
Determining Dose-Response Characteristics of 

Molecular Perturbations in Whole-Organism Assays 

Using Biological Imaging and Machine Learning  

Daniel Asarnow
1,†

 and Rahul Singh
1,2,† 

1
Department of Computer Science, San Francisco State University, and 

2
Center for Discovery and Innovation in Parasitic 

Diseases, University of California, San Diego

 
Abstract—Advances in microscopy and high-content imaging 

now offer a powerful way to profile the phenotypic response of 

intact systems to molecular perturbation and study the response 

irrespective of putative target activity and by preserving the 

physiological context in the living systems. An emerging 

challenge in bioinformatics and drug discovery is constituted by 

data generated from such studies that involve analyzing the effect 

of specific molecules at the system-wide organism level. In this 

paper we propose a novel automated approach that combines 

techniques from biological imaging and machine learning to 

automatically quantify a fundamental measure of molecular 

perturbation in an intact biological system, namely, its dose-

response characteristics. We validate our results using 

phenotypic assay data involving post-infective larvae 

(schistosomula) of the parasitic Schistosoma mansoni flatworm. 

This parasite is one of the etiological agents of schistosomiasis – a 

significant neglected tropical disease, which puts at-risk nearly 

two billion people. 

Keywords—Whole organism studies, structure-phenotype data, 

dose-response relationship, phenotypic assays, biological imaging, 

machine learning. 

I. INTRODUCTION  

One of the fundamental notions in biology and drug 

discovery is that of structure-activity relationship (SAR). In a 

SAR, a property Φi induced by a molecule Mi in a biological 

system S is envisaged as a function of the “chemical 

constitution” of Mi subject to the specificities of S: 

Φi = f(Mi)          (1) 

Thus, given a system S, the basic elements needed for 

establishing a SAR are: (1) a description of the molecular 

structure and (2) experimental results (called assays) 

measuring the biochemical property. Consider now the set of 

molecules M={Mi} and the corresponding biochemical 

properties Φ={Φi} induced by M in S. M can be thought of as 

a set of “probes” for investigating S by inducing the 

characterizing outputs Φ which vary as elements of M change. 

In the traditional (reductionist) setting, S tends to be a 

molecular target and Φ is limited to a specific bio-chemical 

response of interest at the molecular level. Target directed 

formulations have encouraged the application of simplistic 

enzyme-based or cell-based assays. Though easy to design and 

run in high-throughput, such assays provide limited 

information on how complex physiologic systems work and 

how they may be meaningfully and efficaciously perturbed 

(for example to identify potential drugs).
†
 There is ample 

evidence that target directed drug discovery has led to decline 

in approval of drugs against new targets and failure of 

candidate drugs due to lack of systemic efficacy [1-3]. 

 
 

Figure 1. Richness and complexity of structure-phenotype data: (A) 

Structures of three small molecule probes (from top to bottom): the cysteine 

protease inhibitor K777, Praziquantel (PZQ), and Niclosamide. (B) 
phenotypes exhibited by the trematode S. mansoni (from top to bottom): 

controls, after exposure to K777, and after exposure to PZQ. (C) Results of 

exposure to Niclosamide shown here as a function of concentration and 
exposure time. Note the complex phenotypic changes which occur even due to 

the action of a single compound. These changes have to be modeled precisely 

and quantitatively to capture the richness in the data.  

 

The alternative lies in measuring and interpreting Φ at the 

systems-level by considering the response of cells, tissues, and 

even entire organisms to the probes. Advances in microscopy 

and high-content imaging now offer a powerful way to profile 

the phenotypic response to molecular perturbation and study 

the response irrespective of putative target activity and by 

preserving the physiological context in intact living systems. 

Recent studies have shown the value of such an approach to 

confirm activity and elucidate detailed molecular mechanisms 

of action (MOA) [4-6]. In Fig. 1, we present examples of 

structure-phenotype data from exposure of the trematode S. 

mansoni (one of the causative agents of the disease 

schistosomiasis) to three different chemical probes. The reader 

may observe the systemic effects introduced by these probes 

in terms of phenotypic changes in shape and appearance 
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(changes in terms of motion and behavior also occur). In Fig. 

