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Abstract—Advances in microscopy and high-content imaging
now offer a powerful way to profile the phenotypic response of
intact systems to molecular perturbation and study the response
irrespective of putative target activity and by preserving the
physiological context in the living systems. An emerging
challenge in bioinformatics and drug discovery is constituted by
data generated from such studies that involve analyzing the effect
of specific molecules at the system-wide organism level. In this
paper we propose a novel automated approach that combines
techniques from biological imaging and machine learning to
automatically quantify a fundamental measure of molecular
perturbation in an intact biological system, namely, its dose-
response characteristics. We validate our results using
phenotypic assay data involving post-infective larvae
(schistosomula) of the parasitic Schistosoma mansoni flatworm.
This parasite is one of the etiological agents of schistosomiasis — a
significant neglected tropical disease, which puts at-risk nearly
two billion people.
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I. INTRODUCTION

One of the fundamental notions in biology and drug
discovery is that of structure-activity relationship (SAR). In a
SAR, a property @; induced by a molecule M; in a biological
system S is envisaged as a function of the ‘“chemical
constitution” of M; subject to the specificities of S:

o=fM) (1)
Thus, given a system S, the basic elements needed for
establishing a SAR are: (1) a description of the molecular
structure and (2) experimental results (called assays)
measuring the biochemical property. Consider now the set of
molecules M={M;} and the corresponding biochemical
properties @={®;} induced by M in S. M can be thought of as
a set of “probes” for investigating S by inducing the
characterizing outputs @ which vary as elements of M change.
In the traditional (reductionist) setting, S tends to be a
molecular target and @ is limited to a specific bio-chemical
response of interest at the molecular level. Target directed
formulations have encouraged the application of simplistic
enzyme-based or cell-based assays. Though easy to design and
run in high-throughput, such assays provide limited
information on how complex physiologic systems work and
how they may be meaningfully and efficaciously perturbed

(for example to identify potential drugs).” There is ample
evidence that target directed drug discovery has led to decline
in approval of drugs against new targets and failure of
candidate drugs due to lack of systemic efficacy [1-3].
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Figure 1. Richness and complexity of structure-phenotype data: (A)
Structures of three small molecule probes (from top to bottom): the cysteine
protease inhibitor K777, Praziquantel (PZQ), and Niclosamide. (B)
phenotypes exhibited by the trematode S. mansoni (from top to bottom):
controls, after exposure to K777, and after exposure to PZQ. (C) Results of
exposure to Niclosamide shown here as a function of concentration and
exposure time. Note the complex phenotypic changes which occur even due to
the action of a single compound. These changes have to be modeled precisely
and quantitatively to capture the richness in the data.

The alternative lies in measuring and interpreting @ at the
systems-level by considering the response of cells, tissues, and
even entire organisms to the probes. Advances in microscopy
and high-content imaging now offer a powerful way to profile
the phenotypic response to molecular perturbation and study
the response irrespective of putative target activity and by
preserving the physiological context in intact living systems.
Recent studies have shown the value of such an approach to
confirm activity and elucidate detailed molecular mechanisms
of action (MOA) [4-6]. In Fig. 1, we present examples of
structure-phenotype data from exposure of the trematode S.
mansoni (one of the causative agents of the disease
schistosomiasis) to three different chemical probes. The reader
may observe the systemic effects introduced by these probes
in terms of phenotypic changes in shape and appearance
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(changes in terms of motion and behavior also occur). In Fig.
1(c), we also show how the phenotypic effects vary based on
the time and concentration of exposure to the compound
Niclosamide. A dose-response relationship describes the
changes occurring in the organism as the dose (concentration)
of the molecular perturbation or the duration of the exposure is
varied. Typically, such relationships are expressed as a curve,
defining a one-to-one mapping of the system response to
changes in concentration or duration of the perturbation.
Determining dose-response characteristics is central, among
others, to determining the biochemical response-range of a
biological system, characterize the phenotypes it exhibits,
determine the efficacy of a drug through the calculation of
statistics like ICsy (half maximal inhibitory concentration)
ECsy (Half maximal effective concentration) or LDs, (median
lethal dose), and for determining safe dosage.

