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a conformal factor that can be computed from knowledge of the equation parametrizing
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1 Introduction

The AdS/CFT correspondence [1] re-packages boundary CFT properties into an effective

higher-dimensional gravity theory. Understanding this equivalence from the CFT point of

view has been the focus of many studies. A relationship [2] which underlies the present

work is the identification between the bulk total modular Hamiltonian and the CFT total

modular Hamiltonian.1 One aspect of this identification is that the CFT total modular

Hamiltonian should act on CFT representations of bulk fields in the same way that the bulk

total modular Hamiltonian acts on bulk fields in an effective bulk spacetime description.

From experience with weakly-coupled fields in flat space one expects that on the bulk

1The total modular Hamiltonian, sometimes called the full modular Hamiltonian, acts on both a region

and its complement.
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extremal surface the action of the bulk total modular Hamiltonian should be a boost in

the two dimensions perpendicular to the surface.

For this reason the CFT representation of scalar objects localized at a bulk point should

commute [3, 4] with any CFT total modular Hamiltonian whose associated bulk extremal

surface (HRT surface [5]) passes through that point. This was used in [3] to construct

bulk operators using total modular Hamiltonians whose associated bulk extremal surfaces

intersect at a bulk point. It was shown that the resulting operators agree with the complex

coordinate representation of bulk operators constructed in [6–8]. In the process one also

gets an equation parametrizing the bulk extremal surface associated with each total CFT

modular Hamiltonian. In this framework one can view the transformation property of a

bulk scalar under the total modular Hamiltonian (namely that it commutes with it on

the extremal surface) as a kinematic organizing principle, so perturbative corrections to

the definition of a bulk scalar [9] will have to obey the same condition. However 1/N

corrections due to interactions with gauge fields and gravity [10, 11] involve Wilson line

dressing and do not commute with the total modular Hamiltonian. One might still hope

that there is an appropriate transformation law under modular flow that can be used to

constrain the form of these corrections, perhaps along the lines of [12, 13]. For other recent

uses of modular Hamiltonians in bulk reconstruction see [14–17].

As explained above, the condition that a CFT operator commute with a family of total

modular Hamiltonians does not give a physical bulk scalar field.2 But each such operator

can be associated with a point in the emergent bulk spacetime (the association is many-

to-one). We use this to show that the bulk spacetime can be identified with the space of

certain subalgebras of the Lie algebra generated by all total modular Hamiltonians. The

bulk spacetime encodes the properties and representations of these subalgebras.

To set the stage, in section 2 we compute the commutator of the vacuum CFT total

modular Hamiltonian with CFT representations of bulk fields, both scalars and vectors.

The computation shows that the commutator acts as a bulk Lie derivative. On the extremal

surface associated with a given total modular Hamiltonian the commutator generates a

boost in the two dimensions perpendicular to the surface. As shown in appendix C this

condition enables one to reconstruct bulk massive vector operators from the CFT. In

section 2 we also study the action of the total modular Hamiltonian on gauge fields and

metric perturbations in holographic gauge. The result is that the commutator is a Lie

derivative together with a compensating gauge transformation to restore the original gauge.

In section 3 we give a general discussion of how the Lie algebra generated by total modular

Hamiltonians of different boundary regions is related to the emergence of the bulk manifold.

In particular the bulk metric must be compatible with modular flow which constrains it

up to a conformal factor. The conformal factor can be determined from knowledge of the

equation parametrizing the extremal surfaces, obtained as in [3]. In section 3.1 we illustrate

these ideas for the special case of the CFT vacuum state. Most of the computations are

gathered in appendices A through E.

2Physical in the sense of respecting an appropriate notion of bulk locality.
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2 Modular Hamiltonian as a bulk Lie derivative

In this section we look at properties of modular Hamiltonians for spherical regions in a

CFT in its vacuum state, corresponding to an empty bulk AdS geometry. We will find that

the modular Hamiltonian acts on scalar fields and fields with spin as a bulk Lie derivative

along the corresponding Killing vector, up to a compensating gauge transformation for

fields with gauge redundancy. This can be understood as a reflection of the unbroken

conformal symmetry of the vacuum state. Many of the results in this section can only be

generalized in a simple way to situations where modular flow is a local geometric operation

in the bulk and boundary, for instance as in [18]. Nevertheless the study will be illuminating

and will give some hints to the more general situation we discuss in the next section.

2.1 Scalars

Let us look at the modular Hamiltonian for a spherical region of radius R centered around

the origin in the vacuum of a CFT. It is given by [19]

1

2π
Hmod =

1

2R
(Q0 −R2P0) (2.1)

where Qa are the generators of special conformal transformations and Pa are the generators

of translations (see notation in appendix A). The action of the total modular Hamiltonian

on a scalar operator of dimension ∆ is given by

1

2iπ
[Hmod,O(t, x⃗)] =

1

2R
((t2 + x⃗2 −R2)∂t + 2tx⃗∂x⃗ + 2t∆)O(t, x⃗) (2.2)

The bulk operator is given by [7] (x⃗′ = X⃗ + iy⃗)

Φ(Z, X⃗, T ) =
1

2∆− d

∫

dt′dy⃗K∆(Z, X⃗, T |x⃗′, t′)O(t′, x⃗′)

K∆ =
Γ(∆− d

2 + 1)

πd/2Γ(∆− d+ 1)
Θ

(

Z2 + (x⃗′ − X⃗)2 − (t′ − T )2

Z

)

×

(

Z2 + (x⃗′ − X⃗)2 − (t′ − T )2

Z

)∆−d

(2.3)

where Θ(x) is the step function. A computation in appendix A gives

1

2iπ
[Hmod,Φ(Z, X⃗, T )] =

1

2R
(Z2 + X⃗2 −R2 + T 2)∂TΦ(Z, X⃗, T )

+
1

R
(TZ∂Z + TX⃗∂X⃗)Φ(Z, X⃗, T ) (2.4)

If we label the vector field (ξz, ξX⃗ , ξT ) and define

ξµR,0 =

(

1

R
TZ,

1

R
TX⃗,

1

2R
(Z2 + X⃗2 −R2 + T 2)

)

(2.5)

then
1

2iπ
[Hmod,Φ(Z, X⃗, T )] = ξµR,0∂µΦ(Z, X⃗, T ). (2.6)

– 3 –



J
H
E
P
0
5
(
2
0
1
9
)
0
1
7

On the RT surface (Z2 + X⃗2 = R2, T = 0), the vector field vanishes and one has (see

also [4])

[Hmod,Φ] = 0 (2.7)

More generally for the total modular Hamiltonian of a spherical region of radius R centered

around Yi, i = 1, · · · d, equation (2.6) still holds with

ξµR,Yi
=

(

1

R
TZ,

1

R
T (X⃗ − Y⃗ ),

1

2R
(Z2 + (X⃗ − Y⃗ )2 −R2 + T 2)

)

(2.8)

In [3] it was shown that one can use (2.7) to construct a bulk scalar operator in AdS3, by

demanding that the operator Φ obeys (2.7) for two different modular Hamiltonians based

on two different segments of the boundary. Similar calculations can be done in AdSd+1,

by demanding that Φ commutes with d different total modular Hamiltonians based on

different spherical regions of the boundary. As a byproduct of the solution one also gets a

parametrization of the RT surface [20] in these coordinates [3], namely

Z2 + (X⃗ − Y⃗ )2 = R2 and T = 0. (2.9)

Note that when solving (2.7) one only finds solutions up to a scalar function of the spacetime

coordinates.3

2.2 Massive vectors

We can now compute the action of the CFT total modular Hamiltonian on the CFT

representation of bulk vectors.