1(c), we also show how the phenotypic effects vary based on 

the time and concentration of exposure to the compound 

Niclosamide. A dose-response relationship describes the 

changes occurring in the organism as the dose (concentration) 

of the molecular perturbation or the duration of the exposure is 

varied. Typically, such relationships are expressed as a curve, 

defining a one-to-one mapping of the system response to 

changes in concentration or duration of the perturbation. 

Determining dose-response characteristics is central, among 

others, to determining the biochemical response-range of a 

biological system, characterize the phenotypes it exhibits, 

determine the efficacy of a drug through the calculation of 

statistics like IC50 (half maximal inhibitory concentration) 

EC50 (Half maximal effective concentration) or LD50 (median 

lethal dose), and for determining safe dosage.  

A. Problem formulation and technical challenges 

Given the response of an intact biological system (such as the 

S. mansoni parasite(s)) either to changes in concentration or 

exposure time of a molecular perturbation, as shown, for 

instance, in Fig. 1(c), the problem involves determining a 

quantitative mapping between the independent variable, i.e. 

changes in the perturbation and the multidimensional response 

(phenotypes) exhibited as a consequence by the biological 

system.  Solving this problem requires addressing a number of 

independent technical challenges, which we summarize below. 

Hereafter, without loss of generality, we shall assume 

phenotypic assays conducted on schistosomula to substantiate 

the problem context.  

 Segmentation of individual parasites and tracking 

individuals across time: Analyzing the effect of drugs on 

individual schistosomula requires that they be recognized 

and localized within well micrographs containing tens to 

hundreds of parasites. Further, given a sequence of 

images corresponding to observations over time, a 

correspondence needs to be established for each 

individual being monitored, so that effects of a drug can 

be measured longitudinally. 

 Definition and accurate measurements of salient 

phenotypic features (descriptors): Given accurate 

segmentation and tracking of schistosomula, specific 

attributes capable of effectively representing the elicited 

phenotypes must be defined and then measured over an 

entire population of parasites. Examples of such 

descriptors can include measurements of the parasite 

shape and geometry, parasite appearance (such as color 

and texture), and parasite motion. 

 Methodology for mapping the multidimensional system 

response to low dimensional indicator variable(s): To 

determine dose-response characteristics, the 

(multidimensional) dependent variables defined by the 

phenotype descriptors have to be mapped to a one 

dimensional indicator variable so that the dose-response 

relationship can be elucidated.  

B. Overview of the proposed approach 

We utilize the number of parasites differing significantly from 

controls at specific experimental conditions (e.g. compound 

and concentration) to compute a quantal-statistic which is 

subsequently used to determine the corresponding quantitative 

dose-response characteristics of the parasite population. The 

determination as to which specific parasites differ 

significantly from the control is done automatically using a 

combination of biological imaging and supervised machine 

learning. The approach begins by representing individual 

parasites through numerical vectors in a measurement or 

feature space. These features capture the appearance and 

geometry of the parasites via image analysis of bright-field 

micrographs. Next, using a supervised formulation a classifier 

is trained and subsequently used to determine affected 

parasites. The classifier is designed using a soft-margin 

support vector machine employing the Gaussian radial basis 

function kernel, which is applied in a two-step procedure: 

first, an average representation of the control population is 

constructed. Next, this representation is used in conjunction 

with parasite feature vectors to classify individual 

schistosomula. The number of affected parasites constitutes 

the quantal-statistic which is used to obtain the dose-response 

relationship. 

C. Prior work and contributions of the proposed research 

To the best of our knowledge, at the state-of-the-art, the 

problem of automatically determining dose-response 

characteristics from multidimensional measurements of the 

biological system remains unsolved. A number of methods 

exist which can map specific phenotypes to variations in 

chemical perturbations. For example, a whole-organism assay 

based on electrode measurements of motility has been 

proposed and applied to multiple experimental conditions [7]. 

However, only a single schistosome was analyzed. 

