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ABSTRACT

Most commonly used classification algorithms process data in the form of vectors. At the same time, mod-
ern datasets often comprise multimodal measurements that are naturally modeled as multi-way arrays, also
known as tensors. Processing multi-way data in their tensor form can enable enhanced inference and classi-
fication accuracy. Tucker decomposition is a standard method for tensor data processing, which however has
demonstrated severe sensitivity to corrupted measurements due to its L2-norm formulation. In this work, we
present a selection of classification methods that employ an L1-norm-based, corruption-resistant reformulation
of Tucker (L1-Tucker). Our experimental studies on multiple real datasets corroborate the corruption-resistance
and classification accuracy afforded by L1-Tucker.

Keywords: Classification, L1-norm Tucker, multi-modal data, tensor processing, Tucker decomposition.

1. INTRODUCTION

Classification is the task of detecting the class which an unknown data sample belongs to. In its supervised and
semi-supervised versions, classification relies on an available collection of training samples from the classes of
interest. Commonly, data samples are organized and processed in the form of vectors. Over the past decades,
an array of successful vector-based classification algorithms have been presented in the literature, including, for
example, Support Vector Machines (SVM) [1], k-Nearest Neighbors (k—NN) [2], Naive Bayes [3], Random Forest
[4], Nearest Subspace (NS) [5, 6], and Artificial Neural Network (ANN) classifiers following Deep Learning (DL)
paradigm [7, 8].

Modern datasets comprise large volumes of measurements, collected across diverse sensing modalities, and
naturally organized in higher-order arrays (matrices, tensors). Over the past few years, it has been documented
that analyzing multi-way data in their natural tensor form can enable the discovery of patterns and underlying
structures that can significantly enhance inference and learning [9]. Accordingly, taking into account inter-
modality dependencies of the data, tensor processing has also been shown to be beneficial in terms of classification
accuracy [10]. Over the past decade, multiple works in the literature have presented classification algorithms
that employ tensor processing, commonly carried out by Tucker decomposition [11] <implemented by means of
Higher Order Singular Value Decomposition (HOSVD)- or Canonical Polyadic Decomposition (CPD) [12, 13].

At the same time, rigorous studies have shown that Tucker and CPD are significantly sensitive against outliers
(samples that significantly deviate from the nominal ones) [14, 15], due to their L2-norm-based formulations.
In this work, we present a selection of successful tensor-based methods for classification of multi-way data
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and combine them with corruption-resistant L.1-Tucker. Then, we conduct experimental studies on real-world
datasets, which corroborate that L1-Tucker decomposition exhibits significant robustness against outliers among
the processed data.

2. PROBLEM STATEMENT

We consider L > 2 classes of N-way measurements of size Dy X Do X ... X Dy. For supervised classification,
we consider availability of T; training data samples Xl(i), e X}f) € RP1>-- XD~ from class 4, collated across the
(N + 1)-th (sample) mode of X () € RP1x--xDnxTi = A gupervised classifier will be trained on {XM}E£ | so as
to be able to detect the source-class of any new (testing) sample Y € RP1>--xDPn

In standard vector processing, for any i,¢, tensor sample Xt(i) would be vectorized into Xgi) € RY, where
W= HnN:1 D,,. Accordingly, X would be mode-(N + 1) unfolded/flattened* into

XO = [20) ) = D xP) e RV (1)

Then, a standard classifier (e.g., SVM) would be trained on {X (" }£ | and tested on new vector y = vec(Y) € RW.

In this work, we focus on classifiers that rely on tensor analysis of the original tensor training and testing
measurements, {X}L | and Y, respectively. In the next Section, we briefly review Tucker and L1-Tucker
tensor decompositions.