A. Problem formulation and technical challenges

Given the response of an intact biological system (such as the

S. mansoni parasite(s)) either to changes in concentration or

exposure time of a molecular perturbation, as shown, for

instance, in Fig. 1(c), the problem involves determining a

quantitative mapping between the independent variable, i.e.

changes in the perturbation and the multidimensional response

(phenotypes) exhibited as a consequence by the biological

system. Solving this problem requires addressing a number of

independent technical challenges, which we summarize below.

Hereafter, without loss of generality, we shall assume

phenotypic assays conducted on schistosomula to substantiate

the problem context.

o Segmentation of individual parasites and tracking
individuals across time: Analyzing the effect of drugs on
individual schistosomula requires that they be recognized
and localized within well micrographs containing tens to
hundreds of parasites. Further, given a sequence of
images corresponding to observations over time, a
correspondence needs to be established for each
individual being monitored, so that effects of a drug can
be measured longitudinally.

o Definition and accurate measurements of salient
phenotypic  features (descriptors): Given accurate
segmentation and tracking of schistosomula, specific
attributes capable of effectively representing the elicited
phenotypes must be defined and then measured over an
entire population of parasites. Examples of such
descriptors can include measurements of the parasite
shape and geometry, parasite appearance (such as color
and texture), and parasite motion.

e Methodology for mapping the multidimensional system
response to low dimensional indicator variable(s): To
determine dose-response characteristics, the
(multidimensional) dependent variables defined by the
phenotype descriptors have to be mapped to a one
dimensional indicator variable so that the dose-response
relationship can be elucidated.

B. Overview of the proposed approach

We utilize the number of parasites differing significantly from
controls at specific experimental conditions (e.g. compound
and concentration) to compute a quantal-statistic which is
subsequently used to determine the corresponding quantitative
dose-response characteristics of the parasite population. The
determination as to which specific parasites differ
significantly from the control is done automatically using a
combination of biological imaging and supervised machine
learning. The approach begins by representing individual
parasites through numerical vectors in a measurement or
feature space. These features capture the appearance and
geometry of the parasites via image analysis of bright-field
micrographs. Next, using a supervised formulation a classifier
is trained and subsequently used to determine affected
parasites. The classifier is designed using a soft-margin
support vector machine employing the Gaussian radial basis
function kernel, which is applied in a two-step procedure:
first, an average representation of the control population is
constructed. Next, this representation is used in conjunction
with parasite feature vectors to classify individual
schistosomula. The number of affected parasites constitutes
the quantal-statistic which is used to obtain the dose-response
relationship.

C. Prior work and contributions of the proposed research

To the best of our knowledge, at the state-of-the-art, the
problem of automatically determining dose-response
characteristics from multidimensional measurements of the
biological system remains unsolved. A number of methods
exist which can map specific phenotypes to variations in
chemical perturbations. For example, a whole-organism assay
based on electrode measurements of motility has been
proposed and applied to multiple experimental conditions [7].
However, only a single schistosome was analyzed.
Furthermore, the reliance on a single phenotypic measurement
(motility) concomitantly limited the range of drug effects
which could be detected. Other specialized measurement
assays have taken advantage of the differential uptake of dye
compounds by living and dead schistosomula [8-9], to record
dose-response information. Unfortunately, this approach is
limited to detection of a single, highly specific (albeit
interesting) phenotype, namely, parasite death. Other methods
(e.g. [10]) have described Ilabel free, image-based
characterization of phenotypes; however, the problem of
determining dose-response characteristics was not attempted.
The proposed approach allows for rigorous and
quantitative determination of dose-response characteristics
for macroparasites exhibiting complex phenotypic response in
whole-organism assays and represents the first known
solution to this problem. Owing to the use of a supervised
machine learning formulation, our method can incorporate
domain expertize in assessing the phenotypic response of
parasite populations to drug exposure or other experimental
conditions. Finally, the method does not require expensive
hardware platforms and can be used to analyze data obtained



with low-cost image capture setups; equally, it can be used
with high-throughput screening hardware.