Furthermore, the reliance on a single phenotypic measurement 

(motility) concomitantly limited the range of drug effects 

which could be detected. Other specialized measurement 

assays have taken advantage of the differential uptake of dye 

compounds by living and dead schistosomula [8-9], to record 

dose-response information. Unfortunately, this approach is 

limited to detection of a single, highly specific (albeit 

interesting) phenotype, namely, parasite death. Other methods 

(e.g. [10]) have described label free, image-based 

characterization of phenotypes; however, the problem of 

determining dose-response characteristics was not attempted. 

The proposed approach allows for rigorous and 

quantitative determination of dose-response characteristics 

for macroparasites exhibiting complex phenotypic response in 

whole-organism assays and represents the first known 

solution to this problem. Owing to the use of a supervised 

machine learning formulation, our method can incorporate 

domain expertize in assessing the phenotypic response of 

parasite populations to drug exposure or other experimental 

conditions. Finally, the method does not require expensive 

hardware platforms and can be used to analyze data obtained 



with low-cost image capture setups; equally, it can be used 

with high-throughput screening hardware. 

II. METHOD 

In this section we describe the proposed method beginning 

with the step of image segmentation followed by feature 

extraction, determination of affected parasites at each 

condition using a supervised framework, and finally the 

determination of the dose-response relationship. Some of the 

parts constituting the proposed approach leverage algorithmic 

results from our prior research in this area. 

A. Image segmentation 

The images were segmented (i.e., individual parasites were 

differentiated from background) using the Asarnow-Singh 

segmentation algorithm.  Here, we briefly describe the core 

ideas underlying this technique and refer the reader to [11] for 

details. The method in [11], abbreviated hereafter as ASA, 

begins with an initial segmentation obtained by applying a 

global threshold to the low-pass filtered image. This approach 

is adapted from the region-based distributing function (RBDF) 

in Active Mask [12].  Our adaptation of the RBDF has a single 

threshold parameter γ, which is an estimator of the difference 

between foreground and background intensity and is 

computed using the Otsu algorithm.  

The ASA employs phase congruency (PC) of the grayscale 

image, rather than the commonly used intensity gradient for 

segmentation. PC is an approach to feature detection based on 

a theoretical framework called the Local Energy Model 

(LEM) [13]. LEM postulates that perceptually salient features 

occur where an image’s Fourier components are maximally in 

phase with one another. PC holds a number of advantages over 

the use of image gradients: first, PC is a dimensionless 

bounded quantity simplifying thresholding. Second, PC is 

illumination- and contrast -invariant, and can detect edges 

which do not coincide with steps in the image gradient or have 

arbitrary phases. Finally, PC is naturally multi-scale and can 

be implemented efficiently using fast wavelet transforms [14]. 

Consider for simplicity, a 1D intensity profile I(x). Its local 

energy, E(x), can be defined as shown in Eq. (2), where F(x) 

denotes the signal I(x) without its DC component and H(x) is 

the Hilbert transform of F(x).  

            )()()( 22 xHxFxE      (2)  

Mathematically, phase congruency can be defined as the ratio 

of the local energy to the sum of the Fourier amplitudes An of 

I(x) (Eq. (3)).  
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Next, the Log Gabor wavelet transform to obtain local 

frequency information. In computing the PC, image features 

with many in-phase components receive a higher weight than 

those with just a few. The weights are provided by a weighting 

function W(x) of the local frequency spread s(x). The full PC 

expression including effects of noise and frequency spread is 

given by Eq. (4). In this equation, ε is a small constant 

included to prevent ill-conditioned behavior and T represents a 

local noise estimate. The signal-driven model-free nature of 

the method implies that unlike model-based approaches, it can 

be applied, without modifications or priors, to segment any 

parasite regardless of the phenotypic effect elicited by a 

compound. This method was shown to accurately place the 

boundaries between parasites even when their edges were 

dissolving or faint, using a library of 6,960 hand-segmented 

parasite images collected under control conditions as well as 

after exposure to nine different pharmaceutical compounds. It 

was found that only 4.1% of parasites were not individually 

segmented and that computed boundaries deviated from the 

true boundaries by an average of 1.3 pixels [11]. This high 

level of accuracy is essential for extraction of high-quality 

features for efficient representation of parasite phenotypes. 
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B. Feature extraction and representation 

A feature set partially overlapping with those of [10, 15] is 

next used to describe individual segmented parasites as 

vectors of uniform length. These descriptors are designed to 

compactly represent parasites in terms of appearance, shape 

and texture while retaining invariance to translation, rotation 

and scaling. Invariance to these transformations ensures that 

parasites are recognized and segmented irrespective of their 

pose and size with respect to the imaging device.   

