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ABSTRACT10

Damage diagnosis has been a challenging inverse problem in structural health monitoring.11

The main difficulty is characterizing the unknown relation between the measurements and damage12

patterns (i.e. damage indicator selection). Such damage indicators would ideally be able to identify13

the existence, location, and severity of damage. Therefore, this procedure requires complex data14

processing algorithms and dense sensor arrays, which bring computational intensity with it. To15

address this limitation, this paper introduces convolutional neural network (CNN), which is one of16

the major breakthroughs in image recognition, to the damage detection and localization problem.17

CNN technique has the ability to discover abstract features and complex classifier boundaries which18

are able to distinguish various attributes of the problem. In this paper, a CNN topology is designed19

to classify simulated “damaged” and “healthy” cases and localize the damages when it exists.20

The performance of the proposed technique is evaluated through the finite element simulations of21

undamaged and damaged structural connections. Samples are trained by using strain distributions22

as a consequence of various loads with several different crack scenarios. Completely new damage23
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setups are introduced to the model during the testing process. Based on the findings of the24

proposed study, the damage diagnosis and localization are achieved with high accuracy, robustness,25

and computational efficiency.26

INTRODUCTION27

Structural systems are subjected to damage and deterioration during their service life due to the28

environmental and operational factors. Providing timely damage evaluation becomes important to29

ensure lifetime safety of these structures (Fang et al. 2005). For this reason, significant research30

has been conducted in structural health monitoring (SHM) which is a process of diagnosing the31

deficiencies affecting the performance of the structures (Farrar and Worden 2007). Data-driven32

SHM processes need large quantities of data containing detailed condition information over an33

extended period of time (Shahidi et al. 2016). As the temporal and spatial resolution of monitoring34

data is drastically increased by advances in sensing technology and with the adaptation of new35

data collection techniques, SHM applications reach the thresholds of big data (Gulgec et al. 2017a;36

Gulgec et al. 2016).37

Traditional damage identification methods mostly adopt time series or frequency analysis, in38

conjunction with pattern classification techniques (Gul and Catbas 2009). Many studies focus on39

extracting patterns from observations and making decisions based on the obtained patterns (Sohn40

and Farrar 2001; Nair et al. 2006; Yao and Pakzad 2012; Fujimaki et al. 2005). The pattern41

recognition technique consists of two processes, feature selection and feature classification which42

require manual effort and expert knowledge.43

Such methods are often efficient in identifying structural damage of a particular type that is44

closely tied with a mechanical model of the behavior of the structural systems and components,45

which constrains these methods in two aspects: (i) the methods are limited in their scope, depending46

on the feature that they use for damage identification, and (ii) they are often overwhelmed by big47

data when damage features are computationally complex. For example, Yao et al. (Yao et al. 2016)48

presented a damage identification method using cross-correlation of strain data in a steel gusset49

plate, which demonstrates the wealth of information in data from dense sensing systems, but at50
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the same time the difficulty in dealing with large datasets and the limitation of the identification51

methods based on selected features.52

The main challenge of the damage identification is originated from defining the unknown53

relation between the measurements and damage patterns. In order to solve such poorly defined54

problems, biologically inspired soft-computing techniques have gained traction (Mehrjoo et al.55

2008). The most widely used soft-computing method called neural networks were proposed in the56

1940s (Flood and Kartam 1994) which is designed such that it can learn from data without a need57

of feature design process. Since then, they have been practiced in many disciplines including SHM58

to diagnose damages from the measurement data or its features (Shi and Yu 2012). These studies59

employed several different inputs to feed the neural network such as modal analysis of vibration60

response (Zapico et al. 2003; Hadzima-Nyarko et al. 2011; Lee et al. 2005); statistical parameters61

of vibration (Shu et al. 2013) and strain data (Alavi et al. 2016); frequency response functions62

(FRFs) (Fang et al. 2005); and wavelet transform coefficients of the acceleration data (Shi and Yu63

2012). Nevertheless, most of the prior work still used damage indicators as inputs to the neural64

networks via preprocessing instead of learning directly from data.65

Although neural network applications are promising, they showed that more complex network66

architectures are needed to achieve their full potential (Flood 2008). This idea became practical67

with the improvements in computing power and the introduction of large representative training68

datasets (Gu et al. 2015). Exploiting the opportunities hidden in big data, deep neural networks (or69

deep learning) started to gain popularity and soon reached the state-of-the-art technique for image,70

speech and video recognition. Yet, there are only a few studies using breakthrough deep learning71

techniques in SHM field. Abdaljaber et al. (2017) used one-dimensional convolutional neural72

network (CNN) to extract damage features from raw acceleration data (Abdeljaber et al. 2017) and73

