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ABSTRACT 

Improving disaster operations requires understanding and managing risk.  This paper proposes a new data-driven 

approach for measuring the risk associated with a natural hazard, in support of developing more effective 

approaches for managing disaster operations.  The paper focuses, in particular, on the issue of defining the inherent 

severity of a hazard event, independent of its impacts on human society, and concentrates on hurricanes as a 

specific type of natural hazard.  After proposing a preliminary severity measure in the context of a hurricane, the 

paper discusses the issues associated with collecting empirical data to support its implementation.  The approach 

is then illustrated by comparing the relative risk associated with two different locations in the state of North 

Carolina subject to the impacts of Hurricane Florence in 2018.    
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INTRODUCTION 

Disasters are catastrophic events that often cause many causalities and require the mobilization of significant 

numbers of resources to protect against their impacts (de Boer, 1990).  Due to the increasing population of the 

world, and the increasing vulnerability of that population, these impacts are growing and require urgent attention.  

Rodriguez et al. (2011) argue that the political, economic and social considerations of global society force 

organizations to find more efficient ways of managing these destructive events.  Assessing the characteristics of 

the events, and their possible destructive effects, is particularly important in the context of humanitarian relief 

operations, since they can have a significant impact on the ability to provide relief to those who need it in the 

wake of a disaster. 

Resource allocation is a challenging problem in disaster management. Organizations spend their time and effort 

to find efficient ways of pre-positioning and distributing resources in order to provide better service to affected 

communities.  Access to timely and appropriate information can play an important role in clarifying the situation 

and making appropriate decisions.  Organizations should thus be aware of potential data sources to support such 

decision making.  With this in mind, this study discusses a data-driven approach for quantifying disaster risk in 

terms of community characteristics and the inherent severity of a hazard event.   We have a motivation of assessing 

the county-based risk of the hazard event to help organizations with their decision making, especially in efficient 

asset placement, in disaster management.  

BACKGROUND 

The social science literature includes many studies on measuring relative risk based on the likelihood of a hazard 

and the characteristics of the impacted community (Aerts et al., 2013, Willis et al., 2006).  Arnette and Zobel 

(2019) adopt such an approach for quantifying risk as part of their model to optimize the placement of assets to 

support opening disaster shelters. Specifically, they use a common measure of risk that is a function of the 

probability of the occurrence of a hazard, H, the extent to which the population is exposed to that hazard, E, and 

the social vulnerability of the population (independent of any particular hazard), V:  
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𝑅 = 𝐻 ∗ 𝐸 ∗ 𝑉 (1) 

By then letting Hij represent the likelihood that a hazard of type j will occur in location i, where Eij represents the 

corresponding level of exposure of the population in that location and Vi represents the corresponding 

vulnerability, Arnette and Zobel (2019) are able to calculate the total combined risk associated with multiple 

potential hazards in location i as follows: 

𝑅𝑖 = (∑ (𝐻𝑖𝑗𝐸𝑖𝑗))𝑉𝑖
𝑛
𝑗=1  (2) 

What is missing from this measure, however, is an explicit representation of the severity of these potential hazard 

events, independent of their impacts on the given location.  This is important, since one would expect a more 

severe event to have a larger destructive impact on a given location than would a less severe event.  This implies 

that if one were able to capture the relative severity of the hazard itself, then the varying levels of risk that a 

location is subject to under different circumstances could be characterized more effectively.  This current study is 

a first step towards being able to explicitly incorporate a measure of exogenous severity into such an analysis. 

Although the severity of hazard events is widely studied in the literature, the treatment of the concept varies 

depending on the type of study and its objectives.  For example, Rodriguez et al. (2011) propose a decision support 

methodology to assist NGOs with the assessment of the consequences of disasters and provide a comparative 

analysis of different statistical learning techniques.  The authors use a scenario-based approach to assess the 

severity of disaster in terms of its impacts by considering such factors as casualties, injured and homeless people, 

infrastructure damage, etc.  De Boer (1990), in turn, combines the causes and the effects of a disaster to create a 

Disaster Severity Scale which includes a variety of attributes such as the effect on the surrounding community, 

the cause, the duration of that cause, the radius of the disaster area, and the time required by rescue teams for 

initial treatment. Alternatively, the study of de Boer et al. (1989) defines a Medical Severity Index of Disaster to 

support decision making in medical care supply chain operations in disaster situations. This index quantifies the 

severity of the incident by considering the level of injury and the requirement for treatment, along with other 

factors like disaster type, population, and location. Zhang and Huang (2018) also assign a severity value to all 

types of disasters, based on the number of deaths that occur, noting that droughts, extreme temperatures and 

earthquakes have the highest severity values and storms have lower severity but higher uncertainty.  