II. METHOD

In this section we describe the proposed method beginning
with the step of image segmentation followed by feature
extraction, determination of affected parasites at each
condition using a supervised framework, and finally the
determination of the dose-response relationship. Some of the
parts constituting the proposed approach leverage algorithmic
results from our prior research in this area.

A. Image segmentation

The images were segmented (i.e., individual parasites were
differentiated from background) using the Asarnow-Singh
segmentation algorithm. Here, we briefly describe the core
ideas underlying this technique and refer the reader to [11] for
details. The method in [11], abbreviated hereafter as ASA,
begins with an initial segmentation obtained by applying a
global threshold to the low-pass filtered image. This approach
is adapted from the region-based distributing function (RBDF)
in Active Mask [12]. Our adaptation of the RBDF has a single
threshold parameter y, which is an estimator of the difference
between foreground and background intensity and is
computed using the Otsu algorithm.

The ASA employs phase congruency (PC) of the grayscale
image, rather than the commonly used intensity gradient for
segmentation. PC is an approach to feature detection based on
a theoretical framework called the Local Energy Model
(LEM) [13]. LEM postulates that perceptually salient features
occur where an image’s Fourier components are maximally in
phase with one another. PC holds a number of advantages over
the use of image gradients: first, PC is a dimensionless
bounded quantity simplifying thresholding. Second, PC is
illumination- and contrast -invariant, and can detect edges
which do not coincide with steps in the image gradient or have
arbitrary phases. Finally, PC is naturally multi-scale and can
be implemented efficiently using fast wavelet transforms [14].
Consider for simplicity, a 1D intensity profile /(x). Its local
energy, E(x), can be defined as shown in Eq. (2), where F(x)
denotes the signal /(x) without its DC component and H(x) is
the Hilbert transform of F(x).

E(x)=F’(x)+H*(x) (2

Mathematically, phase congruency can be defined as the ratio
of the local energy to the sum of the Fourier amplitudes A4, of
I(x) (Eq. (3)).
E(x)=PC(x)x24, (3)
n

Next, the Log Gabor wavelet transform to obtain local
frequency information. In computing the PC, image features
with many in-phase components receive a higher weight than
those with just a few. The weights are provided by a weighting
function W(x) of the local frequency spread s(x). The full PC
expression including effects of noise and frequency spread is
given by Eq. (4). In this equation, € is a small constant
included to prevent ill-conditioned behavior and T represents a

local noise estimate. The signal-driven model-free nature of
the method implies that unlike model-based approaches, it can
be applied, without modifications or priors, to segment any
parasite regardless of the phenotypic effect elicited by a
compound. This method was shown to accurately place the
boundaries between parasites even when their edges were
dissolving or faint, using a library of 6,960 hand-segmented
parasite images collected under control conditions as well as
after exposure to nine different pharmaceutical compounds. It
was found that only 4.1% of parasites were not individually
segmented and that computed boundaries deviated from the
true boundaries by an average of 1.3 pixels [11]. This high
level of accuracy is essential for extraction of high-quality
features for efficient representation of parasite phenotypes.
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B. Feature extraction and representation

A feature set partially overlapping with those of [10, 15] is
next used to describe individual segmented parasites as
vectors of uniform length. These descriptors are designed to
compactly represent parasites in terms of appearance, shape
and fexture while retaining invariance to translation, rotation
and scaling. Invariance to these transformations ensures that
parasites are recognized and segmented irrespective of their
pose and size with respect to the imaging device.

To capture the appearance of the parasites, pixel intensity
distributions as well as wavelet texture responses are
summarized using the mean, standard deviation and
standardized central moments of up to fifth order (i.c.
skewness, kurtosis and tail asymmetry). The standard central
moment M, of order a for a distribution x is calculated from
the mean y, and standard deviation o, following Eq. (5).

