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Grassmann Manifold Optimization for Fast L1-Norm

Principal Component Analysis
Breton Minnehan , Member, IEEE, and Andreas Savakis, Senior Member, IEEE

Abstract—In this letter, we propose a fast Grassmann mani-
fold optimization method for L1 -norm based principal component
analysis (GM-L1 -PCA). Our approach is a two-step iterative cost-
minimization and manifold retraction technique that efficiently
finds all principal components simultaneously. We perform com-
plexity analysis and show that GM-L1 -PCA achieves a significant
reduction in processing time while obtaining comparable or bet-
ter results to current state-of-the-art L1 -PCA methods. We fur-
ther demonstrate the improvement of GM-L1 -PCA technique over
L2 -PCA on a dataset of facial imagery corrupted with outlying
data points. Our experiments show that GM-L1 -PCA is compu-
tationally more efficient and produces results with lower repro-
jection error than previous methods. Furthermore, the processing
time of our approach is relatively independent of dataset size and
well suited for various big-data problems commonly encountered
today.

Index Terms—Robust principal component analysis, L1 -PCA,
Grassmann manifold optimization, dimensionality reduction, big
data.

I. INTRODUCTION

M
ANY of the techniques employed in deep learning to-
day trace their roots back to the field of signal process-

ing. Notable examples include gradient descent optimizers [1],
2-D convolutions [2] and batch normalization [3]. In this letter,
we propose a method for linear dimensionality reduction that
combines the Grassmann Manifold (GM) optimization method
first proposed in [4] with a computational framework developed
for deep learning. The Grassmann manifold GD×K is the set of
all rank-K subspaces in R

D . Since the GM includes all possi-
ble orthogonal projections of the data, the Principal Component
Analysis (PCA) solution resides on a Grassmann manifold. This
observation allows us to use the GM optimization technique for
the challenging L1-norm based Principal Component Analysis
(L1-PCA) problem [5], [6].

Outlier invariant dimensionality reduction is a useful tool
for many applications from signal analysis to classification and
machine learning problems. We focus on L1-PCA, because L2-
PCA is highly influenced by outliers in the training set [7],
whereas L1-PCA has been found to be outlier insensitive. An
illustrative example is presented in Fig. 1 and discussed in more
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Fig. 1. Example principal components with the proposed GM-L1 -PCA (Top)
method and L2 -PCA (Bottom) resulting from training on a dataset of facial
images with 10% of the sample corrupted with uniform noise. Higher order
principal components capture less noise in the L1 -norm formulation.

detail in the results section. Current L1-PCA methods, however,
have a high computational cost. Obtaining a fast solution to
the L1-PCA problem would be beneficial in many applications
utilizing principal component analysis and useful in big data
applications such as face recognition [8], [9], video background
removal [10] and image outlier detection [11].

II. BACKGROUND

Much of the research in PCA has dealt with methods based on
the L2-Norm version [12]–[14]. Due to the properties of the L2-
Norm, there are several equivalent optimization formulations
for L2-PCA [14]. However, only two of them are pertinent to
this work. First, as originally proposed in [12], an orthogonal
projection R is learned in order to project the D dimensional
input data X to a K dimensional representation, where D >
K, such that the L2-Norm between the original data and its
reprojection is minimized, as represented in

RL2
= arg min

R∈RD ×K ,RT R=IK

(‖X − XRR
T ‖2

2) (1)

The second formulation of interest for L2-PCA, given in Eq.
(2), aims to maximize the energy of the data in the projection
space. The solution for L2-PCA can be obtained by decompos-
ing the covariance matrix of the input data, XX

T , and taking
the eigenvectors corresponding to the K highest eigenvalues.

RL2
= arg max

R∈RD ×K ,RT R=IK

(‖XR‖2
2) (2)

If the data contains outliers from a significantly different
distribution, the noise has a destructive impact on the principal
component. This effect is more apparent in the case of the L2-
PCA because of the squared magnitude in the L2-Norm, as
explained in [7].

One approach to minimizing the impact of outlying data
points is to replace the L2-Norm with the L1-Norm when calcu-
lating the principal components (PCs). The drawback to using
the L1-Norm is that the reprojection theorem does not hold un-
der the L1-Norm, thus the Singular Value Decomposition (SVD)
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method used for the L2 norm can no longer be used. Addition-
ally, the corollary L1 optimization problems, in Equations (3)
and (4), are not equivalent.