To capture the appearance of the parasites, pixel intensity 

distributions as well as wavelet texture responses are 

summarized using the mean, standard deviation and 

standardized central moments of up to fifth order (i.e. 

skewness, kurtosis and tail asymmetry). The standard central 

moment Mα of order α for a distribution x is calculated from 

the mean μx and standard deviation σ, following Eq. (5). 
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The observation that drug exposure modulates the distribution 

and appearance of internal anatomic features of schistosomula 

suggests that further analysis should be applied within the 

parasite image beyond the overall statistical moments. We 

represent the appearance and distribution of the visible 

internal anatomy using 1) a threshold that separates pixels 

occupied by anatomical structures within the parasite from the 

tegument (parasite surface) and parasite body in general and 

2) the proportion of the parasite area occupied by pixels 

corresponding to the anatomical structures. Two binary image 

thresholding methods are used: the maximum likelihood 

threshold [16] and one derived using Otsu’s method [17]. 

The “shape” of a parasite is constituted by the region 

enclosed by the parasite boundary, as determined by the 

segmentation algorithm. One important shape aspect is 

convexity or lack thereof. The convexity of a parasite is 

represented using the ratio of the area of an object to its 

convex hull. The shape of the spatial intensity distribution is 

captured using the eight linearly independent invariant image 

moments of up to order three. Analogous to moments of 



inertia, but with gray-level intensity taking the place of mass, 

these moments provide a description of the spatial distribution 

of image intensities which is invariant to translation, rotation 

and scaling.  

We employ two methods for extraction and representation 

of texture, one based on gray-level co-occurrence matrices and 

the other using wavelet transforms. Given an image, its gray-

level co-occurrence matrices (GLCM) hold the joint 

probability for a given pair of gray-levels to be separated by a 

particular displacement vector [18]. Texture is then 

represented via measurements of the statistical properties of 

the GLCM (contrast, correlation, energy, entropy, 

homogeneity). A limitation of the GLCM is the need for a 

single displacement vector. This need creates a scale 

dependency, through the displacement distance, as well as a 

rotational dependency, through the displacement angle. Scale 

effects are treated by computing the GLCM using five 

displacement scales (3, 7, 15, 29 and 59 pixels). Rotational 

invariance within an individual scale is obtained by rotating 

the displacement vector through four equally spaced 

orientations and summing the resultant GLCM. We calculate 

the raw entropy of the image itself in addition to that of the 

GLCM. 

Wavelet analysis decomposes a signal into a basis 

composed of re-scaled copies of a single “mother” wavelet, in 

a manner analogous to Fourier analysis (which decomposes 

the signal into a basis of periodic exponentials). Wavelet 

analysis has numerous applications in computer vision, 

including the extraction of perceptual features such as edges 

and lines, and wavelet response statistics have been found to 

be an effective, low-dimensional representation of visual 

texture. Previous work using wavelet texture analysis for high-

throughput screening has employed as a basis either the 

Daubechies or Gabor wavelet families [19]. However, we 

employ the same log-Gabor wavelets used for phase 

congruency calculations made during the image segmentation 

process (see [11]). Such filters have several advantages vis-à-

vis the Daubechies and standard Gabor filters, including zero 

mean at arbitrary bandwidth and strong empirical 

correspondences with both the amplitude spectra of natural 

images as well as the spatial frequency responses of neurons 

in the mammalian visual cortex. More importantly, log-Gabor 

filters can be shown to maximally localize frequency and 

phase information, essential for local analysis within images. 

A rotationally invariant representation of texture at multiple 

scales is obtained by taking the statistical moments of the 

maximum response across six equally spaced filter 

orientations, independently evaluated at each of five scales 

with center frequencies roughly corresponding to the 

displacement vector magnitudes used for GLCM construction. 