The total modular Hamiltonian for a spherical region centered around the origin is

given by (2.1). The CFT representation of bulk massive vectors starts with a non-conserved

primary current jµ of dimension ∆. We label jz =
1

d−1−∆(−∂0j0+ ∂iji). The bulk massive

vector fields are then given by [21]

ZVµ =

∫

K∆ jµ +
Z

2(∆− d
2 + 1)

∂µ

∫

K∆+1 jz

Vz =

∫

K∆ jz (2.10)

where K∆ is given in (2.3). Computing the action of the total modular Hamiltonian on

this expression we get (see appendix B)

1

2iπ
[Hmod, V0(Z, x⃗, T )] = ξµR,0∂µV0 +

Z

R
Vz +

X⃗ · V⃗

R
+

T

R
V0

1

2iπ
[Hmod, Vi] = ξµR,0∂µVi +

Xi

R
V0 +

T

R
Vi (2.11)

1

2iπ
[Hmod, VZ ] = ξµR,0∂µVZ +

Z

R
V0 +

T

R
Vz

3If we could demand that a result of the form (2.6) be satisfied throughout the spacetime for every total

modular Hamiltonian, then we could have fixed the overall spacetime coefficient and by that also fix the

ξµ’s. This works for the vacuum state of the CFT but not in general.

– 4 –
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This can be written as

1

2iπ
[Hmod, Vν(Z, X⃗, T )] = ξµR,0∂µVν + Vµ∂νξ

µ
R,0 ≡ (LξV )ν . (2.12)

Thus the action of the total modular Hamiltonian is just a bulk Lie derivative. On the RT

surface where the vector field ξµR,0 vanishes and T = 0, we can write this as

1

2iπ
[Hmod, V⊥ ± V0] = ±(V⊥ ± V0), [Hmod, V||] = 0 (2.13)

where V⊥, V|| are the components perpendicular and parallel to the corresponding RT sur-

face. Thus we see that, as expected, the CFT total modular Hamiltonian acts on bulk

fields on the RT surface (represented as CFT operators) as a boost in the two dimensions

perpendicular to the RT surface. Equation (2.13) can be used to obtain the CFT repre-

sentation of a bulk massive vector field in a manner similar to the scalar case [3]. This is

done in appendix C.

2.3 Gauge fields

As we saw, the action of the vacuum CFT total modular Hamiltonian on vector fields

is given by (2.11). Acting on gauge fields in the bulk in the gauge AZ = 0, one has to

combine the boost with a compensating gauge transformation to restore AZ = 0 gauge.

The combined action should then be

1

2iπ
[Hmod, A0(Z, X⃗, T )] = ξµR,0∂µA0 +

T

R
A0 +

X⃗ · A⃗

R
− ∂0λ (2.14)

1

2iπ
[Hmod, Ai(Z, X⃗, T ] = ξµR,0∂µAi +

T

R
Ai +

Xi

R
A0 − ∂iλ

where

∂zλ =
Z

R
A0 , (2.15)

or in condensed notation (a = 0, · · · , d− 1)

1

2iπ
[Hmod, Aa(Z, X⃗, T )] = (LξA)a|Az=0 − ∂aλ . (2.16)

One might get worried: the CFT total modular Hamiltonian does not know which gauge

we are in or even that there is a bulk gauge freedom, so how could it possibly reproduce

this? The point is that in the CFT it is the CFT representation of a bulk gauge field which

depends on the gauge choice while the CFT total modular Hamiltonian is fixed.

For example the representation of a bulk gauge field in AdSd+1 in AZ = 0 gauge is [21],

with x⃗′ = X⃗ + iy⃗

ZA0(Z, X⃗, T ) =
1

vol(Sd−1)

∫

dt′dy⃗ δ

(

Z2 + (x⃗′ − X⃗)2 − (t′ − T )2

2Z

)

j0(t
′, x⃗′)

ZAi(Z, X⃗, T ) =
1

vol(Sd−1)

∫

dt′dy⃗ δ

(

Z2 + (x⃗′ − X⃗)2 − (t′ − T )2

2Z

)

ji(t
′, x⃗′) (2.17)

– 5 –
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We compute in appendix D [Hmod, Aa(Z, X⃗, T )] and find as expected

1

2iπ
[Hmod, Aa(Z, X⃗, T )] = (LξA)a|Az=0 − ∂aλ (2.18)

So also in this case the CFT total modular Hamiltonian reproduces the correct result. Note

that on the RT surface this is just a boost perpendicular to the RT surface followed by a

compensating gauge transformation to restore the original AZ = 0 gauge.

2.4 Gravity

The expression for a bulk metric perturbation in holographic gauge hZZ = hZa = 0 (where

a, b range over 0, 1, · · · , d− 1) is [21]

Z2hab =
dΓ(d/2)

2πd/2

∫

dt′dy⃗′Θ

(

Z2 + (x⃗′ − X⃗)2 − (t′ − T )2

2Z

)

Tab(t
′, x⃗′) (2.19)

One can compute the action of the CFT total modular Hamiltonian on bulk gravitons to

be (see appendix E)

1

2iπ
[Hmod, hij(Z, X⃗)] = ξµR,0∂µhij +

2T

R
hij +

Xi

R
h0j +

Xj

R
hi0 −

1

2RZ2
(∂iϵj + ∂jϵi)

1

2iπ
[Hmod, h0i(Z, X⃗)] = ξµR,0∂µh0i +

2T

R
h0i +

Xj

R
hji +

Xi

R
h00 −

1

2RZ2
(∂iϵ0 + ∂0ϵi)

1

2iπ
[Hmod, h00(Z, X⃗)] = ξµR,0∂µh00 +

2T

R
h00 + 2

Xj

R
hj0 +

Xi

R
h00 −

2

2RZ2
∂0ϵ0 (2.20)

where

ϵa =
dΓ(d/2)

2πd/2

∫

dt′dy⃗′Θ

(

Z2 + (x⃗′ − X⃗)2 − (t′ − T )2

2Z

)

× (Z2 + (x⃗′ − x⃗)2 − (t′ − T )2)T0a(t
′, x⃗′) (2.21)

parametrizes a diffeomorphism which satisfies

1

Z2
∂Zϵa = 2Zh0a (2.22)

and thus restores holographic gauge after the boost. In condensed notation (ξµ = ξµR,0)

1

2iπ
[Hmod, hab(Z, X⃗)] = (ξµ∂µhab + ∂aξ

µhµb + ∂bξ
µhaµ)|hZZ=hZc=0 −

1

2RZ2
(∂aϵb + ∂bϵa)

(2.23)

The first term on the right is a Lie derivative evaluated in holographic gauge,

(Lξhab)|hZZ=hZc=0, while the second term is a diffeomorphism restoring holographic gauge.

On the RT surface (ξµR,0 = 0, T = 0) we again get the expected result of a boost perpen-

dicular to the RT surface plus a compensating diffeomorphism.

– 6 –
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3 Emergence of the bulk spacetime

In this section we describe how the bulk spacetime (dual to some state |Ψ⟩ in the CFT)

arises from considerations involving CFT total modular Hamiltonians. We do this by

considering the Lie algebra generated by the total modular Hamiltonians of the CFT state

for different regions and their representations.