RL1
= arg min

R∈RD ×K ,RT R=IK

(‖X − XRR
T ‖1) (3)

RL1
= arg max

R∈RD ×K ,RT R=IK

(‖XR‖1) (4)

It is not known which optimization formulation is best suited
for L1-PCA. One of the advantages of our approach is that it
can be used with either of the above loss functions. Some works
have focused on minimizing the reprojection error in (3), for
example [6], [15]–[17]. However, due to the non-smooth error
surface, an optimal solution has not yet been developed. The
L1 energy maximization formulation, Eq. 4, has been demon-
strated to be more tractable. Two optimal solutions have been
developed in [18], [19] with computational complexityO(2N K )
and O(N rank(X)K−K +1), respectively, where N is the num-
ber of data points. More recently a sub-optimal but more effi-
cient method for L1-PCA was proposed in [20]. In this work,
Markopoulos et al. develop a method which greedily searches
for each L1 principal component using bit flipping to find the
components that maximize the projection energy.

III. METHODOLOGY

The proposed Grassmann Manifold optimization for L1-
PCA (GM-L1-PCA) is inspired by a general dimensionality
reduction framework using GM optimization [4]. Cunningham
and Ghahramani demonstrate in [4] that GM optimization can
be used to solve for all of the L2 PCs simultaneously us-
ing a two-step iterative objective-optimization and manifold-
retraction process. They experimentally show that the GM
retraction method produces identical results to the optimal SVD-
decomposition method.

In this letter, we propose a deep learning formulation that uses
gradient descent (SGD) with momentum [21] during backprop-
agation, instead of the line-search optimization method along
the manifold tangent used in [4]. We utilize the Tensorflow deep
learning framework [22] to perform back-propagation with au-
tomatic differentiation without the need to first obtain a closed
form solution for the symbolic derivatives of the objective func-
tions. Thus, our framework allows for more diverse objective
functions, such as those in Equations (3) or (4). Furthermore,
SGD with momentum has the ability to avoid local minima on
highly non-convex error surfaces, which results in better con-
vergence compared to SGD [21].

The pseudo-code for GM-L1-PCA is given in Algorithm 1.
The gradients for weight values in R are calculated using au-
tomatic differentiation, which systematically applies the chain
rule. This results in the updated matrix R̄i = Ri + Zi , where
Zi = λZi−1 −∇R i

l. A visual depiction of the two step itera-
tive GM optimization process is shown in Fig. 2. In the first
step, the projection matrix is optimized by back-propagating
the loss of the objective function using gradient descent. This
is done for each iteration i by taking a step, Zi , in the direction
of the loss gradient at the current location Ri , where λ is the
momentum parameter, fX is the loss function and l is the loss
for the the data X at current location Ri . However, it is likely
that any step Zi will result in R̄i leaving the Grassmann Mani-
fold, which means that its components are no longer orthogonal.
Thus, in order to preserve orthogonality, after each optimization
iteration the updated matrix must be retracted to the manifold by

Fig. 2. Visualization of the GM optimization process to update the projection
matrix R for the ith iteration in Algorithm 1. The first step is to update R along
the direction of the gradient of the loss. The second step retracts the updated
projection back to the closest subspace on the Grassmann manifold. This process
is repeated for a number of iteration specified by the user.

a retraction operation rR (R̄i). The goal of the retraction step is
to find the closest subspace on the manifold to the updated matrix
R̄i . Fortunately, because of the unitary invariance of the Frobe-
nius norm, SVD can be used to find the closest subspace on the
manifold as, rR (R̄i) = UiV

T
i , given (Ri + Zi) = UiΣiV

T
i ,

where Ui and V
T
i are orthogonal D × K and K × K matri-

ces, respectively, and Σi is the matrix of singular values. This
results in the update step πR i

along the Grassmann manifold to
the matrix Ri+1 . Because the GM is locally linear, the gradient
step Zi is larger in magnitude than the retraction step rR (R̄i)
and contributes most heavily to the update step πR i

along the
manifold. By updating the matrix Ri with a step in the direction
that minimizes the loss, l, GM-L1-PCA converges to a local
minimum since the loss is lower bounded by zero, assuming
that the step size is small and the surface is locally smooth as in
other gradient descent methods, [15], [23].