The formulation is based on that of [14]. Briefly, the log-

Gabor filter with center frequency ω0 is constructed in 

frequency space following Eq. (6). The scale progression is 

devised such that the ratio κ/ω0 remains constant, which 

ensures all individual filters are members of the same wavelet 

basis (mother wavelet). 
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A bank of two-dimensional filters with six evenly spaced 

orientations θ are generated by multiplying the filter described 

in Eq. (6) with an anisotropic spreading function Γ(θ) (we 

employ a cosine). The filter responses of a parasite image F 

are then computed according to Eq. (7), where   denotes the 

convolution operator. 
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The texture features at a single scale are finally defined as the 

statistical moments of the filter responses in the same manner 

as is done for the raw pixel intensities – i.e. by computing 

mean, variance and applying Eq. (5). This process is repeated 

for the five scales leading to 25 wavelet texture dimensions. 

These descriptor measurements lead to a feature space 

composed of 71 separate dimensions. 

C. Supervised formulation for determining affected parasites 

Automated phenotype classification based on the parasite 

feature vectors is undertaken using a supervised learning 

approach. In supervised learning, training examples, derived 

for example from annotation by one or more human experts, 

are used to prepare a learning device, such as a linear 

regression or neural network. “Learning” differs from 

“approximation” in that the goal of learning is not merely to 

memorize the data at hand, but to produce results which 

generalize to new, heretofore unseen data points. However, 

the accuracy (closeness to true values) of predictions can only 

be determined if true values are known. Supervised learning 

therefore employs a partitioning of an entire data set in which 

manual annotations are split into training and test groups (as is 

described for our data set in the Methods). A given learning 

algorithm will then attempt to obtain a relation between inputs 

and training data which generalizes to new inputs that the 

algorithm has not yet been shown. The support vector machine 

(SVM) is such a supervised learning algorithm which 

performs binary classification by determining the separating 

hyperplane with the maximum margin (distance between the 

hyperplane and the nearest points) in the space of the data 

[20]. The SVM method has several major advantages. The 

optimization problem is provably convex, thus a global 

optimum solution can be found. The SVM also does not 

require that input dimensions be decorrelated or 

orthogonalized in any way, and can be applied to nonlinear 

problems by replacing the Euclidean dot product with any 

type of nonlinear inner product, called the kernel. Due to low 

computational complexity, the algorithm is fast in practice, 

even for high dimensional spaces such as the 71 dimensional 

feature space used in this work. 

In seeking to classify parasite drug responses, the natural 

phenotypic variations between different parasite 

subpopulations must be taken into account. Such variations 

may imbue each set of experiments with a different baseline 

control response. This fact is reflected in that experts 

consistently take phenotypic responses of controls into 

account during manual parasite classification. It also explains 



our observation that while SVM classification works well for 

feature vectors which fall far from the decision surface – that 

is, parasites which are either highly degenerate or completely 

normal – the classification accuracy tends to be lower for 

intermediate parasites lying near the boundary. A visual 

representation of the variability between different 

subpopulations of schistosomula can be obtained from the 

features of the normal control parasites projected into the 

space spanned by their first two principal components (PC). 

Although these components account for only about 20% of the 

total variance found in the data, they are sufficient for 

visualizing the variations between different control groups. 

Such a two dimensional approximation based on principal 

component analysis (PCA) is shown in Figure 2. For control 

parasites, each group is labeled with a distinct color and the 

group centroids are displayed as large dots. From the figure, it 

is clear that there is significant variation between these control 

populations, and it is assumed that this also is the case for the 

experimental data corresponding to these controls. 

 

 

Figure 2. Depiction of the variability between populations of 

schistosomula considered in this work. The feature space representation of 

10,578 parasites from the data are projected into a 2D coordinate plane using 

principal component analysis (PCA). Normal parasites are represented by 

circles, while degenerate parasites are shown as open triangles. Each separate 

control group is shown labeled by a unique color (open circles represent non-
control normal parasites), and the centroid of each group is displayed as a 

large, solid dot. The solid line indicates the SVM classification boundary 

obtained using the proposed method based on the first two principal 
components. The figure depicts the variability observed between control 

populations, as well as an approximation of the feature space and decision 

boundary used for classification. 
 