Cha et al. (2017) used raw images taken from structure to perform deep learning-based detection74

of visible cracks only (Cha et al. 2017).75

The previous studies adopted trial-and-error search for tuning the hyperparameters in neural76

network architecture and did not consider the noise sensitivity of the measurement data and ro-77
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bustness of the network architecture which may cause the fundamental problem of overfitting (i.e.78

a neural network can fit even a random noise when the network is not designed carefully (Zhang79

et al. 2016)). This paper addresses these limitations by proposing an optimized two-dimensional80

CNN based approach to detect and localize cracks in a noise-tolerant way. The approach feeds the81

network by using raw strain field measurements which are a direct indicator of stress, fatigue, and82

failure and can be obtained by an optic-based technique called digital image correlation (DIC) (Pan83

et al. 2009).84

In a former study by the authors, damage diagnosis was performed by using CNN fed through85

the strain distributions of a structural connection (Gulgec et al. 2017b). In this paper, this idea is86

expanded by performing a CNN-basedmethodology for both damage identification and localization87

with comprehensive noise sensitivity analysis. Proposed methodology shares the frontend layers88

of a deep convolutional network for both identification and localization tasks. Then, customized89

backend layers are constructedwhich are specialized for both tasks. Automatically extracted features90

in the frontend layers are meaningful for both tasks, hence sharing these layers eliminates the need91

for two completely separate networks. This reduces the total training time and computational92

resources.93

This methodology learns sophisticated damage features and complex classifier boundaries94

without extracting hand-designed damage features as is done in traditional methods. The network95

architecture accomplishes accurate damage diagnosis even from the unseen damage scenarios since96

the network is trained with a variety of loading cases, damage scenarios, and measurement noise97

levels. Additionally, the paper presents a comprehensive sensitivity analysis to better understand98

the behavior of CNN architecture subjected to uncertainties and calibrate it to achieve robust results.99

Lastly, this approach makes real-time damage identification possible, thanks to (i) frontend layer100

sharing, (ii) CNN’s shared parameterization, and (iii) parallel architecture of GPUs.101

The rest of the paper is organized as follows. First, review of relevant studies and a brief102

overview of CNNs is provided in Section 2 and 3; then the proposed methodology is described in103

Sections 4. The performance and robustness of the proposed approach are evaluated by numerical104
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validation in Section 5 and 6. Conclusions and future directions are given in Section 7.105

BACKGROUND ON DEEP LEARNING106

Deep Neural Networks107

Machine learning (ML) is gradually evolved from pattern recognition and learning theory in108

artificial intelligence (Alpaydin 2014). In 1959, Arthur Samuel defined machine learning as a “field109

of study that gives computers the ability to learn without being explicitly programmed”(Simon110

2013). ML algorithms are designed such that they can learn from data. During this learning111

process, they build a model which is then used to make data-driven predictions or decisions.112

DeepNeuralNetworks (DNN) are a subfield ofmachine learning that are conceptuallymotivated113

by the human brain. DNNs aim to build a model using a deep graph formed in multiple linear114

layers followed by non-linear transformations (LeCun et al. 2015). Figure 1 shows an example four115

layer DNNwhich consists of an input layer, two hidden layers, and an output layer. The architecture116

operates on the input instance x = (x1, . . . , xp)
T to get the output of the network. In Figure 1, each117

circle represents a neuron and an arrow illustrates a connection from the output of one neuron to the118

input of another connection. Each arrow has an associated weight parameter which indicates the119

significance of the respective inputs to the output. The output of the neuron in a hidden layer can120

be determined by the weighted sum of the inputs activated by a nonlinear mapping (e.g., sigmoid,121

tanh, or others).122

For a given input x ∈ Rp, ML algorithms try to build a prediction function θ(x;w) parametrized123

by weights, w. The simplest case of this function can be considered as linear, i.e., θ(x;w) = xTw.124

After the family of prediction functions is set, a loss function is selected to measure the error125

between a prediction and the true value. The most elementary loss function can be denoted as126