A. Computational Complexity

We next perform complexity analysis on the GM-L1-PCA.
As shown in Algorithm 1, the proposed framework primarily
consists of three parts: projection, back-propagation and man-
ifold retraction. In the data projection step, first the projection
matrix is multiplied with its transpose then the resulting ma-
trix is multiplied with the input data, thus the complexity is
O(DKD+NDD). The next step is the backwards propaga-
tion of the loss, which includes two substeps: calculating the
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loss and calculating the partials of the derivatives of the loss
with respect to the weights. The loss is calculated by taking the
L1 norm of the projected and original data, thus its complex-
ity is O(2ND). Once the loss is calculated, the complexity of
calculating the partial derivatives is O(NDK). The last step
of the algorithm is the retraction of the weight matrix on the
Grassmann manifold. This step is done by performing SVD
of the network weights with complexity O(D2K+K3). This
leads to the overall computational complexity of our algorithm
as O(D2(2K+N)+ND(2+K)+K3), per iteration.

Our complexity analysis above suggests that the three most
influential factors in the processing time for GM-L1-PCA are:
the number of iterations of the algorithm, the input dimensions
of the data D and the number of components extracted K.
This means that the data-set size N plays a relatively small
role in the processing time of the algorithm, which makes the
GM-L1-PCA algorithm well-suited for big data applications.
This is especially evident when the computational complexity
of GM-L1-PCA is compared to BF-L1-PCA, with a complexity
of O(ND min(N,D)+N 2K2(K2 +D)).

In our implementation we initialize the PCs with the results
from standard L2-PCA. If we assume that the L1 PCs are found
in the local neighborhood of the L2 PCs, this initialization
reduces the number of optimization iterations. An alternative
would be to perform multiple runs with random initializations
and keep the best result. In our experiments, we found that in
addition to faster convergence, initializing with the L2-PCA
components resulted in better consistency in the obtained solu-
tion compared to random initialization.

IV. RESULTS

We ran two sets of experiments, both designed to demon-
strate the improved robustness with respect to noise of L1-PCA
relative to L2-PCA. In our first set of experiments we use data
generated from a set of random Gaussian distributions that were
corrupted with outlying samples from a significantly different
distribution. In the second set of experiments we artificially
corrupt a facial identification dataset by replacing images with
white noise. The goal of each experiment is to learn a linear
projection to a lower dimensional space that optimally captures
the signal in each dataset and not the noise. Thus, in our ex-
periments, we extract the PCs on a dataset corrupted by noise
then we test the reconstruction accuracy on a holdout set of
data that is uncorrupted. We use the reprojection error of the
clean holdout data as the performance metric for this work with
the understanding that the method that better reconstructs the
uncorrupted test data has learned more representative princi-
pal components for the true data without being affected by the
noise. All data in these experiments were centered, i.e., made
zero-mean for both the training and testing sets.

For all these experiments Eq. (3) was used to optimize R.
All experiments were performed on a computer running Red
Hat Enterprise Linux Server 7.4 with four Intel Xeon E5-2650
CPUs.

A. Toy Dataset Experiments

For these experiments, we generated data that was sampled
from a random 25-dimensional Gaussian distribution. We ran-
domly replace 10% of the training set with values from a signifi-
cantly different random distribution. By examining the behavior

Fig. 3. Average reprojection error comparing three PCA methods, L2 -PCA,
BF-L1 -PCA and GM-L1 -PCA, for various numbers of principal components.
Mean and standard deviations calculated from 100 runs.

Fig. 4. Left: Percent improvement of proposed GM-L1 -PCA and Bit-Flipping
L1 -PCA methods relative to L2 -PCA for various numbers of principal compo-
nents. Right: Percent improvement of proposed GM-L1 -PCA and Bit-Flipping
L1 -PCA methods relative to L2 -PCA for datasets with various numbers of
samples. Mean and standard deviations for both experiments were calculated
from 100 runs on randomly generated datasets.

of the algorithms in the presence of data corruption we better un-
derstand the impact of noise on the extracted PCs. We examined
the performance of the PCA methods, in terms of both speed and
reprojection accuracy, relative to the dataset size and number of
PCs calculated. For these experiments we generated 100 sepa-
rate datasets and present the mean and standard deviation across
all 100 tests. We compare the reprojection error achieved by our
method with the results from a SVD-based implementation of
L2-PCA and the current state-of-the-art BF-L1-PCA [20].