1 & u

Vo Z(x —u)",ael35]

The observation that drug exposure modulates the distribution
and appearance of internal anatomic features of schistosomula
suggests that further analysis should be applied within the
parasite image beyond the overall statistical moments. We
represent the appearance and distribution of the visible
internal anatomy using 1) a threshold that separates pixels
occupied by anatomical structures within the parasite from the
tegument (parasite surface) and parasite body in general and
2) the proportion of the parasite area occupied by pixels
corresponding to the anatomical structures. Two binary image
thresholding methods are used: the maximum likelihood
threshold [16] and one derived using Otsu’s method [17].

The “shape” of a parasite is constituted by the region
enclosed by the parasite boundary, as determined by the
segmentation algorithm. One important shape aspect is
convexity or lack thereof. The convexity of a parasite is
represented using the ratio of the area of an object to its
convex hull. The shape of the spatial intensity distribution is
captured using the eight linearly independent invariant image
moments of up to order three. Analogous to moments of

M, =



inertia, but with gray-level intensity taking the place of mass,
these moments provide a description of the spatial distribution
of image intensities which is invariant to translation, rotation
and scaling.

We employ two methods for extraction and representation
of texture, one based on gray-level co-occurrence matrices and
the other using wavelet transforms. Given an image, its gray-
level co-occurrence matrices (GLCM) hold the joint
probability for a given pair of gray-levels to be separated by a
particular displacement vector [18]. Texture is then
represented via measurements of the statistical properties of
the GLCM (contrast, correlation, energy, entropy,
homogeneity). A limitation of the GLCM is the need for a
single displacement vector. This need creates a scale
dependency, through the displacement distance, as well as a
rotational dependency, through the displacement angle. Scale
effects are treated by computing the GLCM using five
displacement scales (3, 7, 15, 29 and 59 pixels). Rotational
invariance within an individual scale is obtained by rotating
the displacement vector through four equally spaced
orientations and summing the resultant GLCM. We calculate
the raw entropy of the image itself in addition to that of the
GLCM.

Wavelet analysis decomposes a signal into a basis
composed of re-scaled copies of a single “mother” wavelet, in
a manner analogous to Fourier analysis (which decomposes
the signal into a basis of periodic exponentials). Wavelet
analysis has numerous applications in computer vision,
including the extraction of perceptual features such as edges
and lines, and wavelet response statistics have been found to
be an effective, low-dimensional representation of visual
texture. Previous work using wavelet texture analysis for high-
throughput screening has employed as a basis either the
Daubechies or Gabor wavelet families [19]. However, we
employ the same log-Gabor wavelets used for phase
congruency calculations made during the image segmentation
process (see [11]). Such filters have several advantages vis-a-
vis the Daubechies and standard Gabor filters, including zero
mean at arbitrary bandwidth and strong empirical
correspondences with both the amplitude spectra of natural
images as well as the spatial frequency responses of neurons
in the mammalian visual cortex. More importantly, log-Gabor
filters can be shown to maximally localize frequency and
phase information, essential for local analysis within images.
A rotationally invariant representation of texture at multiple
scales is obtained by taking the statistical moments of the
maximum response across six equally spaced filter
orientations, independently evaluated at each of five scales
with center frequencies roughly corresponding to the
displacement vector magnitudes used for GLCM construction.
The formulation is based on that of [14]. Briefly, the log-
Gabor filter with center frequency w, is constructed in
frequency space following Eq. (6). The scale progression is
devised such that the ratio x/w, remains constant, which
ensures all individual filters are members of the same wavelet
basis (mother wavelet).