3. LI-TUCKER ANALYSIS OF TENSOR DATA
3.1 Review of Tucker Formulation

Consider N-way tensor X € RP1xDP2X-XDn and integers dy,ds,...,dy such that d, < D, Vn. Standard
(L2-norm based) Tucker decomposition seeks to solve

s s 2
gomimimize [l X =G xnep) Qull, @

{QnerP ¥4 QI Qu=14, }

N

n=1

where the L2-norm || - ||% returns the summation of squared entries of its input tensor argument and, for brevity,
[N] ={1,2,...,N} and X,c;n)Qn = x1Q1 X2 Q2 X3 ... Xny Qn. Denoting by G2 and {QL2}N_, the optimal

core and factors, respectively, it can be shown that G2 = X X ne[N] Q%QT. Accordingly, Tucker decomposition
in (2) can be simplified to a pursuit of {QL2}N_, as

’ 2

(3)

maximize HX X ne[N] Qn—r .
{QneRDnan§ QIQn:Idn}le F
Finally, given Tucker-optimal core and factors, X can be approximated by the reduced-Tucker-rank tensor
xl?2 = ng Xne[N] %7,27 or, equivalently, xt2=x Xne[N] QIrJLzQIrJLzT'

A popular solver for Tucker decomposition is the HOSVD algorithm which approximates Q%2 by means of
singular value decomposition (SVD) of the mode-n flattening of X [17]. That is, HOSVD approximates QL2 by

Q. = [®([X]wm)]. 1.4, » (4)

where, for any D x M matrix A with SVD UXpy,y V', ®(A) = U contains its left-hand singular vectors, in
order of decreasing corresponding singular value.

*Consider tensor A € RP1X*PN_ For any n € {1,2,...,N} and any set of indices {im}meq1,2,...,Ny\n, Vvector
[Alir o oin_1sving1riy € RP™ is one out of the W, = 1,4, Di mode-n fibers of A. A matrix [A],) € RP»XWn that
contains as columns all mode-n fibers of A is known as the mode-n flattening (or mode-n matrix unfolding) of A [16].
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In many applications of interest, the processed tensor X is formed by, say, mode-N concatenation of Dy
coherent (N — 1)-way samples. In such cases, it may be of interest to jointly decompose all Dy samples as

Dy )
maximize P P _ TH 5
{Qn,ERD”Xd"; QIQWZIdn ib\f;ll J; H[ ]-,....,.7‘7 nE[N 1] Qn F ( )
which is known as Tucker2 decomposition and derives from (3) by simply fixing Qn = Ip,. Similarly,

standard Tucker decomposition in (3) can be viewed as a Tucker2 decomposition of a (N + 1)-way tensor
X € RP1xDPaxe.xDnx1 Thys, any Tucker solver (e.g., HOSVD) can be used for Tucker2 decomposition and vice
versa.

3.2 L1-Tucker Formulation

Standard Tucker decomposition in (3) relies on the L2-norm, which places squared emphasis on each entry of the
processed tensor, benefiting high-magnitude/peripheral entries (outliers). Such entries are typically unexpected
and undesired and result due to corruption of the dataset at hand. To remedy the impact of outliers, an
Ll-norm-based formulation of Tucker (L1-Tucker) was recently proposed in [18] as

maximize X X T 6
{QuerPnxin; QTQn=la, },_, 1% >neim Q- (6)

where || - ||1 returns the sum of the absolute values of its argument. Similar to standard Tucker, having obtained

a set of orthonormal factors {QL! € RP»>dn; Q%lTle =1, })_, by solving (6), the core tensor of L1-Tucker

is given by Gt = X X ne[N] Ql;l—r. Accordingly, X is low rank approximated by Xl = git X ne[N] QLL.
L1-Tucker2 can also be formulated by fixing Qny = Ip, in (6). An approximate solution to L1-Tucker and L1-
Tucker2 can be obtained by L1-HOSVD, the L1-norm based analogous solver of the standard HOSVD algorithm
[18]. L1-HOSVD is presented in Section 3.3.

For the special case of N = 3, L1-Tucker2 was also studied in [19]. For N = 3 and d; = ds = 1, it was recently
shown that L1-Tucker2 can be cast as a combinatorial problem over variables in {£1} [15] and the first ever
exact solver was offered. In view of the theoretical findings in [15], a novel approximate solver for L1-Tucker2
was offered in [20] for N = 3 and any d; and dy. Finally, a state-of-the-art solver for L1-Tucker2 of 3-way tensors
was offered in [21].

