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Abstract

Structures experience large vibrations and stress variations during their life cycles. This causes reduction in the load-carrying
capacity which is the main design criteria for many structures. Therefore, it is important to accurately establish the performance
of structures after construction that often needs full-field strain or stress measurements. Many traditional inspection methods
collect strain measurements by using wired strain gauges. These strain gauges carry a high installation cost and have high power
demand. In contrast, this paper introduces a new methodology to replace this high cost with utilizing inexpensive data coming
from wireless sensor networks. The study proposes to collect acceleration responses coming from a structure and give them
as an input to deep learning framework to estimate the stress or strain responses. The obtained stress or strain time series then
can be used in many applications to better understand the conditions of the structures. In this paper, designed deep learning
architecture consists of multi-layer neural networks and Long Short-Term Memory (LSTM). The network achieves to learn
the relationship between input and output by exploiting the temporal dependencies of them. In the evaluation of the method,
a three-story steel building is simulated by using various dynamic wind and earthquake loading scenarios. The acceleration
time histories under these loading cases are utilized to predict the stress time series. The learned architecture is tested on an
acceleration time series that the structure has never experienced.
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1 Introduction
As sensor networks today provide the opportunity to collect an enormous amount of data from any structure, Structural Health
Monitoring (SHM) applications start posing a BIGDATA problem [1, 2]. Deep Neural Networks (deep learning or DNN) is
an ideal state-of-the-art set of techniques for exploiting the opportunities hidden in BIGDATA [3]. Deep learning algorithms
are designed such that they can learn from data. Therefore, deep learning is ideally suited to use large representative training
datasets to learn complex features. During this learning process, they build a model which is then used to make data-driven
predictions or decisions.

Many traditional SHM and condition assessment methods need full-field strain or stress measurements to be used in re-
maining fatigue life estimation, assessment of loading conditions, corrosion detection, composite material testing and structural
design check. Large scale deployment of wired strain gauges, however, poses a fundamental limitation: they are expensive
and laboriously impractical as more spatial information is desired [4]. An important, but relatively new method to measure
the strain field is that of indirect monitoring [5, 6, 7]. Indirect sensing approaches first and foremost eliminate the installation
costs associated with wiring and also provide a robust way to access critical locations in structures. One of the popular indirect
methods for measuring kinematic quantities (displacement, strain) is Digital Image Correlation (DIC) which resolves relative
movement using a reference image [8, 9]. The drawback of DIC system is the high cost of the equipment and data storage for
a long and continuous dynamic monitoring protocol.

Acceleration measurements are another form of data that SHM applications rely on. Acceleration data can be collected
relatively inexpensively by the means of fixed tethered sensors, wireless sensor networks (WSN) or mobile sensing. WSNs
have been utilized in a variety of applications that range from low duty-cycle, low-power environmental monitoring applications
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to high-fidelity applications with accurate measurements, high sampling rate, and lossless communication for monitoring of
mechanical and structural systems [10]. The advantages of WSNs include the low cost of installation and equipment, as well
as their robustness and quality of data.

Addressing these limitations beg for an innovative sensing strategy where data can be integrated from inexpensive data
sources. This paper presents a deep learning based approach using inexpensive data sources to predict stress or strain informa-
tion of structural systems. To achieve that, the study proposes a deep learning framework comprised of multi-layer networks
and Long Short-Term Memory (LSTM). Exploiting the multi-layer networks, architecture maps the complex relation between
input and output. Furthermore, it captures the temporal dependencies of sensor data by using LSTM which is the state-of-the-art
technique for time series prediction [11], language translation [12], and speech recognition [13].

The rest of the paper is organized as follows. First, a background information on deep learning is provided in Section 2;
then, the proposed methodology with data preparation and training steps are described in Section 3. In Section 4, main findings
of this study are discussed. Conclusions and future work are presented in Section 5.

2 Background on Deep Learning
Multi-Layer Neural Networks. Multi-layer neural networks are a subfield of machine learning where they build a deep
graph mapped from input data to target [14]. The graphs are organized such that they have multiple linear layers activated by
nonlinear transformations (e.g.sigmoid, tanh and others) [15]. The multi-layer networks (fully connected layers or FC layers)
are composed of neurons and weight parameters (w) where the value of each neuron (si) can be computed by a weighted sum
of the values of its input nodes (s′j) activated by the nonlinear function a:

si = a
(∑

j

wijs
′
j

)
. (1)