[—ln(a)/(uo)2 j
G(CO) —e 21n(rc/w0)2 (6)

A bank of two-dimensional filters with six evenly spaced
orientations 6 are generated by multiplying the filter described
in Eq. (6) with an anisotropic spreading function I(6) (we
employ a cosine). The filter responses of a parasite image F
are then computed according to Eq. (7), where @ denotes the
convolution operator.

arg max F(G(w)®T'(0)) (7)

The texture features at a single scale are finally defined as the
statistical moments of the filter responses in the same manner
as is done for the raw pixel intensities — i.e. by computing
mean, variance and applying Eq. (5). This process is repeated
for the five scales leading to 25 wavelet texture dimensions.
These descriptor measurements lead to a feature space
composed of 71 separate dimensions.

C. Supervised formulation for determining affected parasites

Automated phenotype classification based on the parasite
feature vectors is undertaken using a supervised learning
approach. In supervised learning, training examples, derived
for example from annotation by one or more human experts,
are used to prepare a learning device, such as a linear
regression or neural network. “Learning” differs from
“approximation” in that the goal of learning is not merely to
memorize the data at hand, but to produce results which
generalize to new, heretofore unseen data points. However,
the accuracy (closeness to true values) of predictions can only
be determined if true values are known. Supervised learning
therefore employs a partitioning of an entire data set in which
manual annotations are split into ¢training and test groups (as is
described for our data set in the Methods). A given learning
algorithm will then attempt to obtain a relation between inputs
and training data which generalizes to new inputs that the
algorithm has not yet been shown. The support vector machine
(SVM) is such a supervised learning algorithm which
performs binary classification by determining the separating
hyperplane with the maximum margin (distance between the
hyperplane and the nearest points) in the space of the data
[20]. The SVM method has several major advantages. The
optimization problem is provably convex, thus a global
optimum solution can be found. The SVM also does not
require that input dimensions be decorrelated or
orthogonalized in any way, and can be applied to nonlinear
problems by replacing the Euclidean dot product with any
type of nonlinear inner product, called the kernel. Due to low
computational complexity, the algorithm is fast in practice,
even for high dimensional spaces such as the 71 dimensional
feature space used in this work.

In seeking to classify parasite drug responses, the natural
phenotypic  variations  between  different  parasite
subpopulations must be taken into account. Such variations
may imbue each set of experiments with a different baseline
control response. This fact is reflected in that experts
consistently take phenotypic responses of controls into
account during manual parasite classification. It also explains



our observation that while SVM classification works well for
feature vectors which fall far from the decision surface — that
is, parasites which are either highly degenerate or completely
normal — the classification accuracy tends to be lower for
intermediate parasites lying near the boundary. A visual
representation of the variability between different
subpopulations of schistosomula can be obtained from the
features of the normal control parasites projected into the
space spanned by their first two principal components (PC).
Although these components account for only about 20% of the
total variance found in the data, they are sufficient for
visualizing the variations between different control groups.
Such a two dimensional approximation based on principal
component analysis (PCA) is shown in Figure 2. For control
parasites, each group is labeled with a distinct color and the
group centroids are displayed as large dots. From the figure, it
is clear that there is significant variation between these control
populations, and it is assumed that this also is the case for the
experimental data corresponding to these controls.

1

(4]
&
=
1]
=
[e]
Q
£
9
8]
T
Q
Q
£
(o A e
o P R O R
DB R
L T

a 180, o
o m ogoe
[
8 o,
S e & 0

0
Principal component 1

Figure 2. Depiction of the variability between populations of
schistosomula considered in this work. The feature space representation of
10,578 parasites from the data are projected into a 2D coordinate plane using
principal component analysis (PCA). Normal parasites are represented by
circles, while degenerate parasites are shown as open triangles. Each separate
control group is shown labeled by a unique color (open circles represent non-
control normal parasites), and the centroid of each group is displayed as a
large, solid dot. The solid line indicates the SVM classification boundary
obtained using the proposed method based on the first two principal
components. The figure depicts the variability observed between control
populations, as well as an approximation of the feature space and decision
boundary used for classification.