Take the set of total modular Hamiltonians (appropriate for the state |Ψ⟩) associated

with spherical regions in the CFT (this is not crucial, one can pick any other fixed shape).

We label these total modular Hamiltonians by d + 1 parameters, say the centers of the

spheres Yi, i = 0, . . . , d − 1 (including time) and their spatial radii R. We start with this

set and generate by repeated use of commutators4 and linear combinations a Lie algebra AΨ

(probably infinite-dimensional in the general case). All members of the algebra annihilate

the state, AΨ|Ψ⟩ = 0. We then look for what we call weakly-maximal Lie subalgebras GΨ
P

of AΨ. Weakly-maximal means that GΨ
P is a proper subalgebra that contains the largest

possible number of total modular Hamiltonians associated with spherical CFT subregions.

The label P parametrizes these Lie subalgebras if they exist. From now on we drop the

label Ψ for convenience.

One way to define subalgebras is to look for the objects (CFT operators) which they

leave invariant. Thus given a modular Hamiltonian Hmod(Yi, R) we look for operators in

the CFT which are solutions to the equation5

[Hmod(Yi, R),Φ] = 0 . (3.1)

Note that in a holographic theory bulk operators that live on the extremal bulk sur-

face will obey this condition [3, 4]. It is possible for Φ to commute with more than one

modular Hamiltonian. From the bulk perspective this happens if the extremal surfaces

intersect. Given such a Φ we define HΦ as the set of total modular Hamiltonians that leave

Φ invariant.6

Now let’s count parameters. It’s simplest to work on a fixed-time slice of AdSd+1 /

CFTd. Modular Hamiltonians for spherical regions are then labeled by d parameters, the

centers of the spheres and their radii, and RT surfaces have codimension 1. Requiring that

a given bulk point lies on an extremal surface is therefore one condition on d parameters,

so we expect a (d − 1)-parameter family of modular Hamiltonians that leave the point

invariant. We are interested in weakly-maximal subalgebras so this is the case we will

consider: we expect an operator Φ associated with a bulk point to be invariant under a

(d− 1)-parameter family of total modular Hamiltonians.7 Moreover since RT surfaces are

4Generally the commutator of two total modular Hamiltonians is not the total modular Hamiltonian of

any region.
5One could relax this condition and only require that the commutator vanish inside a code subspace. In

the analysis that follows it does not seem that anything is gained by this generalization.
6As shown in [22] Φ may not be a completely kosher operator. But |Φ⟩ ≡ Φ|Ψ⟩ is a well-defined state,

so strictly speaking we should define HΦ as the set of modular Hamiltonians that annihilate |Φ⟩. For

notational convenience we will overlook this subtlety.
7CFT operators associated not with points but with higher-dimension regions of the bulk could be

invariant under smaller families of modular Hamiltonians.
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codimension 1 it generically takes d modular Hamiltonians to specify a bulk point. This

seems like d2 parameters, but d(d− 1) of these parameters are redundant and correspond

to the same bulk point. So not surprisingly we find a d-parameter family of bulk points on

a spatial slice.

The operator Φ is associated with a bulk point. But many other operators are associ-

ated with the same point, since for example we can build a bulk scalar from any spinless

primary operator in the CFT. All these operators will be invariant under the same HΦ,

so what is uniquely associated with a bulk point is HΦ. Thus we can regard the bulk

spacetime as the space of HΦ. Restoring time, we expect the space of HΦ to have d + 1

parameters. Let’s call these parameters (X⃗, Z, T ). These parameters define a coordinate

system for the bulk spacetime. We will use these parameters both to label the sets HX⃗,Z,T

and to label operators Φ(X⃗, Z, T ) that are invariant under HX⃗,Z,T .

At this stage each point of the bulk manifold is associated with a set HX⃗,Z,T . The

condition (3.1) guaranties that taking commutators and linear combinations will turn this

set into a Lie subalgebra GX⃗,Z,T that leaves Φ(X⃗, Z, T ) invariant,

[GX⃗,Z,T ,Φ(X⃗, Z, T )] = 0. (3.2)

We conjecture that these subalgebras are weakly maximal and that all weakly-maximal

subalgebras are produced in this way.8 The smoothness of the bulk manifold is inher-

ited from the smoothness of the space of total modular Hamiltonians with respect to its

parameters (Yi, R). Bulk coordinate transformations are just a re-labeling of the weakly-

maximal subalgebras.

A note of caution. All these considerations are appropriate for theories with a holo-

graphic dual. Theories where the above structure and properties of the total modular

Hamiltonians are not present do not have a holographic dual. Even theories which do have

the above properties are not guaranteed to have a useful dual since it is not guaranteed

that there is a macroscopic bulk with a well-defined low-energy theory. We would also

like to stress that operators Φ(X⃗, Z, T ) which satisfy (3.1) are not CFT representations of

physical bulk scalar fields: scalar fields interacting with gravity (or gauge fields) do not

commute with the modular Hamiltonian, rather they only commute with it to leading order

in 1/N .9 So we are not trying to construct physical bulk fields. Instead we are only using

solutions of (3.1) to parametrize the bulk spacetime.

In a holographic theory the bulk metric represents in some way the CFT state |Ψ⟩.

The pure state |Ψ⟩ is annihilated by the total modular Hamiltonian of any subregion (that

is, |Ψ⟩ is invariant under modular flow). Some expression of this invariance should apply

to the metric. But in general modular flow is not geometric so what should we expect? To

see what happens we look at the representations of the weakly-maximal Lie subalgebras

GX⃗,Z,T on the CFT Hilbert space. On the extremal surface the action of the total modular

8Our results do not rely on this conjecture, since in practice it is the property of leaving Φ invariant,

not the maximality, which will be important in what follows.
9It is however possible that the action of the modular Hamiltonian on physical bulk fields can be

kinematically constrained (as in [12]) and used as a guiding principle for arranging a perturbative expansion

for bulk fields.
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Hamiltonian on CFT representations of bulk fields is expected to be a boost in the two

dimensions normal to the surface. We saw an example of this in section 2.2, where for a

bulk vector field and the CFT vacuum we found operators (V±, V||) in the CFT such that

on the extremal surface

1

2iπ
[Hmod, V±] = ±V±, [Hmod, V||] = 0 (3.3)

More generally we expect

[Hmod, Vµ(X⃗, Z, T )]|extremal surface = Λµ
νVν(X⃗, Z, T )|extremal surface (3.4)

where Λµ
ν(X⃗, Z, T ) is a matrix representation of a Lorentz boost generator. One could

work out the explicit representation of these boost generators by constructing a bulk scalar

Φ(X⃗, Z, T ) and evaluating [Hmod, ∂µΦ], as explained in the paragraph below (3.8). In

carrying out this construction note that, having chosen parameters X⃗, Z, T on the space

of weakly-maximal subalgebras, we are now using these parameters to define a coordinate

basis for the tangent space.