`(θ(x;w), y) = ‖θ(x;w) − y‖2, where y ∈ Rc is the true observed value (i.e. label) of the input127

query x. Soft-max loss entropy and cross-entropy functions can be the other common examples of128

loss functions (Bishop 2006).129

The learning problem seeks the best possible instance of the prediction function from the130

selected family; in other words, it boils down to finding the best possible values of the weights w131
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to minimize the loss function. Mathematically speaking, the optimization problem can be defined132

as following (Shalev-Shwartz and Ben-David 2014):133

min
w
E(X,Y )[`(θ(x;w), y)]. (1)134

where the expectation is taken over the true distribution of inputs and labels (X,Y ). Nevertheless,135

the exact knowledge about the true distribution is almost never available in practice. The common136

practice is to sample n data points {(xi, yi)}
n
i=1 (frequently called training data) from the unknown137

distribution, and minimize the empirical loss instead:138

min
w

1
n

n∑
i=1

`(θ(xi;w), yi). (2)139

Convolutional Neural Networks140

Convolutional neural networks (CNN) are one of the most widely used types of deep neural141

networks. The framework of CNN was first proposed by LeCun et al. in 1998 (LeCun et al.142

1998) to classify handwritten digits. CNN became a breakthrough in visual and speech recognition143

in the last few years with the introduction of a highly parallel programmable unit called GPUs144

and large-scale hierarchical image database (Deng et al. 2009). CNN architectures kept evolving145

(Krizhevsky et al. 2012; Simonyan and Zisserman 2014; Zeiler and Fergus 2014) through the years146

and the performance improved significantly as the networks become more complex and deeper147

(Szegedy et al. 2015; He et al. 2015). The reason behind such achievement was the ability to keep148

temporal features of the input and reduce memory requirements by using fewer parameters (LeCun149

and Bengio 1995).150

Convolutional neural networks are composed of three architectural frameworks: local receptive151

fields, shared weights, and spatial sub-sampling (LeCun et al. 1998). Passing the same set of units152

all over the input allows extracting multiple feature maps. In this case, feature map shifts as the153

same amount that input shifts. This is called local receptive fields which makes CNN robust to the154

translation and distortion of the input. Furthermore, the weights and biases are shared through the155
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feature maps. This characteristic reduces the learned parameters as well as the memory demands.156

Lastly, spatial sub-sampling helps reducing the resolution of the feature maps and preventing the157

sensitivity of the outputs under shifts and rotations.158

CNNs receive the input as 3D volumes (width, height, depth). As an example from image159

recognition, the depth of a colored image (i.e. having red-green-blue color channels) is three,160

whereas the depth of a gray image is one. These 3D input volumes feed the CNN architecture161

which can be constructed by using three types of layers:162

1. Convolutional layer (CONV) parameters are learnable filters where each filter (weights or163

kernels) has spatially small width and height shared in the full depth of the input. While164

slidding these weights, CONV layer computes the dot product between these filters and165

the small region of the input in any position. Then, the weighted sum of the input and166

weights is activated by the nonlinear functions to form feature maps. This operation is167

called “convolution”.168

The size of the feature map is associated with a variety of hyperparameters such as:169

the number of kernels, kernel size, number of strides and zero-padding. The nonlinear170

activation maps are generated based on the number of kernels used. The number of strides171

determines the number of instances skipped in each position, whereas zero-padding controls172

the number of zeros added to the borders of the input. Figure 2 shows a convolution operation173

for an input size (I) of 7x11x2. In the figure, a kernel size (K) of 2x2x2 passes through174

the input with the stride (S) of 3 and no zero-padding (P). The output size is found by the175

equation (I − K + 2P)/S + 1.176

2. Pooling layer (POOL) performs a downsampling operation in the feature maps using max-177

imum, average or sum operations. Pooling layer gets the input and resizes it to reduce the178

number of parameters and control the overfitting. Similarly, the output size is controlled by179

different hyperparameters such as pool size and the number of strides.180

3. Fully-connected layers (FC) operate on the stacked convolutional or pooling layer outputs181

and compute the weighted sum of inputs with a non-linear mapping as described in the182
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overview of DNNs.183

PROPOSED METHODOLOGY184

Overview185

This section gives a general map of the proposed technique. As shown in Figure 3, the186

methodology consists of training and testing phases. Training phase operates on raw strain fields187

from structures. After normalizing each strain field by its absolutemaximum, the searchmechanism188

finds a good set of hyperparameters which improves the performance of network architecture. Then,189

the selected architecture is trained to minimize the error between predictions and true labels.190

The training phase consists of two tasks: detection and localization. Detection task determines191

the existence of damage where it is treated as a classification problem (i.e. 0 for undamaged192

and 1 for damaged). Localization task treats the case as a regression problem where the goal as193

regression problem where the goal is accurate estimation of the boundaries of the damaged area.194