In order to account for variation between populations 

within the framework of the SVM classifier, the SVM input 

vectors are formed by concatenating the raw feature vectors 

for a parasite subpopulation to the centroid of the control 

parasites for that subpopulation which can be considered to be 

normal (henceforth called the normal control parasites). This 

allows the distance between parasites to be determined by 

their control centroids in concert with the parasite features 

themselves. Doing so requires that the normal control 

parasites be known, so that their centroids may be computed 

without spurious perturbations arising from the inclusion of 

any degenerate parasites present in the control images. 

However, which of the control parasites are in fact normal will 

in general not be known. 

We resolve this issue by performing the entire 

classification process in two sequential steps. In the first step, 

raw feature vectors from the training data are used to train a 

SVM classifier, which is used in turn to obtain the centroids of 

the predicted normal control parasites. In the second step, a 

new classifier is trained using tuples containing the features of 

both an observation itself and the coordinates of the 

corresponding control centroid in the feature space. The two-

stage procedure can be seen as conceptually akin to the 

thought process of a human expert, who first observes a 

control image (necessarily containing a few degenerate 

parasites) to construct a mental baseline before making 

decisions pertaining to images of drug-exposed parasites.  

Aside from the addition of estimated control centroids to 

the input vectors, both stages employ the same classification 

framework. We make use of the soft-margin SVM [21] and a 

radial basis function (RBF) kernel [22], in conjunction with 

the sequential minimal optimization algorithm [23], in order to 

determine the maximum-margin classification surface 

separating normal and degenerate schistosomula in the 

descriptor space enumerated above. The feature dimensions 

are placed on the same scale – a necessary preprocessing step 

with SVM – by standardizing the distributions along the 

dimensions to zero mean and unit standard deviation. A set of 

SVM are then trained, using 10-fold cross-validation to ensure 

generalization throughout training. The key parameters, 

namely the scale of the Gaussian RBF σ and the magnitude of 

the soft-margin box constraint C, are set by directly 

minimizing the cross-validation error using the method of 

direct search [24-25]. Using this approach, final parameter 

values obtained by us were σ = 6.9 and C = 3.28. For 

prediction, the set of 10 SVMs constructed during the cross-

validated training are applied, and a final classification is 

obtained by using majority voting between the classifiers. In 

the following we refer to these SVMs as the SVM bank. Data 

sampling conducted during cross-validation is stratified such 

that the relative distributions of “normal” and “degenerate” 

parasites are preserved. In addition to visualizing the variation 

between control populations, Figure 2 provides an example of 

a decision surface found by SVM with RBF kernel (solid 

black line). This boundary was found using the two-stage 

classification procedure within the 2D PCA projection. The 

efficacy of the procedure is clear given the approximate nature 

of the data, as the normal parasites (open and colored circles) 

are found almost entirely opposite the classification boundary 

from the degenerate ones (open triangles). 



The reader may note that unlike the one-way analysis of 

variance (ANOVA) employed in previous automated assays 

against schistosomiasis [10], the machine learning-based 

approach as described above does not rely on several key 

assumptions about the statistics of the data. Namely, these are 

the assumptions that the response variables are independent 

and normally distributed, that the population variances are 

equal, and finally that group responses are independent and 

identically distributed random variables. None of these 

assumptions might be expected to hold for the wide variety of 

complex, image-based measurements used to build the 

parasite feature space. Furthermore, ANOVA in general loses 

efficacy when presented with unbalanced data in which 

different treatment classes are over or under-represented [26]. 

This is especially troublesome for drug screening, where 

certain drugs are likely to be studied in much greater than 

detail than others, which are of less therapeutic interest. The 

approach to image-based classification of schistosomula 

developed above does not make any of the listed assumptions 

and is robust to unbalanced data so long as sufficient sampling 

of control parasites is made. 

