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Abstract
Low-rank methods for semi-definite programming
(SDP) have gained a lot of interest recently, espe-
cially in machine learning applications. Their anal-
ysis often involves determinant-based or Schatten-
norm penalties, which are difficult to implement in
practice due to high computational efforts. In this
paper, we propose Entropy-Penalized Semi-Definite
Programming (EP-SDP)1, which provides a unified
framework for a broad class of penalty functions
used in practice to promote a low-rank solution. We
show that EP-SDP problems admit an efficient nu-
merical algorithm, having (almost) linear time com-
plexity of the gradient computation; this makes it
useful for many machine learning and optimization
problems. We illustrate the practical efficiency of
our approach on several combinatorial optimization
and machine learning problems.

1 Introduction
Semidefinite programming (SDP) has become a key tool in
solving numerous problems across operations research, ma-
chine learning, and artificial intelligence. While there are too
many applications of SDP to present even a representative
sample, inference in graphical models [Wainwright and Jor-
dan, 2008; Erdogdu et al., 2017], multi-camera computer vi-
sion [Torr, 2003], and applications of polynomial optimization
[Parrilo, 2003; Lasserre, 2015] in power systems [Ghaddar
et al., 2016] stand out. Under some assumptions [Madani et
al., 2014], the rank at the optimum of the SDP relaxation is
bounded from above by the tree-width of a certain hypergraph,
plus one. When a rank-one solution is not available, it is often
not needed [Mareček and Takáč, 2017], as one should like to
construct a stronger SDP relaxation.

Penalization of the objective is a popular approach for ob-
taining low-rank solutions, at least in theory [Recht et al.,
2010; Lemon et al., 2016; Zhou, 2019; Fawzi et al., 2019].
Notice that without a further penalization, an interior-point
method for SDP provides a solution on the boundary of the

∗Contact Author
1See https://github.com/mkrechetov/epsdp for the implementation

details.

feasible set, where SDP corresponds to the optimum of the
highest rank, whenever there are optima of multiple ranks
available. The use of a penalization provides a counter-balance
in this respect. In practice, however, the penalties are often
ignored, as it is believed that their computation is too demand-
ing for large-scale problems and does not guarantee low-rank
solutions in general.

An alternative approach develops numerical optimization
methods that seek a priori low-rank solutions. This approach,
widely attributed to [Burer and Monteiro, 2003], considers a
factorization of a semidefinite matricial variable X = V · V >
with V ∈ Rn×k for increasing 1 ≤ k � n. In general, the
resulting problems are non-convex. Early analyses required
determinant-based penalty terms [Burer and Monteiro, 2005],
although no efficient implementations were known. Under
mild assumptions, for large-enough k, there is a unique opti-
mum over such a factorization even without a penalization and
it recovers the optimum of the initial SDP problem [Boumal
et al., 2016]. For smaller values of k, it is known that the
low-rank relaxation achieves O(1/k) relative error [Mei et al.,
2017]. Much more elaborate analyses [Erdogdu et al., 2018]
are now available. Especially when combined with efficient
gradient computation, e.g. within low-rank coordinate descent
[Mareček and Takáč, 2017, e.g.], this approach can tackle
sufficiently large instances and is increasingly popular.

In this paper, we aim to develop a method combining
both approaches, i.e., utilize an efficient low-rank-promoting
penalty in the Burer-Monteiro approach. We present efficient
first-order numerical algorithms for solving the resulting pe-
nalized problem, with (almost) linear-time per-iteration com-
plexity. This makes the combined approach applicable to a
wide range of practical problems.

In a case study, we focus on certain combinatorial optimiza-
tion problems and inference in graphical models. We show
that despite the non-convexity of the penalized problem, our
approach successfully recovers rank-one solutions in practice.
We compare our solutions against non-penalized SDP, belief
propagation, and state-of-the-art branch-and-bound solvers
of [Krislock et al., 2014].

Contribution. Our contributions can be summarized as fol-
lows. We show

1. convergence properties of optimization methods employ-
ing a wide class of penalty functions that promote low-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1123



rank solutions;
2. linear-time algorithms for computing the gradient of these

penalty functions;
3. computational results on the penalized SDP relaxation

of maximum a posteriori (MAP) estimates in Markov
random fields (MRF), which considerably improve upon
the results obtained by interior-point methods and ran-
domized rounding.