In the proposed methodology, both of the tasks use shared layers in the early stages of the deep195

learning pipeline. These layers are specialized to extract local features that are common for both196

localization and detection. Then, these early layers are fed into task-specific layers. Shared frontend197

layers avoid having two separate networks, provide more efficient learning, shorter training time198

and lower computation cost.199

The trained model parameters are stored to be used in testing phase. In this phase, raw strain200

fields are fed into the CNN architecture to predict the labels for detection and localization tasks.201

Hyperparameter Selection202

The CNN architectures can be built in various ways by using the sequence of convolutional203

(CONV), pooling (POOL) and fully connected (FC) layers. The performance of the neural networks204

critically depends on identifying a good set of hyperparameters (Pei et al. 2004). In this study,205

these hyperparameters include learning rate, the number of CONV and FC layers, the number of206

kernels, kernel and pool sizes, and the number of hidden layer sizes. In order to find the structure207

with good configuration, the hyperparameter search mechanism is implemented for both damage208
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detection and localization tasks (Li et al. 2016).209

Different networks are constructed with randomly selected hyperparameters. The 10% of the210

networks which has the worst validation score is removed after the first run, and the remaining211

networks are run for another set of an epoch. The runs are repeated until the best 10 networks212

remain in the pool. After the best network is selected for the damage identification part, the output213

of the last convolutional layer is stored and used as an input for the hyperparameter search for the214

localization task. The search for this task is performed on with FC layers only.215

Training216

The training process is comprised of two phases: feed-forward and back-propagation (Rojas217

2013). The feed-forward process evaluates the prediction function for given input instances.218

Then back-propagation step adjusts the weights in proportion as their contributions to the total219

error (Rumelhart et al. 1988) by using a stochastic gradient descent (SGD) algorithm (Robbins220

and Monro 1951). After the gradients are calculated with SGD, the detection and localization221

parameters are updated with the learning rates ηdet and ηloc, respectively. Overfitting is prevented222

by monitoring the validation dataset performance in every complete one forward and backward223

pass (epoch). When architecture performance is improved sufficiently on the validation dataset, the224

training process is stopped.225

Weight Initialization226

The first step of training is initializing the weights to control input instances in a reasonable227

range along the layers. This study adopts Xavier initialization for tanh function (Glorot and228

Bengio 2010). Weight initialization of ith layer is set to have a uniform distribution in the interval229 [
−

√
6

ni−1 + ni
,

√
6

ni−1 + ni

]
where ni−1 and ni are the number of units in the (i − 1)th and ith layer.230

Prediction Functions231

Feed-forward step evaluates different prediction functions for detection and localization tasks.232

This study employs soft-max classifier (Bishop 2006) to predict the label of the detection output233

(ypred) which is either healthy or damaged. The class i of the input x is estimated by selecting the234
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maximum probability of soft-max function defined as follows:235

[softmax(θ(x;w))]i =
e[θ(x;w)]i∑
j e[θ(x;w)]j

, (3)236

237

ypred = argmaxi([softmax((θ(x;w))]i). (4)238

The localization task aims to predict the location of the crack which is defined by a bounding239

box vector zpred . For this reason, this task uses a regressor instead of a classifier. The bounding240

box i of the input x is estimated by the following function:241

[zpred]i =
∑

j

[θ(x;w)] j . (5)242

Loss functions243

The proposed model adopts two separate loss functions for the detection and localization244

tasks. The diagnosis part employs the negative log-likelihood function, where optimal architecture245

parameters θ∗ are learned by maximizing the likelihood of the dataset. On the other hand, the246

localization task calculates the loss between the predicted and true bounding box with `2 loss247

function:248

L =

N∑
i=1

([zpred]i − zi)
2

N
, (6)249

where z is the predicted bounding box and N is the batch size (i.e. number of training samples in250

one fee-forward pass). During the regressor training, the bounds of the boxes are updated based251

on the conditions of equations 7-10. If these criteria are satisfied with the pre-defined threshold252

values, the localization marked as correct localization.253

|min(a1, a2) −min(â1, â2)| ≤ thra (7)254

|min(b1, b2) −min(b̂1, b̂2)| ≤ thrb (8)255

|max(â1, â2) −max(a1, a2)| ≤ thra (9)256

|max(b̂1, b̂2) −max(b1, b2)| ≤ thrb (10)257

10 Gulgec, August 20, 2018



where (â1, â2, b̂1, b̂2) are predicted box coordinates, (a1, a2, b1, b2) are true box coordinates, and thr258

is the user-defined threshold.259

NUMERICAL VALIDATION260

Data Preparation261

Damage identification process requires a large training set of correctly classified damage states262

