training data{(𝐱𝐱𝟏𝟏, 𝐲𝐲𝟏𝟏), (𝐱𝐱𝟐𝟐, 𝐲𝐲𝟐𝟐), … , (𝐱𝐱𝒏𝒏, 𝐲𝐲𝒏𝒏)}, where 𝐲𝐲 = (y1, y2, … , y𝑚𝑚) is the 
vector of eight energy use features for a building (e.g., mean of monthly energy use), and 𝐱𝐱 = (x1, x2, … , x𝑝𝑝) is the 
vector of spatial proximity features for the same building calculated in Section 3.1. The objective is to model statistical 
mapping from building spatial proximity features to energy use features: 

𝐱𝐱 = (x1, x2, … , x𝑝𝑝)  
𝒉𝒉(𝒙𝒙)
→   𝐲𝐲 = (y1, y2, … , y𝑚𝑚)                                                    (3) 

In order to maintain the interpretability of the relationships, it is assumed h(x) is linear h(x) =ATx. Since there 
might exist dependencies among the features of building energy use, for example the kurtosis of one building’s 
monthly energy use could be highly associated with its monthly mean and standard deviation of energy use: 

P(y|x)≠ ∏ P(yi|x)m
1                                                                        (4) 

The errors of h(x) associated with y of same building may have different variances and may be correlated. The 
multivariate least-square loss is defined as: 

𝐿𝐿(ℎ, 𝑃𝑃) =  ∫∑ (𝑦𝑦𝑗𝑗 − ℎ𝑗𝑗(𝒙𝒙))
2𝑚𝑚

𝑗𝑗=1 𝑑𝑑𝑑𝑑(𝒙𝒙, 𝒚𝒚)                                                      (5) 

The process for multivariate least squares is implemented with Frobenius norm, L1 norm, and L2 norm being added 
as regularization to the loss function to control overfitting, the overall sparsity of the model, the total number of 
impactful building spatial proximity features, respectively. 
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The estimated coefficient matrix represents the impacts of different building spatial proximity features on energy 
use features. Hyperparameters in the regularization terms are determined by 10-fold cross validation. Construction of 
the spatial proximity features and multivariate multiple regression analysis are conducted in Python. 

4. Case study and Results 

4.1. Data Collection 

To validate the performance of the DUE-A workflow described above, a real-world case study is conducted for the 
downtown area of a mid-size city in California, USA. This area contains 530 buildings of varying sizes and mixed 
functions, including offices, residential, stores, restaurants, etc. (Fig. 1a for a map of the test area). Spatial proximity 
properties for each building in respect to other buildings, trees and roads in the test area are computed using the method 
described in section 3.1 We note that as part of the data cleansing process, we discarded any building with more than 
5 features missing and imputed other missing values based on the mean value across the test area sample. Two-year’s 
worth of monthly energy use data for each building (normalized by building area) was collected. If more than 3 months 
of data for a building is missing, that building was removed. Other missing values were imputed using energy use for 
the same month in a different year. Features representing energy use characteristics were calculated (Section 3.2) and 
then standardized to remove the mean and scale to unit variance. It can be seen from Fig. 1b that building energy use 
features are correlated to each other and corroborates assumptions made in the proposed methodology. 

Fig. 1a. Test area in a mid-size city of California, United States with buildings marked (Map credit: OpenStreetMap). Fig. 1b. Correlation 
between building energy use features. 

4.2. Results and Discussion 

The multivariate multiple regression analysis described in Section 3.2 is implemented to understand the 
relationships between building spatial proximity and energy use. The absolute values of coefficients of spatial property 
features are between 0.1 and 2.5 (Fig. 2). It can be seen that the spatial connections/proximity to other buildings, roads  
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Where t2 is a scaling parameter and v′ is a vector perpendicular to v. The point of intersection of r and r1 is found, 
which gives a unique value of t. If 0<t<1, the point of intersection of r and r1 lies on the side ab. Therefore, the 
projection of vertex p1 on the side ab is given by i1=t. Similarly, for other vertices p2, p3, … pn of the building A, the 
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set of spatial proximity features for each building in respect to other buildings, trees and roads (see Table 1).  

