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Abstract—In this paper, we present an incremental version
of L1-norm Linear Discriminant Analysis (L1-LDA) for radar-
based indoor human activity classification. Incremental L1-LDA
enables refinement of the discriminant basis as more training
samples become available during operation. At the same time, it
permits adaptation to the specific activity patterns of the human
subject of interest, different than the ones on which the original
discriminant basis was trained. The incremental version retains
the robustness of L1-LDA to outliers among the training data.
Using Doppler signatures of various indoor human activities,
we demonstrate that the proposed method exhibits enhanced
performance over the incremental counterpart of standard linear
discriminant analysis when the training data are corrupted and
similar performance under nominal training data.

I. INTRODUCTION

Monitoring of indoor human activity is of increasing re-

search and development interest for a variety of civilian appli-

cations, including home security, remote patient monitoring,

and elderly assisted living. Due to its insensitivity to lighting

conditions and robustness against visual obstructions, radar is

gaining impetus among various contact-less modalities being

considered for human activity monitoring [1]–[9].

Radar-based indoor motion classification methods predom-

inantly employ discriminant features extracted from micro-

Doppler signatures associated with human activities. A ma-

jority of the work has focused on features that are extracted

in an automated fashion by optimization of some numerical

criterion. Examples of such feature-extraction methods include

Principal Component Analysis (PCA) and its variants, and

Linear Discriminant Analysis (LDA) and its variants [5], [10]–

[13]. Deep learning techniques have also been employed for

human activity recognition, but they impose a much higher

computational load and require large amounts of training data

[4], [6], [14].

Recent work has revealed that linear discriminant subspaces,

obtained using LDA, provide superior motion recognition

performance over principal components (PCs) and L1-PCs of

micro-Doppler signatures [13]. However, LDA is known to be

sensitive to the presence of irregular points among the training

data. This sensitivity arises due to the squared emphasis on the

contribution of each training point in the LDA optimization

metric. Strong resistance against irregular training has been

obtained though the L1-norm variant of LDA, called L1-

LDA, which places a linear emphasis on each data point

[15], [16]. It is noted that irregularities in the training data

can arise in human motion monitoring applications due to a

variety of reasons, such as mislabeling, radar malfunctions,

and intermittent/unexpected non-focal motion interference.

Motivated by the robustness of L1-LDA, we propose an

incremental L1-LDA method for indoor human activity recog-

nition. The incremental nature of the proposed method offers

two advantages over L1-LDA. First, it provides performance

enhancements under small training data conditions by incor-

porating new training data as it becomes available over the

course of system operation. Second, it enables adaptation

of activity-class descriptions based on the activity patterns

of the specific individual being monitored. We evaluate the

performance of the proposed method using experimental data

analysis in which outlier-corruption is introduced by mis-

labeling a few micro-Doppler signatures. We demonstrate

that the incremental scheme provides higher classification

accuracy as more and more data become available. We also

show that incremental L1-LDA outperforms its incremental

standard LDA counterpart for corrupted data, while providing

comparable performance under nominal data.

The remainder of the paper is organized as follows. In

Section II, we describe the radar signal model and the

proposed incremental L1-LDA method for human activity

classification. Experimental results comparing and contrasting

the performance of the proposed method with incremental

standard LDA are presented in Section III. Conclusions are

provided in Section IV.

II. PROPOSED L1-NORM LDA-BASED CLASSIFICATION

A. Signal Model

Considering a continuous-wave (CW) radar, the baseband

return corresponding to a moving point target is expressed as

s(t) = a(t)e−jθ(t) (1)

where a(t) and θ(t) are the respective amplitude and phase of

s(t). The derivative of θ(t) provides the associated Doppler

frequency. In contrast, a human subject undergoing an activity

can be considered as a collection of moving point targets, with

its Doppler signature derived as the superposition of individ-

ual point-target Doppler frequencies. As Doppler frequencies

associated with human activities are typically time-varying,

time-frequency (TF) processing is employed to extract the

instantaneous frequency signatures characterizing the human
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motions [17]–[19]. Short-Time Fourier Transform (STFT) is

the most common TF distribution, and is defined as

S(t, f) =

∫

s(t− τ)w(τ)e−j2πfτdτ, (2)

where the window function w(τ) determines the trade-off

between time and frequency resolutions. In this paper, we use

the spectrogram, which is the squared magnitude of the STFT.