(Elkordy et al. 1993). In this study, well-known damage states of a structural connection are263

simulated by using ABAQUS shell elements. The modeled connection consists of two C8x11.5264

channels welded to a steel plate with the dimension of 71x36x0.6 cm (28x14x1/4 inches) as265

visualized in Figure 4. Each channel member is 51 cm long and has 20 cm overlap with the main266

gusset plate. The finite element model adopts the mesh size of 1.3 cm (0.5 inches). The behavior267

of the steel is introduced as elastic-perfectly plastic material with a yield strength of 250 MPa. As268

can be seen from in Figure 4, stress gradients occur at the crack tips as well as the central part269

of the plate when it undergoes to a plastic region. Strain distribution in the direction of loading270

is represented by 28x56x1 tensors and used to feed the CNN architecture after normalized by its271

absolute maximum value.272

Training, validation and test datasets are formed by modeling different loading cases, damage273

scenarios, and noise levels. The load is selected from uniformly distributed load ∼ U[-445 kN274

(compression), 534 kN (tension)] and applied to the end of the channel members. The damages275

in the gusset plate are simulated as 2.5 cm long cracks which are the smallest crack size given276

the mesh size. The crack locations are chosen at the beginning of each run with a specified load277

level. The coordinates of the cracks changing between the two corners of the middle part of the278

plate [lower left corner point A with coordinates (21.6,2.5) to upper right corner point B with279

coordinates (45.9,33.0)] are shown in Figure 5. In order to assess the approach with completely280

unseen damaged samples, none of the coordinates of the training set is used in the testing samples.281

The uncertainty in the measurement process is simulated as an additive Gaussian noise ∼282

N(0, σ2), where σ is the standard deviation of the measurement noise. Different noise levels (i.e.283
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the ratio between the standard deviation of measurement noise to actual strain values) are generated284

to compute the influence of the noise on CNN architecture performance.285

The crack coordinates of the “single-damaged” samples are also collected for the localization286

task. Crack location is stored as bounding box (a1, b1, a2, b2), where b1 and b2 indicate the287

coordinates of the tips of the crack. While defining a1 and a2, 1.3 cm is subtracted and added to the288

x coordinate of the crack to reduce the rounding error in the direction of loading; for example, if289

a crack is located between (21.6,2.5) to (21.6,5.0), the bounding box is defined as [20.3, 2.5, 22.9,290

5.0]. For the “healthy” samples, bounding box is set to [0, 0, 0, 0].291

While preparing damaged samples, 72 different crack locations and 3,000 loading scenarios are292

used. None of the coordinates of training sets is used in the testing samples (i.e. 36 locations for293

training, 36 locations for testing as shown in Figure 5). Healthy samples are modeled with 6,000294

loading scenarios. As a result, a total of 6,000 healthy and 6,000 damaged samples are generated.295

Then, four different noise levels (2%, 5%, 10% and 15%) are added to noise-free samples to produce296

a total 30,000 healthy and 30,000 damaged samples. This dataset is calledDataset 1 and distributed297

to training, validation and testing samples.298

Hyperparameters299

A total of 50 networks are constructed with randomly selected hyperparameters in detection300

task. The hyperparameter range for the detection task has the following characteristics: learning301

rate [2 to 2−8]; the number of CONV and FC layers [1, 2 or 3]; the number of kernels [2 to 27];302

kernel size [(3x3) or (5x5)] with stride of 1 and without zero-padding; max-pool size [(1x1) with303

stride of 1] or [(2x2) with stride of 2] and randomly selected hidden layer sizes.304

The last convolutional layer of the best architecture in the detection task is stored as an input for305

the hyperparameter search for the localization task. The search for localization task is performed306

on a total of 70 networks with FC layers only. The networks for localization task are built with307

hyperparameters using learning rate [2−6 to 2−18]; the number of FC layers [1, 2 or 3]; and randomly308

selected hidden layer sizes. Activation function tanh() is adopted for the activation of the layers for309

both detection and localization tasks.310
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Training and Proposed Architecture311