D. Determination of dose-response characteristics and EC50 

values 

Identification and counting of normal and degenerate parasites 

is performed computationally after segmentation, feature 

extraction and classification using the previously trained set of 

SVMs. Following the standard convention, at a given point in 

time, the drug response is defined as the proportion of 

degenerate parasites in the well. With n multiple replicate 

experiments each containing Di degenerate parasites and Ni 

parasites in total, the empirical response R is computed as 

shown in Eq. (8). 
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This definition describes the quantal response (in population 

weighted average across experiments), which is commonly 

used when a binary phenotypic effect is observed (such as that 

between normal and degenerate schistosomula). In addition to 

the mean, the standard deviation is also calculated. 

The (quantal) EC50 is calculated by fitting of the Hill 

Equation to dose-response data. We use the model specified 

by Eq. (9), where Rmin and Rmax are the minimum and 

maximum response values, respectively, m is the Hill 

coefficient and x is the concentration. 
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The regression is computed using the trust-region-

reflective nonlinear least-squares algorithm [27], with m 

constrained to equal 1, and Rmin and Rmax constrained to the 

interval [0,1]. The constraints on response values are needed 

to avoid unphysical proportions of parasites, while the fixed 

value of m forces the model to represent a noncooperative 

ligand binding process. Analogous responses are also 

calculated using the training annotations, rather than the 

parasite feature vectors in the test data. These results represent 

the output of the manual version of the assay, and are used for 

validation of the response curves produced by the assay. Note 

again that in contrast to other methods the proposed approach 

has only modest software and hardware requirements which 

can easily be met using inexpensive, commodity products. 

III. EXPERIMENTS, EVALUATIONS AND RESULTS 

A. Experiment design 

We prepare the machinery of the method (i.e. a set of non-

linear SVMs) using the 4,256 parasites in the designated 

training data, and the single training vector obtained by 

majority voting between the experts. Assay performance is 

quantitated in two stages. First, confusion analysis is applied 

directly to the classification of the testing data obtaining using 

the SVM bank. The confusion analysis is performed using the 

manual annotations of the test parasites. It is important to note 

here that these annotations were not used in any manner 

whatsoever during training. Second, dose-response curves 

generated using the SVM classifications are compared to those 

obtained from the manual annotations. This comparison 

reflects the accuracy of the automated assay in replicating the 

manual assay performed by human experts. 

B. Measures for analyzing classification performance 

The classification performance was evaluated by comparing 

the results of automatic classification to a ground truth (here, 

manual annotations obtained from domain experts). The 

analysis consists in computing the number of true positives 

TP, false positives FP, true negatives TN and false negatives 

FN, as well as several derived statistics, taking normal parasite 

classifications to be “negative,” and degenerate ones to be 

“positive.” The derived statistics included the true negative 

and true positive rates TNR and TPR, the negative and positive 

predictive values NPV and PPV, and the accuracy ACC. In 

addition, we calculated two additional measures, the 

Matthew’s correlation coefficient MCC, a descriptor of overall 

classification performance which is robust to unbalanced class 

sizes, and the F1-measure, which is the harmonic mean of 

precision (PPV) and recall (TPR).  

C. Classification performance on the test set 

In Figure 3, we present the confusion matrix for the test set. In 

this case, classification was performed with the dual-layer 

method. The matrix presents assessments of the classification 

in terms of the aforementioned TP, FP, TN and FN measures, 

both in terms of the numbers of parasites and as percentages. 

Figure 3 also shows FPR, TPR, NPV, PPV and ACC adjacent 

to the row or column of the confusion matrix from which they 

are computed (ACC is computed from the diagonal). The 

matrix indicates that 58.5% of the test parasites are correctly 

classified as normal and 32.1% as degenerate, while just 5.0% 

and 4.4% of parasites are incorrectly classified as normal or 

degenerate, respectively. The overall classification accuracy is 

thus 90.6%, while the MCC and F1-measure are also quite 



high, at MCC=0.798 and F1=0.872, respectively. These 

results clearly demonstrate the efficacy of the outlined 

procedure for automatic classification of “normal” and 

“degenerate” parasites based on classification boundary learnt 

from the human experts. 