While modular Hamiltonians are mapped to boosts, when acting on CFT representa-

tions of bulk fields with spin their commutators are mapped to rotations. Thus there is a

map (usually many to one) from GX⃗,Z,T to the Lorentz algebra. This structure gives rise to

a “local” Lorentz algebra at each bulk spacetime point. This is of course not the usual local

symmetry of the tetrad formalism: each element of GX⃗,Z,T induces a rigid transformation

(generically non-geometric) throughout the spacetime and is not a gauge symmetry. But

it still reduces to the Lorentz algebra at the associated bulk point.10

Hence the action of the modular Hamiltonian on fields with spin on the extremal

surface is geometric as in (3.4). One can expect that the metric at each point will be

invariant in the sense that

Λµ
α(X⃗, Z, T )gαν(X⃗, Z, T ) + Λν

α(X⃗, Z, T )gµα(X⃗, Z, T ) = 0 (3.5)

where Λµ
α(X⃗, Z, T ) are Lorentz generators corresponding to an element of GX⃗,Z,T . This

equation fixes the metric at each point up to a conformal factor. This can be understood as

follows. Given a codimension-2 spacelike surface we can parametrize spacetime by Gaussian

normal coordinates (qi, x±). The surface is at x± = 0 and the qi parametrize the surface.

The metric near the surface has the form

ds2 = dx+dx− + γijdq
idqj +O(x±). (3.6)

Thus the metric on the surface is invariant under a boost in the x± directions. Given

a point it has many surfaces going through it and the matrix Λµ
ν in (3.5) encodes the

relationship between the different boosts at the same spacetime point, i.e. the relationship

10One may think of the modular Hamiltonians as acting on Lorentz indices of bulk fields in a fixed choice

for the non-coordinate (tetrad) basis. This also provides a way to define fermions on curved space, and one

would expect the CFT total modular Hamiltonian to act on the Lorentz indices of the CFT representation

of bulk fermions.
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between the normal and parallel directions of the different surfaces. Thus one has the

angles between the different normal and parallel vectors which fixes the metric up to a

conformal factor.

Another avenue to define a metric is to look for a natural metric on the set of Lie

subalgebras {GX⃗,Z,T }. Since to each member in this set there is an associated CFT state

|Φ(X⃗, Z, T )⟩, we can use the overlap of theses states as a measure of the distance between

the Lie subalgebras. If the overlap was not divergent we could have tried to use the

Fubini-Study metric as in [23], and this is still possible if one finds a natural regularization.

Instead as in [24] we use the singular limit as a measure for the metric, which is aided

by a natural identification of the overlap (in the leading 1/N expansion) with the CFT

two-point function of local bulk scalars. Then as (X⃗, Z, T ) → (X⃗ ′, Z ′, T ′) the overlap will

behave as

⟨Φ(X⃗, Z, T )|Φ(X⃗ ′, Z ′, T ′)⟩ →
a

σd−1
(3.7)

where σ2 = gµν(x− x′)µ(x− x′)ν and a is some constant. However since solutions to (3.1)

are determined only up to an overall position-dependent coefficient, the metric cannot be

uniquely extracted from the singularity structure. Only the metric up to a conformal factor

can be extracted from the expected singularity.11 As we show now these two notions of

the metric, under some reasonable assumptions, are compatible.

The modular Hamiltonian acting on a bulk scalar field is expected to induce a non-

local transformation on the scalar field. However it seems natural (and can be seen in some

simple cases) that near the extremal surface it still obeys12

[Hmod,Φ(X⃗, Z, T )] = ξµ∂µΦ(X⃗, Z, T ) + less singular (3.8)

where “less singular” means that the Lie derivative part is the leading contribution near

the extremal surface when evaluated inside a two-point function with another scalar on

the extremal surface. In addition we expect that the Lorentz boost matrix associated with

the total modular Hamiltonian is given by Λµ
ν = ∂µξν |extremal surface. Using (3.8) in a two-

point function with a scalar field Φ(X ′
i, Z

′, T ′) that sits exactly on the extremal surface

one gets

0 = ⟨Ψ|Φ(Xi, Z, T )[Hmod,Φ(X
′
i, Z

′, T ′)]|Ψ⟩

= ⟨Ψ|[Φ(Xi, Z, T ), Hmod]Φ(X
′
i, Z

′, T ′)|Ψ⟩

= −ξν∂ν⟨Ψ|Φ(Xi, Z, T )Φ(X
′
i, Z

′, T ′)|Ψ⟩+ less singular (3.9)

Labeling the difference of bulk coordinates as (x− x′)µ and using

ξν = Λν
µ(x− x′)µ +O((x− x′)2) (3.10)

and also (3.7) we get

Λµ
νgνβ(x− x′)β(x− x′)µ = 0 (3.11)

11The conformal factor can be deduced by introducing additional assumptions. See [24].
12Similar considerations were used in [4, 25], see also [26].
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where gαβ and Λµ
ν are evaluated at the point on the extremal surface (X ′

i, Z
′, T ′). Since

this is true for any (x− x′)α one gets on the extremal surface,

Λµ
αgαν + Λν

αgµα = (Lξgµν)|extremal surface = 0 (3.12)

which is just (3.5).

We saw that the metric, up to a conformal factor, can be extracted from the structure

and representations of the weakly-maximal subalgebras. To get the conformal factor we

can proceed as follows. There are special bulk surfaces associated with each total modular

Hamiltonian. These are codimension-2 surfaces with the property that they are made

from a (d− 1)-dimensional continuous family of points (X⃗, Z, T ), such that the given total

modular Hamiltonian Hmod is a member of all the weakly-maximal subalgebras GX⃗,Z,T

appearing in that family. These surfaces are identified with the bulk extremal surfaces that

intersect the AdS boundary on the boundary of the region associated with the given Hmod.

To fix the conformal factor we require that the extremal surfaces deduced using the

modular Hamiltonians have vanishing mean curvature (that is, the trace of their extrinsic

curvature is zero). Since each surface has codimension 2 it has two independent normal

vectors and thus has two mean curvatures h(1), h(2). We can choose the normal vectors

nα
(i) to be orthogonal to each other. Under a conformal transformation g̃µν = e2fgµν the

mean curvature of the surface transforms to

h̃(i) = e−f
(

h(i) + (d− 1)nα
(i)∂αf

)

(3.13)

where n(i)
α are the unit normal vectors to the surface in the original metric and (d − 1)

is the dimension of the surface. This determines the normal derivatives of the conformal

factor for each extremal surface passing through the bulk point, which should be enough

to fix the conformal factor uniquely.13

3.1 Special case: CFT vacuum

In this section we show how the reconstruction procedure of section 3 works for the vacuum

state of the CFT. Beginning from the CFT vacuum we derive the algebra of modular

Hamiltonians of different spherical regions and obtain the corresponding bulk metric. For

simplicity we work in AdS3 but identical conclusions hold in higher dimensions.

For the vacuum state of a two-dimensional CFT the total modular Hamiltonian for

a segment (y1, y2) of the boundary at time T = 0 is (see appendix A for conventions for

conformal generators)

1

2π
H1,2

mod =
1

y2 − y1
(Q0 + y1y2P0 + (y1 + y2)M01). (3.14)

We can identify modular Hamiltonians whose extremal surfaces intersect by looking for

solutions to the equations

[H1,2
mod,Φ] = [H3,4

mod,Φ] = 0 (3.15)

13There may not be a solution to these equations in which case there is no bulk spacetime.
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This was done in [3] by explicitly constructing the operator Φ, with the result that the

two extremal surfaces intersect at a bulk point (Z0, X0, T = 0) implicitly determined by

the conditions14

Z2
0 = (y2 −X0)(X0 − y1) = (y4 −X0)(X0 − y3) (3.16)

We can think about this result in two ways. If we imagine holding Z0 and X0 fixed, we see

that (3.14) defines a one-parameter family of intersecting modular Hamiltonians provided

the parameters y1 and y2 are related by Z2
0 = (y2 − X0)(X0 − y1). On the other hand

we can hold y1 and y2 fixed. Then we can read off the RT surface associated with H1,2
mod,

namely the bulk semicircle Z2 = (y2 −X)(X − y1).