Training is implemented by using a Python library called Theano to optimize the mathematical312

expressions consisting multi-dimensional arrays (Theano Development Team 2016). Higher per-313

formance is achieved by using NVIDIA Tesla K80 GPUs that enables parallelism for data-intensive314

calculations.315

In this study, mini-batch SGD algorithm with a batch size of N = 64 is implemented. Identical316

thresholds are used for thra and thrb described through the equations 7-10. In order to discover317

the effect of the size of search area on the localization accuracy, the sides of the bounding box318

are increased in length by different threshold values. The threshold values 1.3, 2.6 and 5.1 cm319

are selected to have an increase in length by scale factors of 2, 3 and 5, respectively. The scale320

coefficients are selected randomly but not to exceed the quarter of the area of the central part of the321

plate. Thresholds are illustrated in the Figure 6 with the values of thr = 1.3 cm, thr = 2.5 cm and322

thr = 5.1 cm.323

Figure 7 shows the proposed architecture as a result of the hyperparemeter search mechanism.324

The network consists of three convolutional layers followed by two separate fully connected layers325

for detection and localization tasks. The detection part classifies 28x56x1 inputs as healthy326

or damaged, whereas the localization part predicts the bounding box of the crack area. The327

convolutional layers receive the input layer and pass them through a filter size of (3x3). As a result328

of these CONV layers, the network forms 8, 16 and 32 feature maps. Max-pooling operation is329

implemented right after first and second convolution layer. Max-pool size of (2x2) with a stride of330

2 is used for POOL layers. The feature maps of the last convolutional layer are stacked together in331

an array and given as an input to the fully connected layers with a hidden layer size of [836 − 767]332

for the detection task and [1305 − 1191 − 406] for the localization task. The learning rate of333

ηdet = 0.0451 and ηloc = 0.0026 are used for the detection and localization parts, respectively.334

As mentioned earlier, CNNs have the ability to keep spatial features of inputs. In order to335

visualize this ability, the activated feature maps after POOL-1, POOL-2 and CONV-3 layers of a336

correctly identified damaged sample are shown in Figure 7. The activations are normalized to have337
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the scale between 0-1, where white represents 0 and black represents 1. The figure shows that the338

damage location (i.e. right top corner) is still visible during the Stage 1 and 2. After CONV-3 layer339

(Stage 3), the features become abstract where it is almost impossible to design it by hand.340

RESULTS AND DISCUSSION341

The performance and sensitivity analysis of the proposed methodology is evaluated in this342

section. The accuracy and robustness of the CNN architecture are discussed for both detection and343

localization tasks.344

Detection Task345

This section presents the performance and sensitivity analysis of the detection task. In order346

to measure the effect of noise, two additional datasets are prepared where both consist of 6,000347

undamaged and 6,000 damaged samples. Dataset 2 is formed by only noise-free samples and348

Dataset 3 is selected from a subset of Dataset 1. Hyperparameter search is performed for these349

two datasets for fair comparison. Trained models are then tested with samples including a variation350

of different noise levels (0% – noise-free, 2%,4%,6%,8%,10%,12%,14% and 16%) for 100 times.351

Proposed network topologies for two additional training processes are listed as follows:352

Training of Dataset 2: The network is trained with Dataset 2 which consists of only noise-353

free samples. The proposed network for the second case is composed of two CONV layers354

followed by POOL layers, and two FC layers. The CONV layer adopts the filter size of355

(3x3) with kernel numbers of 2 and 4. Max-pool size of (2x2) with a stride of 2 is used for356

POOL layers. The last POOL layer is connected to the two FC layers size of [373 − 223].357

The learning rate is chosen as ηdet = 0.0158.358

Training of Dataset 3: The selected network for Dataset 3 includes two CONV layers with359

the filter size of (3x3) with kernel numbers of 8 and 32. Similar to the first case, max-pool360

size of (2x2) with a stride of 2 is used for POOL layers. The network has the two FC layers361

size of [2477 − 804] after shared layers. The learning rate of ηdet = 0.069 is adopted.362

The sensitivity analysis of three training cases is visualized in Figure 8. Figure 8(b) presents the363
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testing performance of Dataset 2 which has the worst testing performance among the three cases.364

Although the testing error is 1.19% for lower noise levels, it reaches around 12% under the noise365

level of 16%. It is noticeable that the error rate exponentially increases with the increase in the366

noise levels.367

As can be observed from Figure 8(c), the testing accuracy increases significantly compared368

to the architecture trained with noise-free samples. The performance of trained architecture stays369

stable with the increase in noise level. Consequently, the introduction of different noise levels370

during the training process helps network to learn damage features under uncertainty.371

The figure 8(a) illustrates the best testing performance from the given training cases. According372

to the figure, the proposed architecture identifies the previously unseen damages with 0.21% error373

on noise-free samples. This error rate represents that the CNNs are capable of learning the damage374

features almost perfectly even with the smallest crack size if enough training cases are provided.375