The common thread among each of these research efforts is the assessment of severity by using measures that 

reflect the actual impacts on a population of a disaster event that is caused by a natural hazard.  In contrast to this, 

our effort instead considers the inherent severity of the hazard itself, rather than that of the disaster, which should 

be measurable even in the absence of human impact.  This is important because if one ultimately wishes to 

compare different communities’ ability to resist the effects of a disaster, then it can be important to know the 

actual severity of the hazard itself, independent of its complex interaction with the communities.  This would 

allow for more effectively comparing the relative contributions of different characteristics of the communities and 

their populations towards their ability to resist against and recover from a disaster. 

MEASURING SEVERITY 

In particular, our focus in this paper is on developing the capability to characterize the exogenous severity of a 

particular type of hazard event, a hurricane, in specific locations.  Although the well-known Saffir-Simpson scale 

is frequently used to characterize the severity of an entire hurricane, based on the storm’s maximum wind speed 

(NHC, 2018), different locations that are impacted by that same hurricane may experience very different 

conditions and thus not be subject to the same level of severity.  Chouinard et al. (1997) discuss this general 

tendency to describe the severity of a hurricane as a function of the wind speed only, despite the presence of other 

potential measures of severity such as pressure deficit and maximum significant wave height.  Aerts et al. (2013) 

also argue that not just high winds but also heavy rainfall and flooding due to storm surge are the main source of 

the destructive impacts of hurricanes.  In addition, Schembri (2018) explicitly states that the main issue with 

Hurricane Florence, in particular, was rainfall rather than wind speed.  Given these assessments, and the 

motivation for developing a localized measure of severity that can be related to risk in a specific location, as in 

equation (2) above, we focus on localized measurements such as rainfall, wind speed, wind direction, and flood 

warnings as potential indicators of hurricane severity. 

This use of multiple indicators to represent the different aspects of the severity of a hurricane can easily be 

extended to the severity of other types of natural hazard such as that of an earthquake, which can be expressed in 

terms of magnitude, intensity, energy and acceleration (Gutenberg and Richter, 1942).  In the long run, our hope 

is to define a generalizable approach for characterizing the core elements of severity that can be applied across 

different types of hazard.  In this initial study, however, our focus is on hurricanes and on measuring their 

particular severity. 
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As a simple approach for measuring the localized severity, S, of a hurricane, we initially use a convex combination 

of a set of multiple indicator variables, s, each of which is normalized to maintain a consistent contribution: 

𝑆𝑖 = ∑ 𝑤𝑖𝑘𝑠𝑖𝑘
𝑚
𝑘=1  (3) 

In this case, i represents the specific location for which the hurricane’s severity is being measured, m represents 

the total number of indicator variables chosen to be included in the measure, and w represents the weighted 

contribution of each indicator variable, as specified by the decision maker.  Including weights in (3) allows for a 

decision maker to assign a greater relative importance to one or more of the indicator variables, and thus to 

prioritize the effects of wind over the effects of flooding, for example, under certain circumstances.  Absent the 

motivation to make such a prioritization, however, we would expect each indicator variable to be weighted the 

same.  Creating a single aggregated value for severity allows us to incorporate this severity measure into the 

measure of risk given in equation (2).  In general, however, the set of indicators could be combined in some other 

way, or even conceptualized as a vector of different severity dimensions.  In the context of this initial research 

effort, the straightforward formulation given in (3) simply allows us to establish how such a localized measure 

can be used to represent the complexity of the varying degrees of severity associated with a particular natural 

hazard. 

