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Abstract—In this paper, we present an incremental version
of L1-norm Linear Discriminant Analysis (L1-LDA) for radar-
based indoor human activity classification. Incremental L1-LDA
enables refinement of the discriminant basis as more training
samples become available during operation. At the same time, it
permits adaptation to the specific activity patterns of the human
subject of interest, different than the ones on which the original
discriminant basis was trained. The incremental version retains
the robustness of L1-LDA to outliers among the training data.
Using Doppler signatures of various indoor human activities,
we demonstrate that the proposed method exhibits enhanced
performance over the incremental counterpart of standard linear
discriminant analysis when the training data are corrupted and
similar performance under nominal training data.

I. INTRODUCTION

Monitoring of indoor human activity is of increasing re-
search and development interest for a variety of civilian appli-
cations, including home security, remote patient monitoring,
and elderly assisted living. Due to its insensitivity to lighting
conditions and robustness against visual obstructions, radar is
gaining impetus among various contact-less modalities being
considered for human activity monitoring [1]-[9].

Radar-based indoor motion classification methods predom-
inantly employ discriminant features extracted from micro-
Doppler signatures associated with human activities. A ma-
jority of the work has focused on features that are extracted
in an automated fashion by optimization of some numerical
criterion. Examples of such feature-extraction methods include
Principal Component Analysis (PCA) and its variants, and
Linear Discriminant Analysis (LDA) and its variants [5], [10]-
[13]. Deep learning techniques have also been employed for
human activity recognition, but they impose a much higher
computational load and require large amounts of training data
[4], [6], [14].

Recent work has revealed that linear discriminant subspaces,
obtained using LDA, provide superior motion recognition
performance over principal components (PCs) and L1-PCs of
micro-Doppler signatures [13]. However, LDA is known to be
sensitive to the presence of irregular points among the training
data. This sensitivity arises due to the squared emphasis on the
contribution of each training point in the LDA optimization
metric. Strong resistance against irregular training has been
obtained though the Ll-norm variant of LDA, called L1-
LDA, which places a linear emphasis on each data point
[15], [16]. It is noted that irregularities in the training data
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can arise in human motion monitoring applications due to a
variety of reasons, such as mislabeling, radar malfunctions,
and intermittent/unexpected non-focal motion interference.

Motivated by the robustness of L1-LDA, we propose an
incremental L1-LDA method for indoor human activity recog-
nition. The incremental nature of the proposed method offers
two advantages over L1-LDA. First, it provides performance
enhancements under small training data conditions by incor-
porating new training data as it becomes available over the
course of system operation. Second, it enables adaptation
of activity-class descriptions based on the activity patterns
of the specific individual being monitored. We evaluate the
performance of the proposed method using experimental data
analysis in which outlier-corruption is introduced by mis-
labeling a few micro-Doppler signatures. We demonstrate
that the incremental scheme provides higher classification
accuracy as more and more data become available. We also
show that incremental L1-LDA outperforms its incremental
standard LDA counterpart for corrupted data, while providing
comparable performance under nominal data.

The remainder of the paper is organized as follows. In
Section II, we describe the radar signal model and the
proposed incremental L1-LDA method for human activity
classification. Experimental results comparing and contrasting
the performance of the proposed method with incremental
standard LDA are presented in Section III. Conclusions are
provided in Section IV.

II. PROPOSED L1-NORM LDA-BASED CLASSIFICATION
A. Signal Model

Considering a continuous-wave (CW) radar, the baseband
return corresponding to a moving point target is expressed as

s(t) = a(t)e ") (D

where a(t) and 6(t) are the respective amplitude and phase of
s(t). The derivative of (¢) provides the associated Doppler
frequency. In contrast, a human subject undergoing an activity
can be considered as a collection of moving point targets, with
its Doppler signature derived as the superposition of individ-
ual point-target Doppler frequencies. As Doppler frequencies
associated with human activities are typically time-varying,
time-frequency (TF) processing is employed to extract the
instantaneous frequency signatures characterizing the human



motions [17]-[19]. Short-Time Fourier Transform (STFT) is
the most common TF distribution, and is defined as

St f) = /s(t - T)w(T)e_j%deT, 2)

where the window function w(7) determines the trade-off
between time and frequency resolutions. In this paper, we use
the spectrogram, which is the squared magnitude of the STFT.