Recurrent Neural Networks. Recurrent neural networks (RNN) are a family of deep neural networks for dealing with the
sequential data [16]. Unlike multi-layer neural networks, RNNs are able to map target data from the entire history of previous
inputs. RNN models capture the dynamics of the sequences with the directed loops in them [17]. A typical RNN architecture
is shown in Figure 1, which demonstrates a RNN being unrolled into a full network that has a chain-like structure. At time t,
RNN receives the input x(t) and the hidden values from previous state h(t−1). In other words, current decisions are affected by
the previous states. Given an input sequence {x(1), x(2), ..., x(T )}, RNN updates the hidden node values {h(1), h(2), ..., h(T )}
by the following equation:

h(t) = a(Whxx(t) +Whhh(t−1) + bh), (2)

where Whx denotes the weight matrix between the input and hidden layer, Whh and bh denote the recurrent weight matrix and
the bias vector in hidden layer, respectively. The output of the weighted sum is typically passed through a function a such as
sigmoid, tanh, ReLU or others. Optionally, output sequence at time t can be found with the formulation y(t) = (W yhh(t) +by).
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Figure 1: A recurrent neural network (a) rolled, (b) unrolled.
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Figure 2: A LSTM memory cell.

Long Short-Term Memory (LSTM). In RNNs, the weight and bias parameters are shared along all the hidden layers [18].
Therefore, they may suffer from long-term time dependency problems where the gradients vanish or explode [19]. In order
to address these problems, RNNs are improved over these years. Hochreiter and Schmidhuber [20] proposed long short-
term memory (LSTM) which showed groundbreaking performance in time series prediction, language translation and video
recognition.

LSTM networks are composed of memory cells which contain a chain of recurrent nodes. These memory cells help the
network to control the information by adopting input gate, forget gate and output gate [21]. Diagram illustrated in Figure 2
focuses on single memory cell and shows data flow through it. Each memory cell includes input node, internal state, input,
forget and output gates. Input node, (g), takes the current input and hidden layer at previous time step, then computes the
weighted sum followed by tanh function (φ). Input gate, (i), controls which input to be passed to the memory cell. For
instance, if the value after sigmoid function (σ) is 0, gate cuts off the input otherwise, it allows data to pass through. Forget
gate, (f) proposed by Gers et al. (1999) [22] flushes the content if it is necessary. Internal state, (s), has a self-connected node
that updates itself by forgetting or adding new information. Output gate, (o), controls what information to pass the next time
step. Equations used in LSTM computations are given as follows:

g(t) = φ(W gxx(t) +W ghh(t−1) + bg), (3a)

i(t) = σ(W ixx(t) +W ihh(t−1) + ig), (3b)

f (t) = σ(W fxx(t) +W fhf (t−1) + fg), (3c)

o(t) = σ(W oxx(t) +W ohh(t−1) + og), (3d)

s(t) = g(t) � i(t) + s(t−1) � f (t), (3e)

h(t) = φ(s(t))� o(t). (3f)
(3g)

3 Proposed Methodology

3.1 Data Preparation
Design of the deep learning architectures critically depends on the training dataset which should be constructed by well-known
states [23]. In this study, a three-story steel building is simulated to be used in preparation of the training dataset. The structure
is assumed to be six-bay by six-bay office building in seismic region. The primary system consists of eight identical special
concentrically braced frames (SCBF) and the gravity load frames where the plan view of the building is shown in 3. The seismic
area tributary to one SCBF is defined as one quarter of the total area by exploiting the symmetric layout of the building. The
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model and section dimensions are designed based on the similar experimental structure model described in Dong et al. (2016)
[24]. However, damped braced frame (DBF) and moment resisting frame (DBF) are replaced by SCBF for simplicity. The
section properties of the designed model is shown in Figure 3.
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Figure 3: Structure model (a plane view of prototype building) and details of SCBF frames.

The building is loaded with different dynamic loading combinations under the effect of wind and earthquake. Twelve
different ground motion records are selected from the PEER NGA online database [25] which have the smallest sum of the
squared error (SSE) matching with uniform hazard spectrum (UHS). OpenSha is used to generate hazard spectrum [26].

Wind velocity fluctuations are performed by Monte Carlo Simulation [27]. One-dimensional, uni-variate sample functions
are created to match the probabilistic characteristics of the wind load. Wind velocity is defined with the Kaimal’s Spectrum
[28] which can be formulated by the following equation:

Sxx(w) =
200zu2∗

4πU(z)

[
1 +

50|w|z
2πU(z)

]5/3 , (4)

where U(z) is mean speed at height z, k is Von karman’s constant, w is frequency in rad/s, u∗ is shear velocity of the flow
defined by u∗ = kU(z)/ln(z/z0). In this study, roughness length z0 is adopted as 0.001266 m and mean wind speed height
is taken as 8 m/s to simulate wind vibrations. By using the simulated velocities, wind pressure is calculated and dynamically
applied to the structure.