This allows for both well-performing and easy-to-analyze
low-rank methods for SDPs coming from graphical models,
combinatorial optimization, and machine learning.
Paper structure. This paper is organized as follows. First,
we define the conic optimization problem together with a
penalized form with a list of suitable penalization functions.
Next, we present theoretical guarantees for solution recov-
ery. These extend known results for solution recovery to the
penalty case. Then, we consider the MAP problem in Markov
Random Fields (MRF) and introduce an iterative procedure
for it, together with a first-order method for solving a subprob-
lem at each step; we also show how to compute the gradients
efficiently. Finally, we provide computational experiments for
different inference problems in MRF.

2 Background
SDP is the following conic optimization problem:

min
X∈Sn+

∑
i∈I

fi(trXSi) (SDP)

s.t.: gj(trXCj) ≤ 0, j ∈ J,
where X ∈ Sn+ denotes that the n × n matrix variable W
is symmetric positive semidefinite, I and J are finite index
sets, each fi and gj are convex functions Rn×n → R, and
Cj ∈ Rn×n and Si ∈ Rn×n are constant matrices.

In the context of combinatorial optimization, one may also
consider even more powerful methods such as Sum-of-Squares
hierarchies of [Parrilo, 2003]. However, even an SDP relax-
ation, which is, in fact, the first step of this hierarchy, may
be too computationally challenging. It is usually solved by
interior-point methods in the dimension that is quadratic in
the number of variables and thus becomes intractable even
for medium-scale problems (with a few thousand variables).
The problem becomes even less scalable for higher orders of
the hierarchy since it requires one to solve SDP with nΘ(d)

variables, where d is the level of the hierarchy.

2.1 Low-rank Relaxations and Penalized Problem
First, let us formally define our notion of a penalty function
and explain related work on first-order methods for SDP.
Assumption 1. Eq. (SDP) has an optimum solution with
rank r.

Let us consider the following proxy problem:

Pq,λ
.
= min
V ∈Rn×q

∑
i∈I

fi(tr(V
>SiV )) +Rq,λ(V ) (P-SDP)

s.t.: gj(tr(V >CjV )) ≤ 0, j ∈ J.
Where q > r and Rq,λ(V ) satisfies the following:

Definition 1 (Strict penalty function). A functionRq,λ(V ) :

Rn×n → R is a penalty function that promotes low-rank
solutions if for some integers q′ ≤ q and a multiplier λ ∈ R+:

lim
λ→∞

Rq,λ(V ) =

{
0 if rank (V ) < q′,

∞ if rank (V ) = q.

Moreover, if q′ = q and the rank (X) < q, then Rq,λ(V ) =
0, ∀λ, R(V ) is a strict penalty function.

We use the word penalty instead of penalty function that
promotes low-rank solutions, where there is no risk of confu-
sion. This notion of a penalty is rather wide. When multiplied
by λ, a determinant is a prime example. One may also consider
functions of the following quasi-norms.

1. The nuclear norm:
‖X‖∗ =

∑
i

σi, (1)

where σi is the i-th singular value, cf. [Lemon et al.,
2016]. The norm is also known as a trace norm, Schatten
1-norm, and Ky Fan norm. As shown by [Srebro et al.,
2004], in the method of [Burer and Monteiro, 2003], one
can benefit from a bi-Frobenius reformulation:

‖X‖∗ = min
U∈Rn×d

V ∈Rn×d:X=UV T

‖U‖F ‖V ‖F

= min
U,V :X=UV T

‖U‖2F + ‖V ‖2F
2

.

There are also truncated [Hu et al., 2013] and capped
variants [Sun et al., 2013].

2. Schatten-p quasi-norm for p > 0:

‖X‖Sp
=

(
n∑
i=1

σpi (X)

)1/p

, (2)

where σi(X) denotes the i-th singular value of X .
3. A smoothed variant of Schatten-p quasi-norm by

[Pogodin et al., 2017] for p, ε > 0:

‖X‖pSp,ε
=

n∑
i=1

(
σ2
i + ε

) p
2 = tr

(
X>X + εI

) p
2 . (3)

4. Tri-trace quasi-norm of [Shang et al., 2018]:
‖X‖Tri-tr = min

X=UVΥ>
‖U‖∗‖V ‖∗‖Υ‖∗, (4)

which is also the Schatten-1/3 quasi-norm.
5. Bi-nuclear (BiN) quasi-norm of [Shang et al., 2018]:

‖X‖BiN = min
X=UV T

‖U‖∗‖V ‖∗, (5)

which is also the Schatten-1/2 quasi-norm.
6. Frobenius/nuclear quasi-norm of [Shang et al., 2018]:

‖X‖F/N = min
X=UV T

‖U‖∗‖V ‖F , (6)

which is also the Schatten-2/3 quasi-norm.
We also note there has been considerable interest in the

analysis of low-rank approaches without penalization, espe-
cially in matrix-completion applications. Much of the analysis
goes back to the work of [Keshavan et al., 2010]. For further
important contributions, see [Arora et al., 2012].
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2.2 Entropy Viewpoint
One could see the penalty functions introduced above from the
entropy-penalization perspective. This is useful not only from
a methodological standpoint, but also from a computational
one. To this end, we consider the Tsallis entropy:

STα(X) =
1

1− α

(
trXα

(trX)α
− 1

)
.

The Tsallis entropy is crucial in our study because it gener-
alizes many popular penalties considered earlier. The Schatten
p-norm coincides with the Tsallis entropy STp over a set of
matrices with a fixed trace norm, so that the tri-quasi norm
and bi-nuclear norm (2–6) are covered as well. The Log-Det
function, − log detX , which is also used in low-rank SDP, is
up to an additive constant factor relative (Shannon) entropy
taken concerning a unit matrix, while Renyi (SR) and von
Neumann (SN ) entropies,

SRα (X) =
log tr(X/ trX)α

1− α
and

SNα (X) = − tr(log(X/ trX) ·X/ tr(X)),

respectively, can also be used as penalties to promote a low-
rank solution. To the best of our knowledge, neither Renyi,
von Neumann, nor Tsallis entropies have been studied in the
context of low-rank SDP.

3 Exact Recovery
Let us now present a unified view of the penalties and their
properties:

Lemma 1. Any of:

1. λ det(X);

2. λσq(X), where σi(X) denotes the i-th singular value of
X;

3. Tsallis, Renyi, and von Neumann entropies defined on the
last n− q + 1 singular values;

4. λmax
{

0, ‖X‖∗
max{σmin(X),σq(X)} − q

}
,

is a penalty function that promotes low-rank solutions. More-
over, penalties 1–3 are strict.

Proof. Sketch. (1.) The proof is by simple algebra. (2.) If
σq(X) is 0, we know the rank is q − 1 or less. Otherwise,
for large values of λ, the value of the penalties goes to in-
finity, and hence q′ = q. (3.) The definition of entropy
assumes that S(0, ..., 0) = 0, thus all entropies are strict
penalty functions by definition. (4.) First, consider the case
where all non-zero singular values are equal. In that case,
‖X‖∗/σmin(X) = rank (X), and subtracting q results either
in a non-positive number when the rank is less than q or a pos-
itive number otherwise. If the singular values are non-equal,
‖X‖∗/σmin(X) provides an upper bound on the rank of X ,
which can be improved as suggested. The use of the upper
bound results in the value of the penalty tending to infinity for
values between q′ and q in the large limit of λ.

Crucially, under mild assumptions, any penalty allows for
the recovery of the optimum of a feasible instance of (SDP)
from the iterations of an algorithm on the non-convex problem
in variable V ∈ Rn×r, such as in the methods of [Frostig
et al., 2014] or [Burer and Monteiro, 2003]. In contrast to
the traditional results of [Burer and Monteiro, 2005], who
consider the det penalty, we allow for the use of any strict
penalty function.

Theorem 2. Assume that we solve the proxy problem (P-SDP)
iteratively and Rq,λ(V ) is a strict penalty function that pro-
motes low-rank solutions. In each iteration, if Rq,λ(V ) 6= 0,
we increase λ (e.g., set λt+1 = γλt, with u > 1 as some fixed
parameter). Furthermore, let us assume that the solution we
found is denoted by Ṽq with rank (Ṽq) = q′ < q. Let us also
denote Ṽq′ ∈ Rn×q

′
some factorization of ṼqṼ >q (such factor-

ization exists because rank (Ṽq) = q′). Also assume that we
have an optimal solution of (SDP), X∗ with a rank (X∗) = r.

If

Vq′+r+1 , [Ṽq′ ,0n×r,0n×1] (7)

is a local minimum of Pq′+r+1,λ, then (Ṽq′)Ṽ
>
q′ is a global

solution of SDP.

Proof. Let us define a family of matrices for τ ∈ [0, 1] as
follows:

V (τ) , [
√
τ Ṽq′ ,

√
(1− τ)V∗,0n×1],

where (V∗)
>(V∗) is some factorization of X∗ with V∗ ∈

Rn×r.
Note that ∀τ , we have rank (X(τ)) < r+q′+1, and hence

∀λ, τ : Rq′+r+1,λ(V (τ)) = 0. Now, assume the contradiction,
that is, Vq′+r+1 is a local optimum solution but Ṽq′ is not a
global solution.