 

 
Figure 3. Confusion matrix for classification of the test set. The matrix 

shows the proportion of correctly and misclassified cases of each type (TN, 
FN, FP and TP), and additionally shows five statistical measures of 

classification quality, namely accuracy, TPR (recall), TNR, PPV (precision) 

and NPV. Each of these statistics is shown adjacent to the row or column of 
the confusion matrix from which it is calculated. Raw values are shown in 

green, and are subtracted from 1 and shown in red for ease of comparison. In 

addition to the measures shown above, the Matthew’s correlation coefficient 
for this confusion matrix is 0.798, and the F1-measure is 0.872. 

 

D. Dose-response characterization of drugs 

The dose-response characteristics of the investigated 

compounds as determined using the proposed method for 

twelve distinct compounds is shown in Figure 4. As 

mentioned earlier, “consensus” training data can be obtained 

using majority voting. The use of such data with the SVM 

bank classifier proposed here constitutes an elegant means for 

arriving at a single set of dose-response curves as the output of 

the automated assay. The dose-response curves obtained using 

majority voting across the human experts are depicted in this 

figure. It can be seen here that there is a close correspondence 

between the dose-responses curves derived from the manual 

screen and those obtained using the fully automated approach 

described above. Pearson’s correlation coefficients between 

these curves, as well as the corresponding p-values, are listed 

in Table 3. The p-values are estimated using Student’s t-

distribution under the alternative hypothesis that the 

correlation is not zero. The correlations are ≥ 0.93 and are 

highly significant (p-value ≤ 0.05) for all compounds, 

including the two (rosuvastatin and sorafenib) which were 

novel to the method. The minimum correlation is observed for 

the drug praziquantel, for which the automated assay deviates 

from the manual at high concentrations. This discrepancy was 

primarily due to the disagreement in the assessments of  the 

individual experts in analyzing the impact of this compound in 

terms of impact on parasites. 

 
 
Table 3. Dose-response correlations between manual and automated 

assay. Pearson’s product-moment correlation coefficients and p-

values computed with Student’s t-test are listed for each compound. 

Reported values are derived using the test data set. 
 

Compound Correlation p-value 

Atorvastatin 0.996 4.00 * 10-3 

Fluvastatin 0.985 1.50 * 10-2 

Lovastatin 0.989 1.12 * 10-2 

Pravastatin 0.956 4.24 * 10-2 

Simvastatin 0.992 9.02 * 10-4 

Closantel 0.993 7.98 * 10-6 

Ibandronate 0.993 7.25 * 10-4 

K11777 0.964 8.00 * 10-3 

Niclosamide 0.996 3.47 * 10-4 

Praziquantel 0.932 2.13 * 10-2 

Rosuvastatin 0.995 5.20 * 10-3 

Sorafenib 0.998 4.99 * 10-7 

 

 



                          V. Conclusions 

In this paper we have described the design, implementation 

and assessment of a fully automatic, quantitative approach for 

dose-response characterization in whole-organism assays 

using biological imaging and machine learning. To the best of 

our knowledge, this is the first known solution to this problem. 

The bioimage analysis of our method segments multiple 

parasites in whole-well images, including touching and 

partially overlapping somules. A learning model employing 

non-linear SVM then classifies segmented schistosomula 

within a high-dimensional feature space, the dimensions of 

which correspond to measurements of appearance, shape and 

texture. The model possesses two layers: one in which 

putatively “normal” parasites are identified within each 

control image and used to derive an estimated control 

centroid, and one in which all parasites are classified as 

“normal” or “degenerate” on the basis of tuples composed of a 

given parasite’s feature vector and corresponding control 

centroid. Such a procedure is essential because the variation 

between different populations of unavoidably create different 

baselines for different experiments. The learning model was 

trained on manually annotated images using cross-validation 

to produce a dual-layer SVM bank; each bank makes 

individual predictions using majority voting within the bank. 

The analysis of classification results for the test data confirms 

the efficacy of the proposed method: it has an overall 

classification accuracy of 90.5%. Furthermore, the dose-

response curves (in terms of the proportion of degenerate 

parasites) determined using the predicted classifications 

correlate tightly with those computed from the training data. 
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