In the first set of experiments we used a constant training
set size of 400 samples and an uncorrupted test set with 100
samples. We then varied the number of principal components
extracted from 1 to 24. The average re-projection error for L2-
PCA, BF-L1-PCA and GM-L1-PCA are shown in Fig. 3. It
is clear in these plots that both L1-PCA methods outperform
L2-PCA until 24 principal components are calculated at which
point the re-projection error for all methods is extremely low.

In order to highlight the improvement of the L1-PCA methods
over L2-PCA we also plot the relative percent improvement
in reprojection error of both L1-PCA methods relative to L2-
PCA. The improvement of both methods relative to L2-PCA for
varying number of principal components is shown on the left
plot of Fig. 4.

For our second set of experiments with the toy dataset the
number of extracted principal components was kept constant at
10, and the dataset size was varied from 25 to 600. Again we
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Fig. 5. Results illustrating the computational efficiency of GM-L1 -PCA. Left:
Processing time for PCA algorithms run on 400 samples from the toy datasets
with varying number of output dimensions between 1–24. Right: Processing
time for PCA algorithms run on varying number of samples 25-600 from the
toy datasets with a constant output dimension of 10. Time axis is on a logarithmic
scale illustrating the large improvement in execution speed for the GM-L1 -PCA.

plot the relative reduction of reprojection error of both L1-PCA
methods compared to L2-PCA. The results of these experiments
are shown in the right plot of Fig. 4. In all instances GM-L1 -PCA
has a lower reprojection error than the L2-PCA and generally
improves on the state-of-the-art L1-PCA method.

In addition to reprojection error we also investigate the im-
pact of the number of extracted components and the dataset
size on execution time. The plots in Fig. 5 show the process-
ing time for each method for both sets of experiments on the
toy dataset. It is clear in these experiments that GM-L1-PCA
method is much faster than BF-L1-PCA and can produce L1-
PCA results at a relative constant time irrespective of num-
ber of extracted components and the size of the dataset. While
GM-L1-PCA is not as fast as L2-PCA, it achieves a fast pro-
cessing time that is modestly increasing, from 0.7 to 1.6 sec-
onds, with respect to both dataset size and number of principal
components.

B. Labeled Faces in the Wild Experiments

For our next experiments, we worked with Labeled Faces
in the Wild (LFW) [24], a dataset consisting of 13,233 faces.
Images were converted to gray-scale and resized to 31× 23
pixels for processing. We tested GM-L1-PCA on a dataset where
10% of the images in the training set are replaced with random
white noise. We plot the relative reduction in error of GM-L1-
PCA relative to L2-PCA in Fig. 7. The reconstruction error
shown in the plot is consistent with the common intuition about
the behaviour of L1 and L2 based PCA methods in the presence
of outliers. When few principal components are extracted both
L1 and L2 based methods perform similarly, however, as more
compenents are extracted the L2 based method is more impacted
by outliers than the GM-L1-PCA. The roughly 45% reduction
in reprojection error achieved by GM-L1-PCA confirms that
L1-PCA learns principal components that are less impacted by
noise.

In addition to quantitative results, we provide visual exam-
ples in Fig. 6 for reprojections of uncorrupted test images using
GM-L1-PCA and standard L2-PCA. These examples show that
the L1 principal components generate projections that have sig-
nificantly less noise. This is particularly evident in areas of
low variance such as the forehead or cheek region. The im-
ages in Fig. 1 show various principal components learned by
L1 and L2 PCA in these experiments. The lower order PCs,
1–50, are similar for both L1 and L2-PCA, probably due to the

Fig. 6. Reprojection of face images using 100 components of the proposed
GM-L1 -PCA and L2 -PCA, both extracted from a corrupted face training set.
Top: Original Image. Center: Reprojection using L2 -PCA (the noise is visible
in the reprojection). Bottom: Reprojection using GM-L1 -PCA.

Fig. 7. Relative improvement in reprojection error of the GM-L1 -PCA
method versus L2 -PCA.

initialization of L1-PCA at the L2-PCA components. The dif-
ference is more apparent for the higher order components where
L1-PCA captures more facial structures, such as edges around
the eyes and nose, in comparison to the L2 components.

V. CONCLUSION

This research presents a Grassmann Manifold optimization
framework for L1 Norm based Principal Component Analy-
sis. We perform complexity analysis and provide experimental
results which demonstrate that the proposed method is much
faster than current state-of-the-art L1-PCA methods. Computa-
tion time of the GM-L1-PCA method is not significantly affected
by data size which makes it uniquely suited for the big-data
problems commonly faced in applications.
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