Table 1. Spatial proximity features extracted for each building  

Spatial proximity features for buildings Spatial proximity features for trees Spatial proximity features for roads 
Number of proximate buildings (B_No) Number of proximate trees (T_No) Number of proximate roads (R_No) 
Maximum distance of proximate buildings (B_Max) Maximum distance of proximate trees (T_Max) Maximum distance of proximate roads (R_Max) 
Minimum distance of proximate buildings (B_Min) Minimum distance of proximate trees (T_Min) Minimum distance of proximate roads (R_Min) 
Mean distance of proximate buildings (B_Mean) Mean distance of proximate trees (T_Mean) Mean distance of proximate roads (R_Mean) 
Standard deviation of distance of proximate buildings 
(B_SD) 

Standard deviation of distance of proximate tress 
(T_SD) 

Standard deviation of distance of proximate roads 
(R_SD) 

Median distance of proximate buildings (B_Median) Median distance of proximate trees (T_Median) Median distance of proximate roads (R_Median) 
Interquartile range of distance of proximate buildings 
(B_IQR) 

Interquartile range of distance of proximate trees 
(T_IQR) 

Interquartile range of distance of proximate roads 
(R_IQR) 

Skewness of distance of proximate buildings 
(B_Skew) 

Skewness of distance of proximate trees 
(T_Skew) 

Skewness of distance of proximate roads 
(R_Skew) 

Kurtosis of distance of proximate buildings (B_Kur) Kurtosis of distance of proximate trees (T_Kur) Kurtosis of distance of proximate roads (R_Kur) 

3.2. Multivariate Multiple Regression 

Second, the DUE-A workflow models the relationships between building spatial proximity features (Section 3.1) 
and energy use through a multivariate multiple regression. Features are then extracted to represent the characteristics 
of building energy use, including median energy use (E_Median), mean energy use (E_Mean), standard deviation of 
energy use (E_Sd), interquartile range of energy use (E_IQR), mean absolute deviation of energy use (E_Meanad), 
median absolute deviation from median of energy use (E_Mad), skewness of energy use (E_Skew), and kurtosis of 
energy use (E_Kur). As a result, the training data{(𝐱𝐱𝟏𝟏, 𝐲𝐲𝟏𝟏), (𝐱𝐱𝟐𝟐, 𝐲𝐲𝟐𝟐), … , (𝐱𝐱𝒏𝒏, 𝐲𝐲𝒏𝒏)}, where 𝐲𝐲 = (y1, y2, … , y𝑚𝑚) is the 
vector of eight energy use features for a building (e.g., mean of monthly energy use), and 𝐱𝐱 = (x1, x2, … , x𝑝𝑝) is the 
vector of spatial proximity features for the same building calculated in Section 3.1. The objective is to model statistical 
mapping from building spatial proximity features to energy use features: 

𝐱𝐱 = (x1, x2, … , x𝑝𝑝)  
𝒉𝒉(𝒙𝒙)
→   𝐲𝐲 = (y1, y2, … , y𝑚𝑚)                                                    (3) 

In order to maintain the interpretability of the relationships, it is assumed h(x) is linear h(x) =ATx. Since there 
might exist dependencies among the features of building energy use, for example the kurtosis of one building’s 
monthly energy use could be highly associated with its monthly mean and standard deviation of energy use: 

P(y|x)≠ ∏ P(yi|x)m
1                                                                        (4) 

The errors of h(x) associated with y of same building may have different variances and may be correlated. The 
multivariate least-square loss is defined as: 

𝐿𝐿(ℎ, 𝑃𝑃) =  ∫∑ (𝑦𝑦𝑗𝑗 − ℎ𝑗𝑗(𝒙𝒙))
2𝑚𝑚

𝑗𝑗=1 𝑑𝑑𝑑𝑑(𝒙𝒙, 𝒚𝒚)                                                      (5) 

The process for multivariate least squares is implemented with Frobenius norm, L1 norm, and L2 norm being added 
as regularization to the loss function to control overfitting, the overall sparsity of the model, the total number of 
impactful building spatial proximity features, respectively. 
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The estimated coefficient matrix represents the impacts of different building spatial proximity features on energy 
use features. Hyperparameters in the regularization terms are determined by 10-fold cross validation. Construction of 
the spatial proximity features and multivariate multiple regression analysis are conducted in Python. 