In order to account for variation between populations
within the framework of the SVM classifier, the SVM input
vectors are formed by concatenating the raw feature vectors

for a parasite subpopulation to the centroid of the control
parasites for that subpopulation which can be considered to be
normal (henceforth called the normal control parasites). This
allows the distance between parasites to be determined by
their control centroids in concert with the parasite features
themselves. Doing so requires that the normal control
parasites be known, so that their centroids may be computed
without spurious perturbations arising from the inclusion of
any degenerate parasites present in the control images.
However, which of the control parasites are in fact normal will
in general not be known.

We resolve this issue by performing the entire
classification process in two sequential steps. In the first step,
raw feature vectors from the training data are used to train a
SVM classifier, which is used in turn to obtain the centroids of
the predicted normal control parasites. In the second step, a
new classifier is trained using tuples containing the features of
both an observation itself and the coordinates of the
corresponding control centroid in the feature space. The two-
stage procedure can be seen as conceptually akin to the
thought process of a human expert, who first observes a
control image (necessarily containing a few degenerate
parasites) to construct a mental baseline before making
decisions pertaining to images of drug-exposed parasites.

Aside from the addition of estimated control centroids to
the input vectors, both stages employ the same classification
framework. We make use of the soft-margin SVM [21] and a
radial basis function (RBF) kernel [22], in conjunction with
the sequential minimal optimization algorithm [23], in order to
determine the maximum-margin classification surface
separating normal and degenerate schistosomula in the
descriptor space enumerated above. The feature dimensions
are placed on the same scale — a necessary preprocessing step
with SVM - by standardizing the distributions along the
dimensions to zero mean and unit standard deviation. A set of
SVM are then trained, using 10-fold cross-validation to ensure
generalization throughout training. The key parameters,
namely the scale of the Gaussian RBF ¢ and the magnitude of
the soft-margin box constraint C, are set by directly
minimizing the cross-validation error using the method of
direct search [24-25]. Using this approach, final parameter
values obtained by us were ¢ = 6.9 and C = 3.28. For
prediction, the set of 10 SVMs constructed during the cross-
validated training are applied, and a final classification is
obtained by using majority voting between the classifiers. In
the following we refer to these SVMs as the SVM bank. Data
sampling conducted during cross-validation is stratified such
that the relative distributions of “normal” and “degenerate”
parasites are preserved. In addition to visualizing the variation
between control populations, Figure 2 provides an example of
a decision surface found by SVM with RBF kernel (solid
black line). This boundary was found using the two-stage
classification procedure within the 2D PCA projection. The
efficacy of the procedure is clear given the approximate nature
of the data, as the normal parasites (open and colored circles)
are found almost entirely opposite the classification boundary
from the degenerate ones (open triangles).



The reader may note that unlike the one-way analysis of
variance (ANOVA) employed in previous automated assays
against schistosomiasis [10], the machine learning-based
approach as described above does not rely on several key
assumptions about the statistics of the data. Namely, these are
the assumptions that the response variables are independent
and normally distributed, that the population variances are
equal, and finally that group responses are independent and
identically distributed random variables. None of these
assumptions might be expected to hold for the wide variety of
complex, image-based measurements used to build the
parasite feature space. Furthermore, ANOVA in general loses
efficacy when presented with unbalanced data in which
different treatment classes are over or under-represented [26].
This is especially troublesome for drug screening, where
certain drugs are likely to be studied in much greater than
detail than others, which are of less therapeutic interest. The
approach to image-based classification of schistosomula
developed above does not make any of the listed assumptions
and is robust to unbalanced data so long as sufficient sampling
of control parasites is made.

D. Determination of dose-response characteristics and ECs,
values

Identification and counting of normal and degenerate parasites
is performed computationally after segmentation, feature
extraction and classification using the previously trained set of
SVMs. Following the standard convention, at a given point in
time, the drug response is defined as the proportion of
degenerate parasites in the well. With » multiple replicate
experiments each containing D; degenerate parasites and N;
parasites in total, the empirical response R is computed as

shown in Eq. (8).
R=) — (8
le N ®

This definition describes the quantal response (in population
weighted average across experiments), which is commonly
used when a binary phenotypic effect is observed (such as that
between normal and degenerate schistosomula). In addition to
the mean, the standard deviation is also calculated.