Furthermore, test error does not change significantly even under 16% noise which shows that the376

proposed methodology is robust for various levels of noise.377

As discussed previously, deep learning-based approaches can be effective in identifying struc-378

tural damage more than a particular scenario unlike traditional methods. They have a capability of379

generalization when it is designed carefully. In order to evaluate this characteristic, the performance380

of the proposed method is assessed with a larger crack size. A total of 3,000 samples with a crack381

size of 5.1 cm is tested for detection task. As shown in Figure 9, although samples with crack size382

of 5.1 cm are not included in the training dataset, the testing accuracy is almost perfect. The filters383

used in the architecture manage to highlight the cracked region.384

In summary, the introduction of uncertainty in measurement noise avoids overfitting which385

leads to better testing and generalization performance. Such fact emphasizes that training dataset386

selection is vital in designing CNN architectures. Another point which is worthwhile to mention is387

adding more samples to the training dataset increases the accuracy and robustness.388
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Localization Task389

This section discusses the main findings of the localization task. The localization part of the390

network is trained withDataset 1 including both noise-free and noisy samples which result in better391

detection accuracy. In order to eliminate the error coming from the detection task, the localization392

task is run with both healthy and damaged samples. The CNN architecture is tested under different393

noise levels and different threshold values.394

Figure 10 displays the percent localization error under different noise levels as well as different395

user-defined threshold values such as; thr = 1.3 cm, thr = 2.5 cm and thr = 5.1 cm. According to396

the Figure 10(a), the proposed architecture localizes the crack with 96.8% accuracy when the noise397

level is zero and the threshold value is 1.3 cm. This error rate demonstrates that the proposed CNN398

architecture successfully localizes the damages. The testing performance of different noise levels399

does not change significantly which indicates the robustness of the method (i.e. Testing accuracy400

is 95.3% when the network is tested with 16% noisy samples).401

Figure 11 shows an example of correct classification by using the threshold value of 1.3 cm.402

When the crack location is searched in the larger area by increasing the threshold, the error rate is403

reduced even further. The error rate is almost 1% under all levels of noise for both threshold values404

2.5 and 5.1 cm as shown in Figure 10(b)(c).405

Computational Performance406

The computational performance of the case study is evaluated on Intel® Xeon® CPU E5-2620407

v3 and NVIDIA Tesla K80 GPUs. The time required for training and testing phases for a single408

strain field and a batch size of 64 strain fields are summarized in Table 1. In the training phase,409

one forward and backward pass is considered. The computation times for shared layers + detection410

task, shared layers + localization task and only localization task are compared in Table 1.411

As illustrated in Table 1, testing time for all tasks is under 20 ms for both of the hardware. A412

video stream input with 25 frames per second would give 40 ms time budget to complete testing413

for a single sample which can be considered as a real-time requirement. Therefore, the proposed414

methodology achieves real-time requirement for the testing phase. In addition, as mentioned earlier,415

16 Gulgec, August 20, 2018



proposed architecture reduces the computational needs by exploiting shared feature extractor for416

the detection and localization tasks. The computation time for only localization task is almost417

half of the computation time for shared layers + localization task which proves the efficiency of418

the methodology. As a result, the proposed study reduces the shorter training time and lower419

computation cost.420

RELATED WORK421

There have been several strain-based studies on damage detection and localization for plate-422

like structures in literature. Finding damage index is one of the widely used techniques in crack423

identification where the existence of cracks is defined by comparing healthy and damaged states,424

and the potential damage location is estimated by constructing a threshold value (Li 2010). Some425

examples of these strain-based damage indicators can be listed as modal strain energy index where426

the index is ratio of summations of fractional energies of elements before and after damages427

(Cornwell et al. 1999), curvature mode shape index (Yam et al. 2002), cross-correlation of strain428

data (Yao et al. 2016), strain frequency response function (Swamidas andChen 1995), spectral strain429

energy (Bayissa and Haritos 2007) and the strain measured by a sensor against the measurement430

obtained by neighbor sensors (Laflamme et al. 2016). Another study (Choi et al. 2005) adopted the431

changes in modal compliance distribution and demonstrated the validation of their approach on 60432

cm x 40 cm plate including 48 elements. This study defined the percentage of false positive error433

as the ratio of the number of false positive predictions over the number of healthy elements in the434

plate. The percentage of false positives was stated to be 6.4% for noise-free case and 8.5% for 3%435

signal-to-noise (N/S) ratio where the crack size was 5.2 cm. The percentage of false positives for436

crack size of 13 cm were 4.3%, 6.5% and 8.7% for 0%, 1% and 3% N/S ratio, respectively. There437

were also several approaches where damage is characterized by the probabilistic behavior. As an438

example, the research presented in (Hasni et al. 2017) extracted probability density function of439

strain time histories of gusset plate and identified cracks by using support vector machine (SVM)440

classifier. The best performance of the classifier is noted as 82% where the performance is the441

number of correctly classified data points divided by the total number of data points on the girder.442
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In addition, several approaches adopt strain-based damage indicators as inputs to artificial443

neural networks (ANNs). In (Katsikeros and Labeas 2009), Discrete Fourier Transformation and444