B. Incremental L1-Norm LDA

We consider K motion classes and assume initial avail-
ability of Ny j training Doppler signatures from class k& €
{1,2,..., K}. The nth training signature for the kth class is
obtained by sampling the corresponding spectrogram in NV,
time bins and Ny frequency bins, followed by vectorizing the
resulting signature matrix, Sy, € RV**Ns, That is,

Sk = vec(Sk.n) € RDP* Nk 3)

where D = N, Ny and vec(-) returns the column-wise vector-
ization of its matrix argument. The motion classifier organizes
the Ny signatures from the kth class in the training matrix

Sk = [Sk.1,5k.2, -+ Sk, ] € RPNk, 4)
and then zero-centers S;, to obtain
Sy =8, —my1), 5)
where
L Si1 (6)
my, = k1,
Ntr,k o+

is the mean of the kth class, 1y, , denotes the all-ones
vector of length Vi, 1, and ‘T’ denotes matrix transpose. The
linear discriminative L1-basis, Uy, spanning a d-dimensional
subspace with d < D, is obtained by solving the optimization
problem [16]

Up, = argmax Fpq(U) @)
UERDXd
u'u=l,
where ||UTA |
Fri(U) = 12001
2O = gTa, |,
Ay =[(m—my)Ngy1,...,(m—mg)Ny k],
A, =[S0, .. 8%,
and

| X
= — Z Ny pmy,.
N

We solve (7) by using the algorithm of [16], reproduced
in Fig. 1 for completeness where P(A) = A(ATA) /2
for any matrix A. In the sequel, for brevity, we sum-
marize the aforementioned operations for determiniung the
L1 discriminative subspace in the functional form Up; =
LI-LDA({S;.},, U©® 3), where U is a feasible initial-
ization and 3 € [0, 1].
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L1-LDA Basis Calculation
Input: A, and A, initial U, 8 € [0, 1]

1:  forn =1,2,... (until convergence)

2: Uold < U

3: G AngH(AJUold) — F(Uold)Angn(Aonld)

4: m+1

50 U<+ P(Uyq+8"G)

6: If Fr1(U) < Fr1(Uga), set m < m + 1 and repeat step (5)

Output: U + U

Fig. 1: L1-LDA algorithm [16] for approximately solving (7).

Let US) be the solution of (7) corresponding to the initial
training data. As more data become available during operation
of the system, we can update the bases as follows. At the nth
update index, n = 1,2,..., we consider that an additional
training point from one or more classes becomes available.
Accordingly, we define the updated training data matrices
{Sé")}szl. That is, if a single additional training point s from
the kth class becomes available, we update the training data
as S{"™ = [S{"™V s]. On the other hand, we can perform a
batch update by appending my available class k signatures,
Spach i € RP*™1 a5 8 — [80"71 S 1 1] Then, the L1-
LDA basis can be updated to the new training data as

Uppaaee = LI-LLDA({S{ Y, UTY, 8), ®)
UI(jll) = ((1 - V)Ul(jll_l) + ’YUupdate> &)

where €(-) returns an orthonormal basis for its tall matrix
argument and -y is the adaptation regularizer that takes values
n [0,1]. In practice, the size of S,(C") cannot be increased
indefinitely. Therefore, when the highest permissible number
of columns for S,&”) is reached, the oldest measurements in
S,(cn) are dropped to release space for the newly collected
training points.

C. Classification

When a discriminative basis Uy is trained, the classifier
projects a test sample, s;, on Ur; and then classifies it by
means of any standard classification algorithm. In this paper,
we employ the nearest-centroid classification [13], wherein the
classifier decides that s; belongs to the [th activity class if [
minimizes

di(si;1) = [[U] (st

—ml)HQ. (10)

III. EXPERIMENTAL RESULTS

We consider four different activities, namely, falling, bend-
ing, sitting, and walking. Using a 6 GHz CW radar, we
collected 30 Doppler signatures from each class in a laboratory
environment. Five different human subjects participated in the
experiments, who repeated each activity 6 times. All activities
were performed along the line-of-sight of the radar, with
falling, sitting, and bending at a distance of 2.75 m, while the
walking motion was carried out between 1.5 m to 4.5 m away
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from the radar. The feed point of the antenna was positioned 1
m above the floor and a sampling rate of 1 kHz was used for
data collection. One Doppler signature corresponding to each
of the four activities is illustrated in Fig. 2.