The (quantal) ECs, is calculated by fitting of the Hill
Equation to dose-response data. We use the model specified
by Eq. (9), where R,;, and R,, are the minimum and
maximum response values, respectively, m is the Hill
coefficient and x is the concentration.

R=R_ + —Rm" Rm”lm C)
X
EC,,

1+

The regression is computed using the trust-region-
reflective nonlinear least-squares algorithm [27], with m
constrained to equal 1, and R,,;, and R, constrained to the
interval [0,1]. The constraints on response values are needed
to avoid unphysical proportions of parasites, while the fixed
value of m forces the model to represent a noncooperative

ligand binding process. Analogous responses are also
calculated using the training annotations, rather than the
parasite feature vectors in the test data. These results represent
the output of the manual version of the assay, and are used for
validation of the response curves produced by the assay. Note
again that in contrast to other methods the proposed approach
has only modest software and hardware requirements which
can easily be met using inexpensive, commodity products.

III. EXPERIMENTS, EVALUATIONS AND RESULTS

A. Experiment design

We prepare the machinery of the method (i.e. a set of non-
linear SVMs) using the 4,256 parasites in the designated
training data, and the single training vector obtained by
majority voting between the experts. Assay performance is
quantitated in two stages. First, confusion analysis is applied
directly to the classification of the testing data obtaining using
the SVM bank. The confusion analysis is performed using the
manual annotations of the test parasites. It is important to note
here that these annotations were not used in any manner
whatsoever during training. Second, dose-response curves
generated using the SVM classifications are compared to those
obtained from the manual annotations. This comparison
reflects the accuracy of the automated assay in replicating the
manual assay performed by human experts.

B. Measures for analyzing classification performance

The classification performance was evaluated by comparing
the results of automatic classification to a ground truth (here,
manual annotations obtained from domain experts). The
analysis consists in computing the number of true positives
TP, false positives FP, true negatives TN and false negatives
FN, as well as several derived statistics, taking normal parasite
classifications to be “negative,” and degenerate ones to be
“positive.” The derived statistics included the true negative
and true positive rates TNR and TPR, the negative and positive
predictive values NPV and PPV, and the accuracy ACC. In
addition, we calculated two additional measures, the
Matthew’s correlation coefficient MCC, a descriptor of overall
classification performance which is robust to unbalanced class
sizes, and the F,-measure, which is the harmonic mean of
precision (PPV) and recall (TPR).

C. Classification performance on the test set

In Figure 3, we present the confusion matrix for the test set. In
this case, classification was performed with the dual-layer
method. The matrix presents assessments of the classification
in terms of the aforementioned TP, FP, TN and FN measures,
both in terms of the numbers of parasites and as percentages.
Figure 3 also shows FPR, TPR, NPV, PPV and ACC adjacent
to the row or column of the confusion matrix from which they
are computed (ACC is computed from the diagonal). The
matrix indicates that 58.5% of the test parasites are correctly
classified as normal and 32.1% as degenerate, while just 5.0%
and 4.4% of parasites are incorrectly classified as normal or
degenerate, respectively. The overall classification accuracy is
thus 90.6%, while the MCC and F;-measure are also quite



high, at MCC=0.798 and F;=0.872, respectively. These
results clearly demonstrate the efficacy of the outlined
procedure for automatic classification of “normal” and
“degenerate” parasites based on classification boundary learnt
from the human experts.