B. Incremental L1-Norm LDA

We consider K motion classes and assume initial avail-

ability of Ntr,k training Doppler signatures from class k ∈
{1, 2, . . . ,K}. The nth training signature for the kth class is

obtained by sampling the corresponding spectrogram in Nt

time bins and Nf frequency bins, followed by vectorizing the

resulting signature matrix, Sk,n ∈ R
Nt×Nf . That is,

sk,n = vec(Sk,n) ∈ R
D×Ntr,k (3)

where D = NtNf and vec(·) returns the column-wise vector-

ization of its matrix argument. The motion classifier organizes

the Ntr,k signatures from the kth class in the training matrix

Sk = [sk,1, sk,2, . . . , sk,Ntr,k
] ∈ R

D×Ntr,k , (4)

and then zero-centers Sk to obtain

S
(zc)
k = Sk −mk1

⊤
Ntr,k

(5)

where

mk =
1

Ntr,k
Sk1Ntr,k

(6)

is the mean of the kth class, 1Ntr,k
denotes the all-ones

vector of length Ntr,k, and ‘⊤’ denotes matrix transpose. The

linear discriminative L1-basis, UL1, spanning a d-dimensional

subspace with d < D, is obtained by solving the optimization

problem [16]

UL1 = argmax
U∈R

D×d

U
⊤
U=Id

FL1(U) (7)

where

FL1(U) =
‖U⊤

Ab‖1
‖U⊤Aw‖1

,

Ab = [(m−m1)Ntr,1, . . . , (m−mK)Ntr,K ],

Aw = [S
(zc)
1 , . . . ,S

(zc)
K ],

and

m =
1

N

K
∑

k=1

Ntr,kmk.

We solve (7) by using the algorithm of [16], reproduced

in Fig. 1 for completeness where P (A) = A(A⊤
A)−1/2

for any matrix A. In the sequel, for brevity, we sum-

marize the aforementioned operations for determiniung the

L1 discriminative subspace in the functional form UL1 =
L1-LDA({Sk}

K
k=1,U

(0), β), where U
(0) is a feasible initial-

ization and β ∈ [0, 1].

L1-LDA Basis Calculation

Input: Ab and Aw, initial U, β ∈ [0, 1]
1: for n = 1, 2, ... (until convergence)
2: Uold ← U

3: G← Absgn(A⊤

b Uold)− F (Uold)Awsgn(A⊤

wUold)
4: m← 1
5: U← P (Uold + βm

G)
6: If FL1(U) < FL1(Uold), set m← m+ 1 and repeat step (5)

Output: UL1 ← U

Fig. 1: L1-LDA algorithm [16] for approximately solving (7).

Let U
(0)
L1 be the solution of (7) corresponding to the initial

training data. As more data become available during operation

of the system, we can update the bases as follows. At the nth

update index, n = 1, 2, . . ., we consider that an additional

training point from one or more classes becomes available.

Accordingly, we define the updated training data matrices

{S
(n)
k }Kk=1. That is, if a single additional training point s from

the kth class becomes available, we update the training data

as S
(n)
k = [S

(n−1)
k , s]. On the other hand, we can perform a

batch update by appending m1 available class k signatures,

Sbatch,k ∈ R
D×m1 , as S

(n)
k = [S

(n−1)
k ,Sbatch,k] Then, the L1-

LDA basis can be updated to the new training data as

Uupdate = L1-LDA({S
(n)
k }Kk=1,U

(n−1)
L1 , β), (8)

U
(n)
L1 = Ω

(

(1− γ)U
(n−1)
L1 + γUupdate

)

(9)

where Ω(·) returns an orthonormal basis for its tall matrix

argument and γ is the adaptation regularizer that takes values

in [0, 1]. In practice, the size of S
(n)
k cannot be increased

indefinitely. Therefore, when the highest permissible number

of columns for S
(n)
k is reached, the oldest measurements in

S
(n)
k are dropped to release space for the newly collected

training points.