Principle Component Analysis were used to generate damage features which are then utilized to445

feed ANN structure. The study was evaluated on a simulated lap-joint structure and validated by446

using mean square error of target and predicted crack parameters. Another study (Sbarufatti et al.447

2013) normalized each sensor of a confined region with respect to the average value measured by448

all the sensors within the same region to obtain damage index. Associated damage index map was449

validated by using the simulation of 60 cm x 50 cm panel with rivets. The detection accuracies450

were obtained as the average of the output values from 50 ANNs. For noise-free case, detection451

accuracies were reported as 92.5% and 95% for 6 cm and 8 cm cracks, respectively. The accuracies452

dropped as the increase in noise level such as; detection accuracies for 12% additive Gaussian noise453

case were 25% for 6 cm crack and 90% for 8 cm crack, respectively.454

Majority of described damage identification approaches are effective in detecting a particular455

type and number of crack scenarios. Nevertheless, there are several limitations in these techniques,456

as mentioned earlier. First, traditional approaches need for measurements from both baseline and457

unknown state of structures. Second, such approaches consist damage feature design and threshold458

selection processes that require manual effort and human expertise. Finally, they aim to reduce the459

number of measurements due to the difficulty in dealing with large datasets.460

CONCLUSION461

The major challenge of damage diagnosis is characterizing the unknown relation between the462

measurements and damage patterns. To address this limitation, this paper introduces convolutional463

neural network (CNN), which is one of the major breakthroughs in image recognition, to this464

damage detection and localization problem. CNN technique has the ability to discover abstract465

features and complex classifier boundaries which are able to distinguish various features of the466

problem.467

In our study, the abstract featuremaps are discoveredwith CNN technique to classify “damaged”468

and “healthy” cases modeled through the analytic simulations. The computational needs of the469
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methodology are decreased by exploiting CNN’s shared parameterization and GPU’s massively470

parallel architecture.471

The proposed CNN architecture can process the available data and adjust itself to the control472

variables such asmeasurement noise. As a result, this study accomplishes high accuracy, robustness,473

and computational efficiency which holds a great potential for real-time damage diagnosis and474

localization challenge. It is also notable to mention that the performance of deep neural networks475

highly depends on the training dataset. The selection of training dataset requires the representation476

of as many of cases possible to predict test cases accurately. The results show that CNN architecture477

performs with higher accuracy and robustness when training dataset is formed with noise-free478

and noisy data. Consequently, training datasets should be designed considering the existence of479

uncertainties.480

In order to discover more about the abilities of convolutional neural networks, further research481

is needed. This work should aim to (1) perform damage diagnosis with more complicated loading482

scenarios and larger structures, (2) determine the severity of the damages for multiple damage483

cases, (3) testing the designed network on the real experimental setup.484
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TABLE 1. Computation performance of the proposed methodology

K80 GPUs CPU
Task Batch of Samples One Sample Batch of Samples One Sample

Training Shared Layers+Detection 6 4 30 5
Time (ms) Shared Layers+Localization 9 5 45 14

Localization 4 2 20 12
Testing Shared Layers+Detection 3 2 8 2
Time (ms) Shared Layers+Localization 4 2 13 6

Localization 2 1 7 5
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Fig. 1. A DNN with two hidden layers.
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Input size = 7x11x2

Kernel size = 2x2x2
Number of kernel = 1

Output size = 2x4x1

Fig. 2. An example of convolution operation.
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gusset-plate.
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Fig. 6. Threshold values adopted for the localization task.
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Fig. 7. Proposed CNN Architecture.
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Fig. 8. Sensitivity analysis of detection task trained with (a) Dataset 1, (b) Dataset 2 and (c) Dataset
3.
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Fig. 9. Sensitivity analysis of the detection task for the crack size 5.1 cm.
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Fig. 10. Sensitivity analysis of localization task for thresholds (a) thr = 1.3 cm, (b) thr = 2.5 cm,
(c) thr = 5.1 cm .
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Fig. 11. An example of correct bounding box estimation.
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