We perform four-way classification, with the classes being
fall, bend, sit, and walk. The experimental dataset comprising
30 signatures from each class is augmented by means of the
SMOTE method [20], resulting in a total of N = 40 measure-
ments per class. The subspace dimensionality is set to d = 3.
We apply the proposed incremental L1-LDA based classifier
and compare its performance with a similar incremental im-
plementation of standard LDA. We initially train U on
Ny = 6 data points from each of the four activity classes.
Then, we update the solution on 34 more measurements
from each class in two different manners. We first emulate
the single-sample increment scenario, followed by a batch-
increment version, with a batch size of three samples. Further,
we assume that the maximum allowable number of columns
for S,(cn) is 20. As such, beyond 20 measurements, we drop an
appropriate number of oldest measurements in S,(:) to make
space for the newly collected training points. The performance
is evaluated over 100 independent selections of training and
testing data. We asses the classification performance in terms
of mean accuracy rate, which is defined as the number of
correct classifications versus number of evaluation signatures

978-1-7281-1679-2/19/$31.00 ©2019 IEEE

z)

Frequency (H:

Frequency (Hz)

3
3

-500

25 3
Time (sec)

(b)

25 3
Time (sec)

(d)
Fig. 2: Doppler signatures corresponding to (a) Falling, (b) Bending to pick up an object, (c) Sitting, and (d) Walking.

classified. In Fig. 3, we plot the mean accuracy rate of single-
sample incremental versions of L1-LDA and standard LDA
for v = 0.9, versus the increment index. The mean accuracy
rate for the batch-incremental versions are provided in Fig.
4. From both Figs. 3 and 4, we observe that, as expected,
the performance of both methods increases as more training
points become available, with LDA exhibiting slightly higher
accuracy than L1-LDA.

Next, we repeat this experiment in the presence of outliers
among the training samples. For the single-sample increment
case, we consider mislabeling of two out of the four new sam-
ples that arrive at increment index 14 and at again increment
index 22. More specifically, we consider that one falling sam-
ple is mislabeled as sitting and vice versa. The corresponding
results are also provided in Fig. 3. We note that the standard
LDA is significantly affected by these mislabelings, as evident
from the drop in its performance at both indices where the
mislabelings were introduced. Moreover, we note that the
performance again improved at index 34, since at this point,
the mislabeled samples introduced at index 14 were removed
from SEC") whose maximum capacity is set as 20 samples.
On the other hand, the proposed LI-LDA exhibits much
less sensitivity to the mislabelings. Furthermore, since the
mislabeled data introduced at index 22 remain in the training
datasets, their negative impact on future performance is evident
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Fig. 3: Mean accuracy rate versus increment index for standard
LDA and L1-LDA (proposed) under single-sample increment.
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Fig. 4: Mean accuracy rate versus number increment index
for standard LDA and L1-LDA (proposed) under batch-sample
increment.

from the difference in mean accuracy rates under nominal and
corrupted data. The results for the batch-increment case are
depicted in Fig. 4, with two of the 12 new samples mislabeled
and the indices where the corrupted batches are introduced
indicated with a dashed vertical line. Similar observations to
the single-sample increment can be made in this case as well.

IV. CONCLUSION

In this paper, we proposed an incremental version of L1-
norm linear discriminant analysis method for indoor human
activity classification using Doppler signatures. The incre-
mental L1-LDA permits updates of the discriminant basis as
more training data become available. Due to the robustness of
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LI1-LDA, the proposed method attains resistance to irregular
corruptions of the training datasets. We validated the perfor-
mance of the proposed method using real data corresponding
to falling, bending, sitting, and walking. The performance of
the proposed method was compared and contrasted with an
incremental counterpart of standard LDA under both nominal
data and outlier-corrupted data. The results demonstrated that
the proposed method exhibits performance similar to that of
the standard LDA for nominal training data, while it attained
superior performance for corrupted data.
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