EMPIRICAL DATA COLLECTION 

We first explore the ability of a severity measure to characterize the local behavior of a hazard by applying our 

formulation of this measure to the analysis of a specific instance of a hurricane: Hurricane Florence, which struck 

the southeastern United States in September 2018.  Florence was classified as a tropical storm on September 7th 

before strengthening to a major hurricane by September 10th and then weakening again to a Category 1 storm by 

the 13th of September.  It made landfall near Wrightsville Beach, North Carolina on Friday, September 14th and 

then weakened further over the next few days as it moved inland and then northward.  The following discussion 

details the process of collecting the empirical data upon which the analysis is based.   

Weather data collection – We focused our data collection efforts for Hurricane Florence on the state of North 

Carolina.  Historical weather data for each county in the state was retrieved from the National Oceanic and 

Atmospheric Administration (NOAA), using the countyweather package in R and including all data from 

September 7th to September 21st, 2018.  The countyweather package, which requires an API key from NOAA, 

pulls all available weather data (both daily and hourly) from multiple weather stations.  The core variables that it 

retrieves are temperature, wind speed, wind direction, and precipitation.  Because the weather data is sparse for 

many counties during the specified date range, however, we ended up using only the daily average wind speed (in 

m/s) and the average precipitation (in mm). 

In order to perform our preliminary analysis, we selected four specific counties with nearly complete data for the 

two variables of interest: these consisted of two adjacent counties from the coastal region (Carteret and Onslow) 

and two additional adjacent counties from the mountains (Buncombe and Henderson).  Any missing data points 

in these counties were either estimated from hourly data, when available, or interpolated from the corresponding 

daily data (from the current day and the day before) in the adjacent county.   

 

Figure 1. North Carolina State Map.  
Source: https://commons.wikimedia.org/wiki/File:North_Carolina_counties.gif 
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Figure 2. The National Hurricane Center map showing the forecast track of Hurricane Florence. 
Source: https://www.nhc.noaa.gov/archive/2018/FLORENCE_graphics.php?product=5day_cone_with_line 

 

The motivation for selecting two different county groups was to allow for comparing the difference in severity 

between the counties that were first struck by Hurricane Florence and the counties over which it passed as it exited 

the state several days later.  Figure 1 highlights the locations of the selected counties in red, and Figure 2 shows 

the path of the hurricane beginning with landfall and continuing until it finally exits the western part of the state 

2-3 days later. 

Vulnerability data collection – The Social Vulnerability Index (SoVI), which is a composite measure made up 

of more than 30 variables that capture important socioeconomic and built environment characteristics, is 

frequently used to quantify the social vulnerability of U.S. counties to hazards, based on their socioeconomic and 

demographic features (Cutter et al., 2003).  In order to further incorporate the severity measure into the calculation 

of risk, this study used the most recent SoVI data set, which is based on 2010-2014 Census data.  

Exposure data collection – For the exposure calculation within the risk function, we used the estimated base 

county population data for 2018 and multiplied it by a sheltering needs factor to estimate the proportion of the 

population needing assistance.  Given that Mileti et al. (1992) suggest that such a sheltering needs factor can vary 

from a minimum of 0.05 to a maximum of 0.20, we set the factor at 0.20 for the coastal counties and at 0.05 for 

the counties in the western mountains, in order to reflect the inherent differences in the population’s hurricane 

response between these two regions.  To perform a more detailed analysis of actual sheltering behavior, rather 

than to simply illustrate the underlying modeling approach, both a displacement factor and a more accurate 

measure of sheltering need should be provided, as in Arnette and Zobel's (2019) work in Colorado and Wyoming.  

Unfortunately, such data is not yet readily available for the state of North Carolina at this time. 

 

Table 1.  County-level data 

County SoVI Population 

Onslow -3.67 177,772 

Carteret 1.03 66,469 

Henderson 1.7 106,740 

Buncombe 0.45 238,318 
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Figure 3. Abnormal severity related to Hurricane Florence 

PRELIMINARY RESULTS 

In order to generate a measure of the severity of the storm for each county during the specified time period, we 

calculated the average (normalized) wind speed and the average (normalized) precipitation over the five years 

previous to Hurricane Florence and created a weighted average of the two sub-measures, as in equation (3), using 

equal weights.  This historical weighted average was used as a baseline against which the corresponding 

(normalized) values from September 2018 were compared.  The amount by which the 2018 values exceeded the 

historical baseline was then taken as the actual measure of severity, with any values that fell at or below the 

historical weighted average being set to zero.  Figure 3 presents the results. 