3.3 L1-HOSVD Algorithm

Motivated by HOSVD, authors in [18] proposed to approximate the n-th orthonormal factor of L1-Tucker in (6)
by L1-PCA the mode-n flattening of X. That is, for every n, LI-HOSVD seeks

Qb= s QTR "
QERDn xdn ; QTQ:Idn

The L1-PCA formulation of (7) has been extensively studied over the past few years. In [22], it was shown
that L1-PCA can be cast as a combinatorial problem over antipodal binary variables and the first ever exact
algorithms for its solution were offered. Prior to the exact algorithms of [22], a conceptually simple approximate
solver based on alternating maximization was presented in [23]. More recently, a state-of-the-art solver was
offered in [24] and an adaptive solver for L1-PCA was offered in [25]. Finally, the first ever solvers for L1-PCA of
complex-valued matrices were offered in [26]. In this work, we employ the solver of [23] for computing a solution
to (7), as shown below.

The optimization problem in (7) is equivalent to [22]

max. Tr (Q' [X](mB). 8
o %oy Q[ B) (8)
Be{£1}Wnxdn
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L1-HOSVD solver for L1-Tucker (or L1-Tucker2) [18]

Input: X € RP1X*Pn g 1N
1: {QI;LI—HOSVD «— QI;LIOSVD}L\JZI

2: forn=1,2,....,N % Li-Tucker2: Substitute N by N —1 and fix Qx™" =1Ip,
3: Until termination/convergence, do
4: QZI»HOSVD «— \I’ ([X} (n)sgn ([X]Ern) Qzl»HOSVD))

Return: {QL"7OSVPIN_|

Figure 1: L1-HOSVD algorithm [18] for solving L1-Tucker (or L1-Tucker2) in (6).

In accordance with the Procrustes Theorem [27], for any fixed B and SVD [X],,,B o UX,, x4, V', maximiza-
tion in (8) is attained for Q = ¥ ([X](,,)B) = UV . Similarly, for any fixed orthonormal basis Q, maximization
in (8) is attained for B = sgn([X]E';L)Q). By these observations, and similar to [23], one may initialize to an

arbitrary orthonormal basis Q(®) and perform alternating updates as

B® = sgn ([¥](,,Q") . (9)
Q) = w (12, B") (10)
for t =0,1,...,. Conveniently, the update of the antipodal binary matrix B can be absorbed in the update of

the orthonormal basis matrix, leading to the compact-form update
QY = w ([ ysen (1%17,Q)) . (11)

The update in (11) provably increases the L1-PCA metric in (7) and, since the metric is upper bounded by
the exact solution of [22], convergence is guaranteed [18]. Steering again our focus to (7), one can initialize

O = QLosYD Y e [N], and perform updates similar to the update in (11), until the L1-PCA metric of (7)
ceases to increase. A pseudocode of the presented L1-HOSVD algorithm is offered in Fig. 1.

4. OPTIONS FOR CLASSIFICATION BASED ON L1-TUCKER

There is an array of works in the literature that study tensor-based classification (e.g., see [28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39]). In this section, we present four selected approaches, reformulated to employ L1-Tucker
decomposition.

4.1 Approach 1: Low-Rank Samples Approximation by Per-Class L1-Tucker2

Per the notation of Section 2, we consider (N + 1)-way tensor X (") that contains T; N-way training samples
form class 4. This approach applies L1-Tucker2 decomposition on X to obtain class-specific orthonormal
factors ng),..., g\l]). The core tensor and lower rank approximation of X are accordingly computed as

G =X x,cn QSZ)T and X = g X ne[N] QY. respectively. In practice, X®) contains reduced-Tucker-
rank representations of the original tensor samples, such that similarity among distinct classes (due to noise,
or low-variance components) is restrained. Then, for every i, the processed tensor samples are vectorized and
arranged as columns of X () = [.f(i)](TNH) € RWxTi_ Finally, {X(®}L | are given as input to any standard
vector-based classifier.

As an example, given testing sample Y and its vectorized representation y = vec(Y), authors in [28] (where
Tucker was used instead of L1-Tucker) proposed to classify it to class i*, if

T T @)] .
X\,
i* = argmax y X iy L (12)
ie{1.2,...0} 521 Tillyllp[XO]. 51l
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The above classification metric captures the average angular proximity of vec(y) to the training samples of the

i-th class. Under the same approach, other classifiers can also be used, such as SVM, k-NN, or NS. For example,
by NS, the classifier assigns Y to class i*, if

. T

1* = argmin Hy —uu® yH , (13)

i€{1,2,...,L} F

where U®) = [@()A((i))]:JK, for some K < min{W,T;}.