We show that ∀τ ∈ [0, 1], V (τ) is a feasible solution. In-
deed, for any j ∈ J we have

gj(tr(V (τ)TCj tr(V (τ)) ≤
τgj(tr([Ṽq′ ,0n×r+1]>Cj [Ṽq′ ,0n×r+1]))+

(1− τ) tr([0n×q′ , V∗,0n×1]>Cj [0n×q′ , V∗,0n×1])) =

τgj(tr(Ṽ
>
q′ Cj Ṽq′)) + (1− τ) tr(X∗Cj)) ≤ 0.

We just showed that for each V (τ), τ ∈ [0, 1] is a feasible
point. Now, let us compute the objective value at this point.
For all τ ∈ [0, 1], we have∑

i∈I
tr(V (τ)>SiV (τ)) ≤ τ

∑
i∈I

tr(Ṽ >q′ SiṼq′)+

+(1− τ)
∑
i∈I

tr(X∗Si) <
∑
i∈I

tr(Ṽ >q′ SiṼq′),

which is a contradiction under the assumption that Ṽq is a local
optimum.
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4 Efficient Implementation for MAP
Inference

A pairwise Markov Random Field (MRF) is defined for an
arbitrary graph G = (V,E) with n vertices. We associate a
binary variable xi ∈ {−1,+1} with each vertex i ∈ V . Let
θi : {±1} → R and θij : {±1}2 → R defined for each
vertex and edge of the graph be vertex and pairwise potential,
respectively. Thus, a posteriori distribution of x follows the
Gibbs distribution:

p(x|θ) =
1

Z(θ)
eU(x|θ),

with U(x; θ) =
∑
i∈V θi(xi) +

∑
(i,j)∈E θij(xi, xj). The

maximum a posteriori (MAP) estimate is then

x̂ = argmax
x∈{−1,1}n

p(x|θ) = argmax
x∈{−1,1}n

U(x; θ), (MAP)

which is its turn an NP-hard binary quadratic optimization
problem,

x̂ = argmax
x∈{−1,1}n

x>Sx,

with indefinite matrix S. The SDP relaxation for this problem
is given by [Goemans and Williamson, 1995; Nesterov, 1998]:

min
X∈S+n

trSX, s.t.: Xii = 1, (8)

which also covers the Ising model in statistical physics and a
number of combinatorial optimization problems. We believe
that the approach can be extended to a general setup given by
Eq. (SDP).

An entropy-penalized SDP relaxation of (8) has the form

min
X∈S+n

trV >SV +Rλ(V ), s.t.: ‖V i‖22 = 1, (EP-SDP)

where V i is the i-th column of matrix V ∈ Rn×k, X = V V >.

4.1 Numerical Method.
To solve Problem (EP-SDP), we use the Augmented La-
grangian method starting from a sufficiently small value of
the penalty parameter λ > 0 and increasing it in geometric
progression, λk+1 = λkγ, with γ > 1, as summarized in Al-
gorithm ??. The efficiency of the method is due to the efficient
computability of gradients of Tsallis, Renyi, and von Neumann
entropies:
Lemma 3. For any matrix V ∈ Rn×k with k = O(1), let
X(V ) = V >V . Then, gradients of STα(X), SR(X), and
SN (X) can be computed in O(n) time. Moreover, if the num-
ber of non-zero elements in matrix A is O(n), then the itera-
tion complexity of Algorithm ?? is O(n).

Proof. We start our analysis with Tsallis entropy. First, com-
pute the gradient of STα in V :

∂ STα(X)

∂V
=

α

1− α

(
Xα−1

(trX)α
− trXα

(trX)α+1
I

)
V.

Similarly for Renyi, SR(X), and von Neumann, SN (X),
entropies we have

∂ SRα (X)

∂V
=

α

1− α
Xα−1

trXα

(
I − X

trX

)
V

Algorithm 1: Entropy-Penalized SDP.
Data: Quadratic matrix S of the MAP inference problem,

staring point λ0, γ > 1, step size policy {ηk}k≥1

accuracy parameters ε, ε
Result: Solution V∗ as a local minimum of (EP-SDP) of

unit rank
begin

V0 ← random initialization in Rn×k;
while tr(V >t Vt)− λmaxVt > ε do

Find local minimum of EP-SDP(S, λt) starting
from Vt−1, assign it to Vt;

while∇(trV >SV +Rλ(V )) ≤ ε do
V = V − ηk∇(trV >SV +
Rλ(V ))/‖∇(trV >SV +Rλ(V ))‖2;
Vi ← Vi/‖Vi‖2 for each row Vi;

end
λt+1 = λt · γ;

end
end
Return: first singular vector of Vt.;

and

∂ SNα (X)

∂V
=

trXI −X
(trX)2

(
I + log

X

trX

)
V.