The commutator of two total modular Hamiltonians is

1

4π2
[H1,2

mod, H
3,4
mod] = −iα

(

Q1 + 2X0D + (Z2
0 +X2

0 )P1
)

≡ 2iαZ0J (3.17)

where X0 and Z0 are determined by (3.16) and

α =
y3 + y4 − (y1 + y2)

(y2 − y1)(y4 − y3)
(3.18)

Note that in AdS3 any two modular Hamiltonians whose RT surfaces intersect at the same

point have the same commutator up to an overall coefficient. Given that there is only

one rotation generator in 2 + 1 dimensions, this is consistent with the expectation that

modular Hamiltonians generate boosts about the RT surface with a commutator that is

proportional to a rotation J about the intersection point.15

To put the algebra in a standard form we allow y1 and y2 to be arbitrary and de-

fine K1 = 1
2πH

1,2
mod. With (Z0, X0) corresponding to some point on the extremal surface

associated with H1,2
mod we define K2 =

1
2πH

3,4
mod with

y3 =
1

2X0 − (y1 + y2)
(2(Z2

0 +X2
0 )−X0(y1 + y2)− Z0(y2 − y1))

y4 =
1

2X0 − (y1 + y2)
(2(Z2

0 +X2
0 )−X0(y1 + y2) + Z0(y2 − y1))

Using J from (3.17) with parameters (Z0, X0) one finds

[K1, J ] = iK2, [K2, J ] = −iK1, [K1,K2] = iJ (3.19)

Thus starting from modular Hamiltonians whose RT surfaces intersect at a point, we

obtain through commutators and linear combinations all generators of the Lie algebra

so(2, 1). This Lie algebra can be exponentiated to SO(2, 1), which becomes in this case the

stabilizer group that leaves the intersection point invariant. As shown in section 2, at each

point of the RT surface the CFT operators that correspond to bulk scalar and bulk vector

fields form a representation of the associated Lorentz algebra.

14If the RT surfaces do not intersect then Z0 becomes imaginary.
15This expectation can be explicitly verified by computing [J, Vµ] which shows that J acts as a rotation

in the (Z,X) plane.
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If we started with all possible total modular Hamiltonians based on single segments

(i.e. whose RT surfaces do not necessarily intersect at a common point) then it is easy to

see that we would get a Lie algebra spanned by six independent generators P0, P1, Q0,

Q1, D, M01. These generate the Lie algebra so(2, 2), and by exponentiating we get the

group SO(2, 2) which in this case can be identified with the isometry group of AdS3. Thus

so(2, 1) is a weakly-maximal Lie subalgebra of so(2, 2). As discussed in general in section

3, each bulk point is associated with such a weakly-maximal Lie subalgebra.

In the special case of the vacuum state of the CFT, the weakly-maximal Lie subalgebras

associated with different bulk points are isomorphic: they are related by conjugating by an

element of SO(2, 2). This can be traced to the fact that in empty AdS, given any Φ(Z,X, T )

and Φ(Z ′, X ′, T ′) which are invariant in the sense of (3.15), there is an element g of SO(2, 2)

such that gΦ(Z,X, T )g−1 = Φ(Z ′, X ′, T ′). The space of weakly-maximal Lie subalgebras

is therefore the coset space SO(2, 2)/SO(2, 1), which of course is a copy of AdS3. That is,

bulk points in AdS3 label the different possible embeddings of so(2, 1) into so(2, 2). This

quotient construction is special to the vacuum state of the CFT, as in general the union

of all weakly-maximal subalgebras does not cover the Lie algebra generated by all total

modular Hamiltonians.

As discussed in section 3, in general one expects that the bulk metric will be invariant

under transformations generated by modular Hamiltonians. We saw that the total modular

Hamiltonians for the vacuum of the CFT act on bulk fields as Lie derivatives everywhere

in the bulk. It is thus reasonable to expect that the bulk metric will obey16

Lξgµν = ξα∂αgµν + ∂µξ
αgαν + ∂νξ

αgµα = 0. (3.20)

This is indeed satisfied by the empty AdS metric for any of the vector fields (2.8) asso-

ciated with a vacuum modular Hamiltonian as in (2.6) and (2.12). In fact requiring the

invariance (3.20) under the vector fields (2.8) fixes the bulk metric to be that of empty AdS.

Alternatively one could use the generally-applicable condition (3.5), namely that on

the extremal surface the metric should obey at each point

Λµ
α(X⃗, Z, T )gαν(X⃗, Z, T ) + Λν

α(X⃗, Z, T )gµα(X⃗, Z, T ) = 0 (3.21)

where Λµ
ν = ∂µξν |RT surface. The solution to this equation with ξµ given by (2.8) is

gµν = Ω(Z,X, T )ηµν . (3.22)

From solving the intersecting modular Hamiltonian equations we know that the equation

for the extremal surface is Z2 = (y2 −X)(X − y1) [3]. In the flat metric this surface has

mean extrinsic curvature in the normal spatial direction h(1) = 1/R where R is the radius

of the circle and mean extrinsic curvature h(2) = 0 in the normal time direction. In the

correct metric it should have zero mean curvature in all directions. To achieve this we

use (3.13) which fixes the conformal factor to be that of AdS,

Ω(Z,X, T ) =
l2

Z2

16This is a much stronger statement than was possible in the non-vacuum case, where the similar equa-

tion (3.12) only held on the extremal surface.
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where l is an undetermined constant. The same computations can be done in the vacuum

state of a higher-dimensional CFT and lead to the same result.

4 Conclusions

To summarize, in this paper we have proposed an algebraic approach to bulk reconstruction.

We considered the algebra generated by all modular Hamiltonians in the CFT and argued

that the bulk spacetime emerges as the parameter space of weakly-maximal subalgebras.

For the CFT vacuum this reproduces the standard quotient-space construction of empty

AdS as a maximally-symmetric spacetime. Away from the vacuum it suggests a geometric

notion of bulk modular flow, as a type of non-local symmetry associated with non-vacuum

states. But close to an extremal surface modular flow becomes a local geometric operation

— a boost in the perpendicular directions — and this allowed us to recover the bulk metric

from the CFT.