The load combinations through 4a to 4d are utilized with 12 ground motions and 6 wind load scenarios. Dynamic responses
are collected to have a total of 1000 points with a sampling time of ∆t = 0.05s. Total 40 different loading combinations are
created. Acceleration (ü(t)) and stress (σ) time histories are collected from nine locations as shown in Figure 4. The collected
responses are distributed to training, validation and testing datasets. Responses are normalized with the overall maximum of
sequences.

(1.2D + 0.2SDS)D + ρQE + L, (5a)
(0.9D + 0.2SDS)D + ρQE , (5b)

1.2D + 1.6L+ 0.8W, (5c)
1.2D + L+ 1.6W, (5d)

where D and L are dead and live loads calculated based on ASCE7010 design code [29], W is wind load, QE is the effect of
horizontal seismic forces, SDS is design, 5 percent damped, spectral response acceleration parameter at short periods which is
taken as 1.0 g and ρ is a redundancy factor adopted as 1.
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Figure 4: Proposed network topology.

3.2 Proposed Network Topology and Training
Let a series of observations {ü11(t), ü12(t), ü12(t), ..., ü33(t)} denotes the acquired acceleration data from the building model.
Here the acceleration of the joint of ij sampled at time step t is represented as üij(t) where i is the number of story and j is the
grid number in x direction (as shown in Figure 4). The responses obtained from each joint at the time steps t = 0, 0.05, ..., 50
for different loading combinations are prepared as tensors (e.g. in the shape of [24, 1000, 9] for training dataset).

The proposed network topology takes the sequences of acceleration data and learns how to predict stress time histories. At
time t, model takes input sequences and passes them through the multi-layer neural network size of [1024]. The output of the
FC layer is used to feed the LSTM memory cells with size of 1024, which are then followed by three multi-layer network with
the sizes of [1024 − 512 − 128]. These layers are activated by using tanh() function. The final output of the last DNN layer
is used to predict the stress time histories {σ11(t), σ12(t), σ12(t), ..., σ33(t)}. The scheme of the proposed architecture can be
found in Figure 4.

The loss function is defined as mean squared error of predictions and true values of acceleration sequences. The networks
is trained by ADAM optimizer which is an adaptive learning rate algorithm [30] with batch sizes of N = 24. In order to favor
the short-term dependencies of data, truncated backpropogation through time (BPTT) approach is adopted [31].

4 Results
This section presents the performance analysis of the proposed deep learning based methodology. The designed architecture
is trained for 10,000 epochs until it overfits the training dataset. By overfitting the training dataset, the capability of proposed
architecture is observed and predicted results are compared with the true stress time series. The mean squared error for training
process is found to be 0.001. As an example, a performance of one earthquake sample sequence that is collected from Joint31
is visualized in Figure 5. In figure, normalized acceleration time series are plotted with both normalized target and predicted
stress time series. It is observable that predicted sequence perfectly captures the target sequence. Furthermore, figure shows that
although acceleration and stress sequences do not have a relationship that easily noticeable, the designed architecture accurately
estimates it by exploiting the LSTM cells.

Figure 5: A performance of an example training sample.
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After training of the network, the model is tested with the earthquake loading scenarios that structure has never been
exposed. The mean square error is found to be 0.12. Similar plots are also generated for example earthquake loading cases. The
earthquake loads for Joint31 and Joint33 are presented in Figure 6. These examples shows that even the model is overfitted to
training process and unseen loading earthquake cases are used, the model predicts the target sequences almost perfectly. This
performance shows that introduced approach is promising for described innovative sensing strategy. The small deviance in true
and estimated sequences for Joint33 can be reduced by adopting multiple LSTMs in the model or applying a fine tuning.

Figure 6: A performance of example testing samples.

5 Conclusion
This paper introduces a deep learning based platform so the data obtained by using wireless sensor networks can be used to
obtain stress or strain information which is necessary for many potential applications including: damage diagnosis, remaining
fatigue life estimation, accurate assessment of loading conditions, corrosion detection, composite material testing, and structural
design check. The proposed network exploits the temporal modeling of LSTM and nonlinear mapping of FC layers to be able
discover temporal dependencies and complex relationships between input and output sequences. Based on the findings of the
approach, accurate estimation of stress time series is possible with acceleration acquired from inexpensive sensing system.
Results show that stream of prediction values are matching quite well for training samples. The performance of the network
needs a little improvement for the load scenarios that structure has never been experienced.

To discover more of abilities of deep neural networks, further research steps are important. The future work aims to extend
this work by (i) designing more complex network architecture which considers both temporal and spatial dependencies of data,
(ii) using experimental data, (iii) trying different type of data source conversions specific to other structures.
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