Following [Holmes et al., 2007], the singular-value decompo-
sition of matrix V = U1DU2 with U1 ∈ Rn×n, D ∈ Rn×k,
and U2 ∈ Rk×k can be performed in O(min (nk2, n2k)) =
O(nk2) time.

For any α > 1, the product Xα−1 · V = U1D
2α−1U2 can

be computed in time O(n) together with trXα = trD2α

and trX = trD2. Thus, for a fixed k, the gradient ∂ S
T (X)
∂V

computation time is linear in its dimension. (Here, for any
α ∈ (0, 1), we use the identity ∂λi = vi

>∂Xvi.) To finish
the proof of the statement, it remains to note that matrix-vector
multiplication takes O(n) time for any matrix with O(n) non-
zero entries.

5 Case Study
In this section, we compare our penalized algorithm with other
conventional approaches to MAP problems. We fix the width
of factorization to k = 10, since there is no significant gain
in practice for larger values of k, cf. [Mei et al., 2017]. We
choose 2ηkβ = 1, where β is the Lipschitz constant of the
gradient in `2 norm and γ = 3/2. Parameters λ0 and γ of
Algorithm ?? are usually chosen by a few iterations of random
search. It is usually enough to have about 35 iterations for
penalty updates and a few hundred iterations to find a local
minimum using Algorithm ??. We emphasize that matrices
we obtain by solving EP-SDP are rank-one solutions on all
MAP instances presented. Thus, we do not need any further
rounding procedure.

First, in Table 1, we show the performance of our algorithm
on selected hard MAP inference problems from the BiqMac
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Instance gka1f gka2f gka3f gka4f gka5f
SDP

objective 59426 97809 1347603 168616 185090
upper bound 66783 109826 152758 out of out of
time [s] 669 673 592 memory memory

EP-SDP
objective 60840 99268 136567 170669 189762
upper bound n/a n/a n/a n/a n/a
time [s] 3.3 5.0 5.3 5.2 5.7

Gurobi
objective 64678 97594 131898 162875 189324
upper bound 73267 112223 153726 190073 218428
time [s]. 70 70 71 70 70

Table 1: Results for the BiqMac collection.

collection2. We selected a few of the hardest instances ("gkaif"
among them)—dense quadratic binary problems of 500 vari-
ables.

We compared our algorithm (EP-SDP with Tsallis entropy
and α = 2) with the plain-vanilla semidefinite programming
instance solved by the interior-point method, possibly with
rounding using the best of one thousand roundings of [Goe-
mans and Williamson, 1995] and also with Gurobi solver for
Mixed-Integer Problems. To avoid any confusion, we solve
the corresponding maximization problems; by the objective
value, we mean the value at a feasible solution produced by the
method (e.g., rounded solution of SDP relaxation), which is
a lower bound for the corresponding problem. Because these
problems are of the same size (but varying density), the run-
ning time of each method is almost constant. It took around
10 minutes for CVXPY to solve the SDP relaxation, and it
runs out of memory for the two problems with higher density.
Within five seconds, EP-SDP obtains results that are better
than what Gurobi can produce in 70 seconds.

In our study, parameter α of entropies STα , SNα , and SRα is
chosen on an exponential grid from 1 to 10 with a step 1.1.
After experimentation, we note that α = 1.1 and α = 5.0
seem to improve the results the best for the low-rank SDP
with Tsallis and Renyi entropies, respectively, although the
difference between different α ∈ (1, 10) is not very significant
for either of the (Tsallis and Renyi) entropies.