It can clearly be seen in Figure 3 that September 14th is the day on which the hurricane reached its greatest severity 

along the coast, with slightly more severe weather being experienced in Onslow County.  The severity in Carteret 

County, which is further north, drops off more quickly than that in Onslow County as the hurricane moves west 

and south.  It can also be seen that the much reduced severity in Henderson and Buncombe counties grows in a 

similar way, but to a lesser extent and with a time lag of several days, as the depleted storm moves over that 

region.  This behavior echoes expectations, given the forecast track of the hurricane as presented in Figure 2. 

We then took the individual county-level severity values and incorporated them into an adjusted risk measure 

based on equation (2).  Because we are considering only a single hazard event, and are characterizing the actual 

behavior of that event as it occurs, we assume a hazard probability of 1.0 and introduce the severity measure as 

the contribution of the hurricane to the local risk in each county: 

 𝑅𝑖 = 𝑆𝑖𝐸𝑖𝑉𝑖  (4) 

The risk given by equation (4) thus reflects the relative extent to which each county was actually affected by the 

hurricane.  Figure 4 subsequently illustrates the results of graphing the risk progression over the duration of the 

storm. 

Because all three independent variables in equation (4) are normalized to the same [0, 1] scale, even a cursory 

comparison of Figures 3 and 4 clearly shows the significant influence of the severity measure on the measured 

risk value.  The vulnerability also plays a significant role, however, as can be seen in the relative differences 

between the two coastal counties as well as those between the two mountain counties.  Onslow County was subject 

to more severe conditions, yet its much lower population vulnerability leads to less overall risk during the height 

of the storm than Carteret County, despite its larger population.  Similarly, despite its significantly lower 

vulnerability, Buncombe County’s much larger population gives it a higher level of risk relative to that of 

Henderson County.  In each case, it is obvious that the risk grows as the storm approaches and hits, and then drops 

as it moves away. 
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Figure 4. Observed risk related to Hurricane Florence 

CONCLUSIONS  

The purpose of this study is to provide a preliminary definition and illustration of a measure of the inherent severity 

of a natural hazard that can be incorporated into a localized measure of risk.  Although a hazard can have a 

destructive impact on a given county, however, the inherent severity of that hazard is not the only factor affecting 

the risk to which that county’s population is exposed.  Indeed, the same level of severity may lead to different 

consequences in two different counties due to the relative vulnerability of the populations and the number of 

people who are actually exposed to the hazard event in a meaningful way.  

It is important to recognize that this particular analysis was conducted in the context of a historical hazard event, 

and that the components of the severity measure were therefore given reasonably precise values.  In order to 

calculate the risk for an upcoming event, not only would appropriate forecasts need to be available for the 

components’ values, but also some notion of the probability of the event would need to be reintroduced into the 

discussion, since it may not affect a given community at all.  This implies that the severity measure may also be 

effective in the context of slow-onset disasters, or at least disasters with less uncertainty, because it would be 

easier to make more accurate forecasts of future behavior.  It also implies that scenario-based analyses on the 

severity of hazard events could give realistic insights about the possible outcomes of the hazard events that have 

possibility of occurrence in the future. 

The focus of this paper was on a single natural hazard, and on the behavior of that particular hazard as it actually 

impacted several counties in North Carolina.  This allowed us to assume a probability of occurrence of 1.0, and 

to effectively replace the hazard likelihood in equations (1) and (2) with the severity of the event.  In general, 

however, if we wished to instead assess the future (forecast) severity and risk, we would need to also include the 

probability that the particular event would occur.  This, in turn, would allow for considering the probability that 

different types of hazards might occur, and it would extend the applicability of the approach beyond just the set 

of indicator variables representing a single type of event.   

Easily accessible weather data makes the severity calculation quick and easy to update, and the relative simplicity 

of both the severity (as defined above) and the risk function should make it very straightforward to extend the 

approach and adapt it to a variety of different problems.  As a related future research direction, we are planning 

to include other accessible information, such as flood/storm warnings, into our severity measurement, and to 

consider other functional forms for the severity that may more effectively capture the relative contributions of its 

different characteristics in this context.  
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