4.2 Approach 2: Feature Extraction by Joint-Class Tucker2

Originally presented in [10] for standard Tucker decomposition, this approach compresses the training data and
extracts their most significant features by joint tensor analysis across all classes. Same as above, we consider
(N 4 1)-way tensor X € RP1x-xPnxTi containing the T; training samples that are available from class i.
Then, we concatenate X1 ... X across their (N + 1)-th mode to define the all-class training tensor X €
RP1XXDNXT where T = Zle T;. Next, we carry out L1-Tucker2 decomposition of X to obtain orthonormal
factors {Q,}Y_; and core tensor G € RU*--*dvxT " The mode-(N + 1) slabs of G (i.e., N-way tensors that
derive by fixing the mode-(N + 1) index of G) are the reduced-size features extracted from the original training
samples. These slabs are then vectorized and collated to form G = [g]INH) € R¥*T, where w = Hi:fﬂ d,.
Finally, G is given as input to any standard classifier (e.g., &-NN, SVM, NS, ANN, or other). During testing,
the corresponding w features are first extracted from testing sample Y as y = vec(Y X,e[n) Q) € RY. Then,
the class of y is detected based on the above trained classifier.

4.3 Approach 3: Feature Extraction of Vectorized Samples by Joint-Class L1-Tucker2

In this approach, originally presented in [28] for Tucker, all tensor samples are first vectorized and organized in a
3-way tensor Z € RW>XTXL the three modes of which are feature index, sample index, and class index. Then, L1-
Tucker2 decomposition is applied on Z and returns orthonormal-basis factors Q; € R *® and Qo € RT**, where
w < W and t < T, respectively. Accordingly, the reduced-size core tensor G is extracted G = Z x; Q x2 Q.
Intuitively, G; = [G].., € R®** can be viewed as a reduced-size representation of the training data ensemble
from class [. Across mode 1, the number of features is reduced. Across mode 2, the number of samples is reduced
by high-variance linear combinations. Finally, any standard vector-based classifier (SVM, k-NN, ANN, NS, or
other) can be trained on {G,}£ ,, and applied/tested on the pertinent features y = Q] vec(Y) of new/unlabeled
sample Y. In the specific version of this method that was proposed in [28], an NS classifier was employed.

4.4 Approach 4: L1-Tucker-Based Unsupervised Event Detection

In many applications, a measurement comprises a low-rank component that is present in all samples and, possibly,
an additional “event” component drawn from a different subspace. This event could be, for example, a subpixel
target in hyperspectral images [40], a signal presence in the sensed radio-frequency spectrum [41], a network
anomaly [42, 43], or a foreground object in video analytics [44, 45, 46, 47]. Often, one would be willing to
identify whether a particular sample carries this additional component or not —which in essence constitutes a
binary classification problem. A generic model in vector processing would be y = b 4+ as +n € R”, where
b is the component drawn from coherent low-rank subspace Q = span(Q), for orthonormal basis Q € RP*4,
s is the foreground signal (e.g., target of foreground object in a video frame), with significant presence in the
complement of Q, « € {0, 1} is the coefficient that determines signal absence (when 0) and signal presence (when
1), and n typically constitutes benign zero-mean additive white (Gaussian) noise. Indeed, if Q is available, one
can determine whether y carries s (o = 1) or not (a = 0), based on the value of f(y; Q) = ||(Ip — QQ")y||?
compared to an ad-hoc threshold 7 —the binary classification would yield & = 1 when f(y;Q) > 7 and a = 0,
otherwise. In an unsupervised way (i.e., with no training data with labeled «), one commonly estimates Q
by SVD of a collection of unlabled measurements, or by some low-rank-plus-sparse analysis [48, 49]. Similar
processing applies to N-way tensor samples [50, 51, 52]. Specifically, we consider unlabeled collected samples