Table 2 summarizes the results of solving the Max-Cut prob-
lem over a GSET collection of sparse graphs3. As we see from
the experiments, the results of applying suitable entropy of-
ten outperform both the plain-vanilla SDP with the classical
Goermans-Williamson rounding, the mean-field approxima-
tion, as well as the results of UGM solver4 for loopy belief
propagation and mean-field inference. It is worth noting that
for several instances of the GSET graph collection, loopy be-
lief propagation provides rather weak results. Usually, strong
results of the loopy belief propagation are complementary to
those of the mean-field approximation, which is supported by
our empirical results. Results of both loopy belief propagation
and mean-field approximation can be substantially improved

2http://biqmac.uni-klu.ac.at/biqmaclib.html
3https://sparse.tamu.edu/Gset
4https://www.cs.ubc.ca/ schmidtm/Software/UGM.html

GSET Instance
1 2 3 4

EP-SDP
(T, α = 2.0) 11485 11469 11429 11442
(T, α = 1.1) 11454 11463 11444 11508
(R, α = 5) 11508 11519 11496 11531
(R, α = 10) 11520 11420 11523 11523
SDP 11372 11363 11279 11355
Loopy BP 10210 10687 10415 10389
Mean-Field 11493 11515 11525 11512

GSET Instance
5 6 7 8

EP-SDP
(T, α = 2) 11427 2059 1888 1866
(T, α = 1.1) 11506 2075 1858 1895
(R, α = 5) 11527 2127 1942 1954
(R, α = 10) 11538 2112 1940 1958
SDP 11313 1945 1728 1727
Loopy BP 10143 1076 964 731
Mean-Field 11528 2096 1906 1912

GSET Instance
9 10 11 12 13

EP-SDP
(T, α = 2) 1933 1882 532 530 560
(T, α = 1.1) 1969 1861 544 536 568
(R, α = 5) 1992 1960 550 548 568
(R, α = 10) 2006 1982 544 546 564
SDP 1767 1784 524 514 540
Loopy BP 1021 820 424 412 482
Mean-Field 1940 1902 542 538 564

Table 2: Results for the GSET collection.
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Figure 1: Rank decrement.

using the linear-programming belief-propagation approach
(LP-BP).

We also want to point out that our iterative algorithm suc-
cessfully decreases the rank of the solution. The higher the
penalization parameter, the lower the rank. We illustrate this
in Figure 1, where for Tsallis entropies with α = 2 and α = 5,
we plot the second singular value of matrix V . For this plot,
we considered the Max-Cut problem for the first graph from
the GSET collection and the Tsallis entropy as the penalization
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function. In Figure 2, we illustrate the same concept for fixed
penalization (Tsallis entropy with α = 2) and different initial
values of the multiplier λ. We observe that for different penal-
ization functions and update schemes, the rank of the solution
decreases gradually with each step. In practice, our iterative
algorithm could be seen as a universal rounding procedure for
SDP relaxations. Indeed, if we choose a large-enough penal-
ization update (e.g., γ = 2 as in Figure 1), we easily obtain a
rank-one solution that is not worse and often is substantially
better than solutions obtained by randomized rounding.

Overall, we would like to stress that Algorithm ?? is very
fast. This is shown in Figure 3 and Table 3, where we com-
pare run times of EP-SDP, low-rank Burer-Monteiro approach
(LR-SDP), and interior-point method solvers (SDP) for vari-
ous Erdos-Renyi random graphs. From the data, we see that
(assuming the fixed width of factorization k = 10) EP-SDP
run time increases linearly with the number of vertices. Indeed,
throughout the benchmark instances tested, the run time does
not exceed a few seconds per each of the test cases. At the
same time, the bound is often almost as good as that of the
Branch and Bound Biq-Mac Solver of [Krislock et al., 2014],
which requires a significant amount of time.

6 Conclusions
This paper presented a unified view of the penalty functions
used in low-rank semidefinite programming using entropy as
a penalty. This makes it possible to find a low-rank optimum,
where there are optima of multiple ranks. Semidefinite pro-

Instance EP-SDP LR-SDP SDP
E-R(50, 0.2) 0.2s 0.1s 0.4s
G(100, 0.2) 0.3s 0.4s 1.4s
G(200, 0.2) 0.5s 1.6s 7.6s
G(300, 0.2) 0.8s 3.9s 21.0s
G(400, 0.2) 1.0s 6.0s 45.0s
G(500, 0.2) 1.3s 8.9s 85.0s

Table 3: Run time for random graphs.

grams with an entropy penalty can be solved efficiently using
first-order optimization methods with linear-time per-iteration
complexity, which makes them applicable to large-scale prob-
lems that appear in machine learning and polynomial opti-
mization. Our case study illustrated the practical efficiency on
binary MAP inference problems. The next step in this direc-
tion is to consider the structure of the SDP, which seems to be
crucial for further scalability.
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