There are many ways in which the construction presented here could fail. In particular

there’s no guarantee that the requisite weakly-maximal subalgebras exist or that they can

be assembled to form a smooth (d+ 1)-dimensional manifold. Such a breakdown is in fact

expected whenever the CFT state does not have bulk dual. Even if the algebraic construc-

tion goes through there are still things to check: that the bulk theory is approximately

local, and that quantum fluctuations are not too large. The 1/N expansion is crucial for

these properties but may not be sufficient. It would be very interesting to delineate the

necessary and sufficient conditions in more detail.
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A Scalar fields

The modular Hamiltonian for a spherical region of radius R centered around the origin in

the vacuum of a CFT is given by

1

2π
Hmod =

1

2R
(Q0 −R2P0) (A.1)

– 14 –



J
H
E
P
0
5
(
2
0
1
9
)
0
1
7

We use the convention [27]

Paφ(x) = i∂aφ(x)

Mabφ(x) = (i(xa∂b − xb∂a) + Σab)φ(x)

Dφ(x) = i(∆+ xa∂a)φ(x)

Qaφ(x) =
(

i(x2∂a − 2xax
b∂b − 2∆xa)− 2xbΣab

)

φ(x). (A.2)

Σab are spin matrices that depend on the spin of the primary field φ(x) and ∆ is the

conformal dimension of φ(x). The action of the modular Hamiltonian on a scalar operator

of dimension ∆ is given by

1

2iπ
[Hmod,O(t, x⃗)] =

1

2R
((t2 + x⃗2 −R2)∂t + 2tx⃗∂x⃗ + 2t∆)O(t, x⃗) (A.3)

We now compute the commutator of the total CFT modular Hamiltonian on the CFT

representation of a bulk scalar operator. A bulk scalar operator is given by

φ(Z, X⃗, T = 0) = c∆

∫

dt′dy⃗Θ

(

Z2 + (x⃗′ − x⃗)2 − (t′)2

Z

)

×

(

Z2 + (x⃗′ − x⃗)2 − (T − t′)2

Z

)∆−d

O(t′, x⃗′) (A.4)

where c∆ = Γ(∆−d/2)
2πd/2Γ(∆−d+1)

and x⃗′ = X⃗+iy⃗. Commuting with the total modular Hamiltonian

and integrating by parts one gets (for ∆ > d)

1

2iπ
[Hmod,φ(Z, x⃗, T )] = c∆

∆− d

R

∫

dt′dy⃗Θ(σ)(σ)∆−d−1O(t′, x⃗′)I1

σ =
Z2 + (x⃗′ − x⃗)2 − (T − t′)2

Z

I1 =
1

Z

(

(t′−T )(Z2+x⃗2−R2+T 2) + T (Z2+X⃗2−x⃗′
2
+(T−t′)2)

)

This can be seen to correspond to

1

2iπ
[Hmod,φ(Z, x⃗, T )] =

1

2R
(Z2 + x⃗2 −R2 + T 2)∂Tφ(Z, X⃗, T )

+
T

R
(Z∂Z + X⃗∂X⃗)φ(Z, X⃗, T ) (A.5)

A.1 ∆ = d case

In this case one can not ignore the δ(σ) one gets after integration by parts. So after

integration by parts we have

1

2iπ
[Hmod,φ(Z, X⃗, T )]

= cd

∫

dt′dy⃗ δ(σ)
2

Z

(

(t′ − T )(t′2 + x⃗′
2
−R2 + 2x⃗′(X⃗ − x⃗′)) + 2T x⃗′(X⃗ − x⃗′)

)
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Because of the δ(σ) we can just add inside the brackets (Z2+(x⃗′− x⃗)2−(T −t′)2) to obtain

1

2iπ
[Hmod,φ(Z, x⃗, T )] = cd

1

R

∫

dt′dy⃗ δ(σ)O(t′, x⃗′)I1

I1 =
1

Z

(

(t′ − T )(Z2 + x⃗2 −R2 + T 2) + T (Z2 + X⃗2 − x⃗′
2
+ (T − t′)2)

)

which once again gives (A.5).

A.2 ∆ = d − 1 case

In this case

φ(Z, x⃗, T = 0) = c̃d−1

∫

dt′dy⃗ δ

(

Z2 + (x⃗′ − x⃗)2 − (t′)2

Z

)

O(t′, x⃗′)

where c̃d−1 =
Γ(d/2)

(d−2)πd/2 . Computing the action of the modular Hamiltonian, after integrat-

ing by parts and using δ(σ) = −σδ′(σ) we get

1

2iπ
[Hmod,φ(Z, x⃗, T )] =

c̃d−1

ZR

∫

dt′dy⃗ δ(σ)O(t′, x⃗′)

×
(

(t′−T )(Z2+x⃗2−R2+T 2)+T (Z2+X⃗2−x⃗′
2
+(T−t′)2)

)

(A.6)

which again can be seen to be (A.5).

B Massive vector fields

The action of the total modular Hamiltonian (2.1) on a primary CFT current of dimension

∆ is given by

1

2iπ
[Hmod, j0(t, x⃗)] =

1

2R

(

((t2 + x⃗2 −R2)∂t + 2tx⃗ · ∂x⃗ + 2t∆)j0 + 2x⃗ · j⃗
)

1

2iπ
[Hmod, ji(t, x⃗)] =

1

2R

(

((t2 + x⃗2 −R2)∂t + 2tx⃗ · ∂x⃗ + 2t∆)ji + 2xij0
)

(B.1)

Defining jz =
1

d−∆−1∂
µjµ one gets

1

2iπ
[Hmod, jz(t, x⃗)] =

1

2R

(

((t2 + x⃗2 −R2)∂t + 2tx⃗ · ∂x⃗ + 2t(∆+ 1))jz + 2j0
)

(B.2)

Note that the commutator of the total modular Hamiltonian looks like the one for the

scalar case plus another term.

Bulk vector fields are represented in terms of CFT operators as [21]

ZVµ =

∫

K∆ jµ +
Z

2(∆− d
2 + 1)

∂µ

∫

K∆+1 jz

Vz =

∫

K∆ jz

K∆ =
Γ(∆− d

2 + 1)

πd/2Γ(∆− d+ 1)
Θ

(

Z2 + (x⃗′ − X⃗)2 − (t′ − T )2

Z

)

×

(

Z2 + (x⃗′ − X⃗)2 − (t′ − T )2

Z

)∆−d

– 16 –



J
H
E
P
0
5
(
2
0
1
9
)
0
1
7

Note that K∆ are the smearing functions used for primary scalars. We start with the

simple case of [Hmod, VZ ]. From (B.2) we see that the commutator looks like that for a

scalar operator of dimension ∆ plus two terms, one proportional to jz and one to j0.

1

2iπ
[Hmod, VZ(Z, X⃗, T )] = (scalar result) +

1

2R

(

2

∫

K∆j0 + 2

∫

K∆t
′jz

)

(B.3)

where

(scalar result) = ξµR,0∂µVZ . (B.4)

Noting that
Z

2(∆− d/2 + 1)
∂T

∫

K∆+1jz =

∫

K∆(t
′ − T )jz (B.5)

we find that
1

2iπ
[Hmod, VZ(Z, X⃗, T )] = ξµR,0∂µVZ +

Z

R
V0 +

T

R
VZ . (B.6)

Now [Hmod, Vi] involves two terms. Each term has a contribution from the scalar-like

transformation plus another part,

1

2πi
[Hmod,

1

Z

∫

K∆ji] =
1

Z
ξµR,0∂µ

∫

K∆ji +
Xi

RZ

∫

K∆j0 +
1

RZ

∫

K∆(x
′ −X)j0 (B.7)

and (with α = 1
2(∆− d

2
+1)

)

1

2πi
[Hmod,α∂i

∫

K∆+1jz] = α∂i

(

ξµR,0∂µ

∫

K∆+1jz

)

+
α

2R
∂i

∫

K∆+1j0 (B.8)

The last term the above expressions cancel each other. Using this and the known expression

for ξµR,0 one finds

1

2iπ
[Hmod, Vi(Z, X⃗, T )] = ξµR,0∂µVi +

T

R
Vi +

Xi

R
V0 (B.9)

A similar but slightly longer computation also gives

1

2iπ
[Hmod, V0(Z, X⃗, T )] = ξµR,0∂µV0 +

T

R
V0 +

X⃗

R
V⃗ +

Z

R
VZ (B.10)

If the center of the sphere is at position Yi, then in (B.9) and (B.10) one just shifts

Xi → Xi − Yi and ξµR,0 → ξµR,Yi
.