3072 264 92.1%
Normal 58.5% 5.0% 7.9%
Negative
True negatives False negatives predictive
Automatic value
Classification 231 1686 87.9%
4.4% 32.1% 12.1%
Degenerate Positive
False positives True positives predictive
value
93.0% 86.5% 90.6%
7.0% 13.5% 9.4%
True negative rate True positive rate Accuracy

Normal Degenerate
Manual Annotation

Figure 3. Confusion matrix for classification of the test set. The matrix
shows the proportion of correctly and misclassified cases of each type (TN,
FN, FP and TP), and additionally shows five statistical measures of
classification quality, namely accuracy, TPR (recall), TNR, PPV (precision)
and NPV. Each of these statistics is shown adjacent to the row or column of
the confusion matrix from which it is calculated. Raw values are shown in
green, and are subtracted from 1 and shown in red for ease of comparison. In
addition to the measures shown above, the Matthew’s correlation coefficient
for this confusion matrix is 0.798, and the F;-measure is 0.872.

D. Dose-response characterization of drugs

The dose-response characteristics of the investigated
compounds as determined using the proposed method for
twelve distinct compounds is shown in Figure 4. As
mentioned earlier, “consensus” training data can be obtained
using majority voting. The use of such data with the SVM
bank classifier proposed here constitutes an elegant means for
arriving at a single set of dose-response curves as the output of
the automated assay. The dose-response curves obtained using
majority voting across the human experts are depicted in this
figure. It can be seen here that there is a close correspondence
between the dose-responses curves derived from the manual
screen and those obtained using the fully automated approach
described above. Pearson’s correlation coefficients between
these curves, as well as the corresponding p-values, are listed
in Table 3. The p-values are estimated using Student’s #-
distribution under the alternative hypothesis that the
correlation is not zero. The correlations are > 0.93 and are
highly significant (p-value < 0.05) for all compounds,
including the two (rosuvastatin and sorafenib) which were
novel to the method. The minimum correlation is observed for
the drug praziquantel, for which the automated assay deviates
from the manual at high concentrations. This discrepancy was
primarily due to the disagreement in the assessments of the
individual experts in analyzing the impact of this compound in
terms of impact on parasites.
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Table 3. Dose-response correlations between manual and automated
assay. Pearson’s product-moment correlation coefficients and p-
values computed with Student’s #-test are listed for each compound.
Reported values are derived using the test data set.

Compound Correlation p-value

Atorvastatin 0.996 4.00 * 1073
Fluvastatin 0.985 1.50 * 1072
Lovastatin 0.989 1.12 *107?
Pravastatin 0.956 4.24 %107
Simvastatin 0.992 9.02 * 10
Closantel 0.993 7.98 *10°°
Ibandronate 0.993 7.25 %10
K11777 0.964 8.00 * 107
Niclosamide 0.996 3.47 * 10
Praziquantel 0.932 2.13 *107
Rosuvastatin 0.995 5.20 * 107
Sorafenib 0.998 4.99 * 107




V. Conclusions

In this paper we have described the design, implementation
and assessment of a fully automatic, quantitative approach for
dose-response characterization in whole-organism assays
using biological imaging and machine learning. 7o the best of
our knowledge, this is the first known solution to this problem.
The bioimage analysis of our method segments multiple
parasites in whole-well images, including touching and
partially overlapping somules. A learning model employing
non-linear SVM then classifies segmented schistosomula
within a high-dimensional feature space, the dimensions of
which correspond to measurements of appearance, shape and
texture. The model possesses two layers: one in which
putatively “normal” parasites are identified within each
control image and used to derive an estimated control
centroid, and one in which all parasites are classified as
“normal” or “degenerate” on the basis of tuples composed of a
given parasite’s feature vector and corresponding control
centroid. Such a procedure is essential because the variation
between different populations of unavoidably create different
baselines for different experiments. The learning model was
trained on manually annotated images using cross-validation
to produce a dual-layer SVM bank; each bank makes
individual predictions using majority voting within the bank.
The analysis of classification results for the test data confirms
the efficacy of the proposed method: it has an overall
classification accuracy of 90.5%. Furthermore, the dose-
response curves (in terms of the proportion of degenerate
parasites) determined using the predicted -classifications
correlate tightly with those computed from the training data.
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