4. Case study and Results 

4.1. Data Collection 

To validate the performance of the DUE-A workflow described above, a real-world case study is conducted for the 
downtown area of a mid-size city in California, USA. This area contains 530 buildings of varying sizes and mixed 
functions, including offices, residential, stores, restaurants, etc. (Fig. 1a for a map of the test area). Spatial proximity 
properties for each building in respect to other buildings, trees and roads in the test area are computed using the method 
described in section 3.1 We note that as part of the data cleansing process, we discarded any building with more than 
5 features missing and imputed other missing values based on the mean value across the test area sample. Two-year’s 
worth of monthly energy use data for each building (normalized by building area) was collected. If more than 3 months 
of data for a building is missing, that building was removed. Other missing values were imputed using energy use for 
the same month in a different year. Features representing energy use characteristics were calculated (Section 3.2) and 
then standardized to remove the mean and scale to unit variance. It can be seen from Fig. 1b that building energy use 
features are correlated to each other and corroborates assumptions made in the proposed methodology. 

Fig. 1a. Test area in a mid-size city of California, United States with buildings marked (Map credit: OpenStreetMap). Fig. 1b. Correlation 
between building energy use features. 

4.2. Results and Discussion 

The multivariate multiple regression analysis described in Section 3.2 is implemented to understand the 
relationships between building spatial proximity and energy use. The absolute values of coefficients of spatial property 
features are between 0.1 and 2.5 (Fig. 2). It can be seen that the spatial connections/proximity to other buildings, roads  
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Fig. 2. Coefficients of building spatial properties regarding energy use features.  

and trees have different patterns of impacts on building energy use. The relationships between building spatial 
proximity features and different energy use features are all statistically significant with all p-values less than 0.05 and 
have an adjusted R-square ranging between 0.4 and 0.6.  

For more detailed analysis, first the relationships between building spatial proximity features and the centering of 
energy use (e.g. mean - E_Mean) are investigated (blue bars in Fig. 3). It can be seen that the distance between a 
building and roads has the largest negative impacts on the mean energy use of the building (R_Max, R_Min, R_Mean, 
R_Median). In other words, the closer the buildings are to roads, the more energy they consume. We postulate that 
this could be due to the extra heat produced from vehicle engine combustion or street noise that coerces building 
occupants to close windows and reduce natural ventilation both of which impact energy loads for heating/cooling.  

Fig. 3. Coefficients of building spatial proximity features in respect to: central tendency of energy use (E_Mean, blue bar); variability of energy 
use (E_Mad, red bar); distribution of energy use (E_Skew, green bar) 

The relationships between building spatial proximity features and the variability of energy use (e.g. median absolute 
deviation from mean- E_Mad) are indicated by the red bars in Fig. 3. Results indicate that the variability of energy 
use is most impacted (positively) by the standard deviation of distance to proximate roads (R_SD). This could be 
attributed to the fact that roads close to each other might have similar traffic patterns and thus have more consistent 
impacts onto microclimate and external loads of buildings. Analysis also revealed that the distance between a building 
and adjacent buildings (B_Mean) decreases the variability of building energy use, but a higher number of adjacent 
buildings (B_No) increases the variability of building energy use. This observation could be due to seasonal urban 
heat island effects and/or underlying joint community human dynamics previously shown to impact energy use [15].  

Lastly, the relationships between building spatial proximity features and the distribution of energy use (e.g. 
skewness - E_Skew) are analyzed (green bars in Fig. 3). It can be seen that the distance to roads (R_Mean) and other 
buildings (B_Mean) have the largest negative impacts on the skewness of a building’s energy use. This indicates that 
being close to other buildings and roads could result in higher energy usage as the impacts of urban context can be 
more significant. On the contrary, if a building is closer to more trees (T_No), its energy use pattern is less skewed, 
demonstrating vegetation could be a good buffer for the variations of microclimate and resultant heating/cooling loads.  

5. Conclusions and Future Work 

It has been widely acknowledged that urban building energy efficiency is largely impacted by urban context. 
Extensive work has been conducted to analyze how the spatial connections and proximity to other urban systems 
impact a building’s energy use. However, previous studies were limited in their ability to systematically and explicitly 
quantify relationships between building energy use and proximity to other urban systems (i.e., roads, trees). This paper 
proposes a Data-driven Urban Energy Analytics (DUE-A) workflow to investigate and quantify such relationships. 
First, spatial proximity features of each building are extracted using a series of physical relationship learning 
algorithms. Second, multivariate multiple regression is utilized to model how building spatial proximity features are 
associated with variations in building energy use. We applied the DUE-A model to a case study of 530 buildings and 
found the relationships between building spatial proximity features and energy use features to be statistically 
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significant. Results also revealed that spatial proximity of other buildings, roads and trees can have both positive and 
negative impact on the mean, variability and distribution of building energy usage in a city. 