C Reconstructing massive vectors in AdS3

Our goal here is to use intersecting modular Hamiltonians to represent a massive bulk

vector field in terms of the CFT.

We label the vector field perpendicular to the RT surface in the spatial direction as

V⊥, the vector field parallel to the RT surface as V||, and the time component of the vector

field as V0. Then the total modular Hamiltonian acts as

1

2iπ
[Hmod, V0] = V⊥,

1

2iπ
[Hmod, V⊥] = V0, [Hmod, V||] = 0 (C.1)
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which is of course

1

2iπ
[Hmod, V⊥ ± V0] = ±(V⊥ ± V0), [Hmod, V||] = 0. (C.2)

However what is perpendicular or parallel to a given RT surface at a given point

depends on the RT surface. In AdS3 an RT surface and the modular Hamiltonian associated

with it can be labeled by its two end points (y1, y2). Thus the above equation is more

correctly written as

1

2iπ
[H(12)

mod, (V⊥ ± V0)
(12)] = ±(V⊥ ± V0)

(12), [H(12)
mod, V

(12)
|| ] = 0 (C.3)

Imagine we have another RT surface labeled by (y3, y4) which crosses the RT surface labeled

by (y1, y2). At the intersection point the parallel and perpendicular vectors to the two RT

surfaces are at some angle α to each other. This angle depends only on the conformal metric

so can be easily computed from the results of the intersecting modular Hamiltonians for

scalar operators. So we can write

V (12)
⊥ = cosαV (34)

⊥ + sinαV (34)
|| , V (12)

0 = V (34)
0 , V (12)

|| = cosαV (34)
⊥ − sinαV (34)

|| (C.4)

From this we see that

−1

4π2
[H(12)

mod, [H
(34)
mod, V

(12)
⊥ ]] = cosαV (12)

⊥ ,
−1

4π2
[H(12)

mod, [H
(34)
mod, V

(12)
0 ]] = cosαV (12)

0 (C.5)

So we can write the following equations,

1

2iπ
[H(12)

mod, (V⊥ ± V0)
(12)] = ±(V⊥ ± V0)

(12)

−1

4π2
[H(12)

mod, [H
(34)
mod, (V⊥ ± V0)

(12)]] = cosα(V⊥ ± V0)
(12) (C.6)

which are decoupled equations sufficient to determine (V⊥±V0)(12) at the intersection of the

two RT surfaces. However these equations determine (V⊥ ± V0)(12) only up to a coefficient

which can depend on the bulk spacetime coordinates and can be chosen differently for

(V⊥ + V0)(12) and (V⊥ − V0)(12). To recover the correct V (12)
0 and V (12)

⊥ (up to the same

overall coefficient) we need another condition. We will use the fact that V0 (but not

V⊥) satisfies

−
1

4π2
[H(34)

mod, [H
(34)
mod, V

(12)
0 ]] = V (12)

0 (C.7)

Thus requiring that some linear combination of the solution to (C.6) corresponding to V0

obeys this, means that we can get the correct V0 and V (12)
⊥ , up to an overall coefficient

which is the same for both. Then to get V (12)
|| we use

1

2iπ
[H(34)

mod, V0] = V (34)
⊥ = cosαV (12)

⊥ − sinαV (12)
|| (C.8)

from which with the knowledge of V (12)
⊥ we can read off V (12)

|| and the corresponding overall

coefficient.
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C.1 Practicalities

It remains to see how to solve (C.6).

Is is convenient to use as independent boundary operators the combinations O± =

O∆∓1
2

,∆±1
2

= j1 ± j0, since their commutators with the modular Hamiltonian are diagonal.

y2 − y1
2iπ

[H(12)
mod,O±] =

(

∓ (y2 + y1) +∆(ξ̄ − ξ)± (ξ̄ + ξ)

+ (ξ − y1)(y2 − ξ)∂ξ − (ξ̄ − y1)(y2 − ξ̄)∂ξ̄

)

O±. (C.9)

We then write an ansatz

(V0 + V⊥)
(12) =

∫

dpdq f+(p, q)O+(p, q) +

∫

dpdq g+(p, q)O−(p, q), (C.10)

(V0 − V⊥)
(12) =

∫

dpdq f−(p, q)O+(p, q) +

∫

dpdq g−(p, q)O−(p, q) (C.11)

Then (C.6) becomes, upon integration by parts, differential equations for f±(p, q) and

g±(p, q). Let us define differential operators L(12)
f ,L(12)

g by

1

2iπ

∫

dpdq f(p, q)[H(12)
mod,O+(p, q)] =

∫

dpdq (L(12)
f f(p, q))O+(p, q) (C.12)

1

2iπ

∫

dpdq g(p, q)[H(12)
mod,O−(p, q)] =

∫

dpdq (L(12)
g g(p, q))O−(p, q) (C.13)

Thus

L(12)
f =

1

y2 − y1

(

− (y2 + y1) + (∆− 2)(p− q) + (p+ q)

− (q − y1)(y2 − q)∂q + (p− y1)(y2 − p)∂p
)

L(12)
g =

1

y2 − y1

(

(y2 + y1) + (∆− 2)(p− q)− (p+ q)

− (q − y1)(y2 − q)∂q + (p− y1)(y2 − p)∂p
)

With this, equation (C.6) becomes

L(12)
f f± = ±f±, L(12)

f L(34)
f f± = cosαf±

L(12)
g g± = ±g±, L(12)

g L(34)
g g± = cosαf±

The first equation in each line is a first-order partial differential equation while the second

equation is a second-order partial differential equation. However this can be simplified

since L(12)
f L(34)

f = L(34)
f L(12)

f + [L(12)
f ,L(34)

f ] and f, g are eigenfunctions of L(12)
f,g . Thus we

can write

L(12)
f L(34)

f f± = cosαf± → ([L(12)
f ,L(34)

f ]± L(34)
f )f± = cosαf±

L(12)
g L(34)

g g± = cosαg± → ([L(12)
g ,L(34)

g ]± L(34)
g )g± = cosαg±

which are now first-order partial differential equations. Thus we have reduced the con-

straints on f±, g± to two linear first-order partial differential equations, just as in the

scalar case.
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C.2 Example

As an example let us solve for f+ for the case y1 + y2 = 0.

We start with the equation L(12)
f f+ = f+. The most general solution to this equation

using the methods of characteristics is

f+(p, q) = f̃+(s)((p−y1)(y2−p)(y2−q)(q−y1))
∆−2
2

(

(y2 − q)(q − y1)

(p− y1)(y2 − p)

)1/2 p− y1
y2 − p

(C.14)

where f̃+ is any function of the variable

s =
(q − y1)(p− y1)

(y2 − q)(y2 − p)
(C.15)

One can then insert this into the second equation ([L(12)
f ,L(34)

f ]+L(34)
f )f+ = cosαf+ where

cosα =
y22 − y3y4
y2(y4 − y3)

. (C.16)

We then get an equation for f̃+(s). Doing this results after some algebra in an equation

1

f̃+

df̃+
ds

=
(∆− 3)

2

s− β

s(s+ β)
(C.17)

whose solution is f̃+(s) = c(yi)
(

(s+β)2

s

)
∆−3
2

where β =
1
2
+

X0
2y2

1
2
−

X0
2y2

, X0 =
y22+y3y4
y3+y4

is the spatial

coordinate of the intersection of the RT surfaces, and c+(y1, y2, y3, y4) is an overall coeffi-

cient that could depend on the boundary segments. This gives a result for f+(p, q), namely

f+(p, q) = c+(yi)(Z
2 + (p−X0)(q −X0))

∆−3(p+ y2)
2 (C.18)

where Z2 = (X0 − y1)(y2 − X0) is the bulk radial coordinate of the intersection of the

RT surfaces.