C. Classification

When a discriminative basis UL1 is trained, the classifier

projects a test sample, st, on UL1 and then classifies it by

means of any standard classification algorithm. In this paper,

we employ the nearest-centroid classification [13], wherein the

classifier decides that st belongs to the lth activity class if l

minimizes

dL1(st; l) = ‖U⊤
L1(st −ml)‖2. (10)

III. EXPERIMENTAL RESULTS

We consider four different activities, namely, falling, bend-

ing, sitting, and walking. Using a 6 GHz CW radar, we

collected 30 Doppler signatures from each class in a laboratory

environment. Five different human subjects participated in the

experiments, who repeated each activity 6 times. All activities

were performed along the line-of-sight of the radar, with

falling, sitting, and bending at a distance of 2.75 m, while the

walking motion was carried out between 1.5 m to 4.5 m away
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(a) (b)

(c) (d)

Fig. 2: Doppler signatures corresponding to (a) Falling, (b) Bending to pick up an object, (c) Sitting, and (d) Walking.

from the radar. The feed point of the antenna was positioned 1

m above the floor and a sampling rate of 1 kHz was used for

data collection. One Doppler signature corresponding to each

of the four activities is illustrated in Fig. 2.

We perform four-way classification, with the classes being

fall, bend, sit, and walk. The experimental dataset comprising

30 signatures from each class is augmented by means of the

SMOTE method [20], resulting in a total of N = 40 measure-

ments per class. The subspace dimensionality is set to d = 3.

We apply the proposed incremental L1-LDA based classifier

and compare its performance with a similar incremental im-

plementation of standard LDA. We initially train U
(0) on

Ntr = 6 data points from each of the four activity classes.

Then, we update the solution on 34 more measurements

from each class in two different manners. We first emulate

the single-sample increment scenario, followed by a batch-

increment version, with a batch size of three samples. Further,

we assume that the maximum allowable number of columns

for S
(n)
k is 20. As such, beyond 20 measurements, we drop an

appropriate number of oldest measurements in S
(n)
k to make

space for the newly collected training points. The performance

is evaluated over 100 independent selections of training and

testing data. We asses the classification performance in terms

of mean accuracy rate, which is defined as the number of

correct classifications versus number of evaluation signatures

classified. In Fig. 3, we plot the mean accuracy rate of single-

sample incremental versions of L1-LDA and standard LDA

for γ = 0.9, versus the increment index. The mean accuracy

rate for the batch-incremental versions are provided in Fig.

4. From both Figs. 3 and 4, we observe that, as expected,

the performance of both methods increases as more training

points become available, with LDA exhibiting slightly higher

accuracy than L1-LDA.

Next, we repeat this experiment in the presence of outliers

among the training samples. For the single-sample increment

case, we consider mislabeling of two out of the four new sam-

ples that arrive at increment index 14 and at again increment

index 22. More specifically, we consider that one falling sam-

ple is mislabeled as sitting and vice versa. The corresponding

results are also provided in Fig. 3. We note that the standard

LDA is significantly affected by these mislabelings, as evident

from the drop in its performance at both indices where the

mislabelings were introduced. Moreover, we note that the

performance again improved at index 34, since at this point,

the mislabeled samples introduced at index 14 were removed

from S
(n)
k whose maximum capacity is set as 20 samples.

On the other hand, the proposed L1-LDA exhibits much

less sensitivity to the mislabelings. Furthermore, since the

mislabeled data introduced at index 22 remain in the training

datasets, their negative impact on future performance is evident
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Fig. 3: Mean accuracy rate versus increment index for standard

LDA and L1-LDA (proposed) under single-sample increment.
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Fig. 4: Mean accuracy rate versus number increment index

for standard LDA and L1-LDA (proposed) under batch-sample

increment.

from the difference in mean accuracy rates under nominal and

corrupted data. The results for the batch-increment case are

depicted in Fig. 4, with two of the 12 new samples mislabeled

and the indices where the corrupted batches are introduced

indicated with a dashed vertical line. Similar observations to

the single-sample increment can be made in this case as well.

IV. CONCLUSION

In this paper, we proposed an incremental version of L1-

norm linear discriminant analysis method for indoor human

activity classification using Doppler signatures. The incre-

mental L1-LDA permits updates of the discriminant basis as

more training data become available. Due to the robustness of

L1-LDA, the proposed method attains resistance to irregular

corruptions of the training datasets. We validated the perfor-

mance of the proposed method using real data corresponding

to falling, bending, sitting, and walking. The performance of

the proposed method was compared and contrasted with an

incremental counterpart of standard LDA under both nominal

data and outlier-corrupted data. The results demonstrated that

the proposed method exhibits performance similar to that of

the standard LDA for nominal training data, while it attained

superior performance for corrupted data.
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