This paper represents a first-step in understanding and quantifying the relationship between building energy use 
and proximity to urban systems and several limitations exist. First, only a few features are extracted to represent both 
building spatial proximity and building energy use, and our case study sample was limited to mid-size city in the 
United States. Future work should explore more informative features to create generalizable relationships between 
building spatial proximity properties and energy use characteristics and extend the analysis to cities of varying size 
around the world. Second, it is assumed the impacts of building spatial proximity to other urban systems on energy 
use are linear and therefore multivariate multiple regression is utilized. Future work aims to employ more advanced 
algorithms (e.g., conditional random fields) to examine whether non-linear relationships exist. Third, the application 
for such analysis in urban systems planning and decision-support are currently limited. Future work could mitigate 
this issue by developing concrete reasoning (e.g., what-if) rules to formulate the relationships between building spatial 
proximity and energy use. A deeper understanding of how building energy use and other urban systems relate could 
provide insights into more holistic urban systems planning and provide viable pathways to energy efficient and low-
carbon cities.   
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Fig. 2. Coefficients of building spatial properties regarding energy use features.  
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use is most impacted (positively) by the standard deviation of distance to proximate roads (R_SD). This could be 
attributed to the fact that roads close to each other might have similar traffic patterns and thus have more consistent 
impacts onto microclimate and external loads of buildings. Analysis also revealed that the distance between a building 
and adjacent buildings (B_Mean) decreases the variability of building energy use, but a higher number of adjacent 
buildings (B_No) increases the variability of building energy use. This observation could be due to seasonal urban 
heat island effects and/or underlying joint community human dynamics previously shown to impact energy use [15].  

Lastly, the relationships between building spatial proximity features and the distribution of energy use (e.g. 
skewness - E_Skew) are analyzed (green bars in Fig. 3). It can be seen that the distance to roads (R_Mean) and other 
buildings (B_Mean) have the largest negative impacts on the skewness of a building’s energy use. This indicates that 
being close to other buildings and roads could result in higher energy usage as the impacts of urban context can be 
more significant. On the contrary, if a building is closer to more trees (T_No), its energy use pattern is less skewed, 
demonstrating vegetation could be a good buffer for the variations of microclimate and resultant heating/cooling loads.  
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It has been widely acknowledged that urban building energy efficiency is largely impacted by urban context. 
Extensive work has been conducted to analyze how the spatial connections and proximity to other urban systems 
impact a building’s energy use. However, previous studies were limited in their ability to systematically and explicitly 
quantify relationships between building energy use and proximity to other urban systems (i.e., roads, trees). This paper 
proposes a Data-driven Urban Energy Analytics (DUE-A) workflow to investigate and quantify such relationships. 
First, spatial proximity features of each building are extracted using a series of physical relationship learning 
algorithms. Second, multivariate multiple regression is utilized to model how building spatial proximity features are 
associated with variations in building energy use. We applied the DUE-A model to a case study of 530 buildings and 
found the relationships between building spatial proximity features and energy use features to be statistically 
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significant. Results also revealed that spatial proximity of other buildings, roads and trees can have both positive and 
negative impact on the mean, variability and distribution of building energy usage in a city. 

This paper represents a first-step in understanding and quantifying the relationship between building energy use 
and proximity to urban systems and several limitations exist. First, only a few features are extracted to represent both 
building spatial proximity and building energy use, and our case study sample was limited to mid-size city in the 
United States. Future work should explore more informative features to create generalizable relationships between 
building spatial proximity properties and energy use characteristics and extend the analysis to cities of varying size 
around the world. Second, it is assumed the impacts of building spatial proximity to other urban systems on energy 
use are linear and therefore multivariate multiple regression is utilized. Future work aims to employ more advanced 
algorithms (e.g., conditional random fields) to examine whether non-linear relationships exist. Third, the application 
for such analysis in urban systems planning and decision-support are currently limited. Future work could mitigate 
this issue by developing concrete reasoning (e.g., what-if) rules to formulate the relationships between building spatial 
proximity and energy use. A deeper understanding of how building energy use and other urban systems relate could 
provide insights into more holistic urban systems planning and provide viable pathways to energy efficient and low-
carbon cities.   
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