D Gauge fields

Let’s see what we get by letting the modular Hamiltonian act on the CFT representation

of a bulk gauge field in the gauge AZ = 0.

The modular Hamiltonian for a spherical region is given in (2.1). The action of the

modular Hamiltonian on a boundary current (j0, j⃗) is given by (B.1) with ∆ = d− 1. The

representation of the bulk gauge field is (x⃗′ = x⃗+ iy⃗)

ZA0(Z, x⃗, T ) =
1

vol(Sd−1)

∫

dt′dy⃗ δ

(

Z2 + (x⃗′ − x⃗)2 − (t′ − T )2

2Z

)

j0(t
′, x⃗′)

ZAi(Z, x⃗, T ) =
1

vol(Sd−1)

∫

dt′dy⃗ δ

(

Z2 + (x⃗′ − x⃗)2 − (t′ − T )2

2Z

)

ji(t
′, x⃗′) (D.1)
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Thus

1

2πi
[Hmod, ZAi(Z, X⃗, T )] = ξµR,0∂µ(ZAi) +

Xi

R

1

vol(Sd−1)

∫

δ(σ/2)j0

+
1

R

1

vol(Sd−1)

∫

δ(σ/2)(x′i −Xi)j0 (D.2)

The third term is just

−Z∂X;

(

1

R

1

vol(Sd−1)

∫

dt′dy⃗Θ

(

Z2 + (x⃗′ − x⃗)2 − (t′ − T )2

2Z

)

j0(t
′, x⃗′)

)

≡ −Z∂iλ, (D.3)

where λ satisfies

∂Zλ =
Z

R
A0(Z, X⃗, T ). (D.4)

So overall one gets

1

2πi
[Hmod, Ai(Z, X⃗, T )] = ξµR,0∂µAi +

T

R
Ai +

Xi

R
A0 − ∂iλ. (D.5)

The computation of 1
2πi [Hmod, A0] follows a similar track. Here one needs to use

conservation of the CFT current which implies
∫

dt′dy⃗ δ

(

Z2 + (x⃗′ − x⃗)2 − (t′ − T )2

2Z

)

((t′ − T )j0(t
′, x⃗′) + (x⃗′ − x⃗) · j⃗(t′, x⃗′)) = 0 (D.6)

Then one finds

1

2πi
[Hmod, A0(Z, X⃗, T )] = ξµR,0∂µA0 +

T

R
A0 +

X⃗

R
A⃗− ∂iλ (D.7)

Thus we see that the modular Hamiltonian acting on a CFT representation of a bulk

gauge field in AZ = 0 gauge gives exactly what we would expect. In particular it automat-

ically generates the compensating gauge transformation needed to restore AZ = 0.

In AdS3 gauge fields have a simple representation [21], Aa(Z,X, T ) = ja(X,T ). In this

case one can see (since ∂0j1 = ∂1j0) that (B.1) with ∆ = 1 is equivalent to (D.5) and (D.7)

with λ(Z,X, T ) = Z2

2Rj0(X,T ).

E Gravity

The action of the total modular Hamiltonian (2.1) on the CFT stress tensor is given by

1

2iπ
[Hmod, Tij(t, x⃗)] =

1

2R

(

((t2 + x⃗2 −R2)∂t + 2tx⃗ · ∂x⃗ + 2dt)Tij + 2xiT0j + 2xjTi0
)

1

2iπ
[Hmod, T0i(t, x⃗)] =

1

2R

(

((t2 + x⃗2 −R2)∂t + 2tx⃗ · ∂x⃗ + 2dt)T0i + 2xjTji + 2xiT00
)

1

2iπ
[Hmod, T00(t, x⃗)] =

1

2R

(

((t2 + x⃗2 −R2)∂t + 2tx⃗ · ∂x⃗ + 2dt)T00 + 4xjTj0
)

(E.1)

Using (a, b range over 0, 1 · · · d− 1)

Z2hab =
dΓ(d/2)

2πd/2

∫

dt′dy⃗Θ

(

Z2 + (x⃗′ − X⃗)2 − (t′ − T )2

2Z

)

Tab(t
′, x⃗′) (E.2)
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one finds

1

2iπ
[Hmod, Z

2hij(Z, X⃗, T )] = ξµR,0∂µ(Z
2hij) +

Xi

R

∫

KdT0j +
Xj

R

∫

KdT0i

+
1

R

∫

Kd(x
′
i −Xi)T0j +

1

R

∫

Kd(x
′
j −Xj)T0i

Kd =
dΓ(d/2)

2πd/2
Θ

(

Z2 + (x⃗′ − X⃗)2 − (t′ − T )2

2Z

)

(E.3)

Let us define (with x⃗′ = X⃗ + iy⃗)

ϵa =
dΓ(d/2)

2πd/2

∫

dt′dy⃗Θ

(

Z2+(x⃗′−X⃗)2 − (t′ − T )2

2Z

)

(Z2 + (x⃗′ − X⃗)2 − (t′ − T )2)T0a(t
′, x′)

(E.4)

which satisfies

∂Zϵa = 2Z3h0a. (E.5)

Then the result above can be written as

1

2iπ
[Hmod, hij(Z, X⃗, T )]=ξµR,0∂µhij +

2T

R
hij +

Xj

R
hi0 +

Xi

R
h0j −

1

2RZ2
(∂iϵj + ∂jϵi) (E.6)

Next we consider

1

2iπ
[Hmod, Z

2h0i(Z, X⃗, T )] = ξµR,0∂µ(Z
2h0i) +

Xi

R

∫

KdT00 +
Xj

R

∫

KdTji

+
1

R

∫

Kd(x
′
i −Xi)T00 +

1

R

∫

Kd(x
′j −Xj)Tji

To identify the last term we use conservation of the stress tensor

∫

dt′dy⃗Θ

(

Z2 + (x⃗′ − X⃗)2 − (t′ − T )2

2Z

)

× (Z2 + (x⃗′ − X⃗)2 − (t′ − T )2)(−∂0T0i(t
′, x′) + ∂jTji(t

′, x′)) = 0

Then integration by parts gives

1

R

∫

Kd(x
′j −Xj)Tji = −

1

2R
∂T ϵi (E.7)

so overall we have

1

2iπ
[Hmod, h0i(Z, X⃗, T )]=ξµR,0∂µh0i +

2T

R
h0i +

Xi

R
h00 +

Xj

R
hji −

1

2RZ2
(∂iϵ0 + ∂0ϵi) (E.8)

A very similar computation gives

1

2iπ
[Hmod, h00(Z, X⃗, T )] = ξµR,0∂µh00 +

2T

R
h00 +

2Xj

R
hj0 −

1

RZ2
∂0ϵ0 (E.9)

In AdS3 a metric perturbation has a simple representation [21], hab(Z,X, T ) =

Tab(X,T ). Using the fact that the stress tensor is traceless and conserved (E.1) is equivalent

to (E.6), (E.8), (E.9) with ϵa = Z4

2 Ta0.
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