yt:Bt+Oét8t+M7t:1,2,...,T, (14)
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where we assume that B; has a low-Tucker-rank structure B; = Z; X, ¢y QI, for some Z, € Réxd2x...xdn
and Q,, € RP»*4 with Q' Q,, = I;,, and that S; deviates significantly from that multilinear subspace. Also,
we assume that only few of the T samples carry &;. Then, one approximates {Qn}ﬁf:l by L1-Tucker2 on the
(N + 1)-way tensor Y, which is constructed by collating all samples {Y;}_; across its (N + 1)-th mode. Finally,
similar to the vector-processing scheme, for every ¢, the classifier decides that «; is 1 if and only if

2
> 15
| = (15)

Hyt Xne[N] (ID,,L - QnQ’r—zr)

for some ad-hoc threshold 7 > 0.

5. NUMERICAL STUDIES

5.1 Numerical Study 1: Classification of Handwritten Digits with Approach 1 and
Approach 2

Similar to [53, 54], we consider a binary classification problem of handwritten digits. That is, we consider 28
by 28 images of handwritten digits ‘1’ and ‘7’ of the popular MNIST dataset [55]. We consider availability
of Ty = Ty, = T training and 200 testing samples per class. Data samples are chosen arbitrarily from the
available training/testing data samples of the MNIST dataset with no overlap between training and testing
data. We examine the classification accuracy performance of the approaches presented in Section 4.1 and
Section 4.2. In this study, tensor analysis (Tucker2 and L1-Tucker2) is followed a by (k = 8)-NN classifier.
We let T' = {100, 150, ...,350} and compute the classification accuracy of the k-NN classifier and the angular-
proximity classifier of [28] (see Section 4.1). As a benchmark, we also compute the accuracy attained by a plain
(k = 8)—NN classifier applied on the vectorized samples with no tensor analysis. We repeat the experiment over
400 independent selections of training/testing samples and, in Fig. 2a, we plot the average classification accuracy
versus T. We observe that L1-Tucker2 of Approach 1 (per class processing) followed by k-NN attains the best
performance across the board. Tucker2 of Approach 1 attains similar but lower performance. The plain k-NN
classifier starts from a lower accuracy value and its performance improves as the number of training samples

increases. L1-Tucker2 and Tucker2 of Approach 2 (joint-class processing) attain almost equal performance across
the board.

Next, we repeat the above experiment while considering that 8 data samples of digit ‘1’ class are mistakenly
labeled as digit ‘7’ samples and 8 digit ‘7’ samples are mistakenly labeled as digit ‘1’ samples. We plot the
classification accuracy versus number of training samples in presence of mislabeling corruption in Fig. 2b. L1-
Tucker2 of Approach 1 exhibits remarkable resistance compared to Tucker2 of Approach 1, which has clearly
suffered performance loss due to the corrupted (mislabeled) training samples. Interestingly, the performances of
L1-Tucker2 and Tucker2 of Approach 2, appear to have remained the same. The plain k-NN classifier exhibits
the lowest performance across the board.

5.2 Numerical Study 2: Image-based Object Classification with Approach 2

In this experiment, we operate on the Columbia University Image Library (COIL-20) dataset [56] which consists
of 1440 images of objects from 20 classes (72 images per class). First, we select and operate on 5 out of the
20 objects in COIL-20, i.e., ‘object 1, ‘object 2’, ‘object 6’, ‘object 11°; and ‘object 19’. We down-sample each
image to a size of 45 by 45 pixels and consider availability of 40 training samples, and 32 unknown/testing
samples per class. In order to simulate outliers in the data, we arbitrarily choose 4 samples from class ‘object 2’
and 4 samples from class ‘object 6" and replace them by arbitrarily chosen images from class ‘object 5’ (which
does not participate in the classification experiment at hand). Moreover, we consider that p% of the training
image-samples of each class are corrupted by salt-&-pepper noise with density 0.4 (40% of the total number
of pixels in an image are set to a pixel value of either 255—‘salt’ or 0—‘pepper’). We let the sample corruption
ratio p vary in {10,15,...,50}% and compute the classification accuracy attained by the classifier presented
in 4.2 (joint-class L1-Tucker2 (or Tucker2) feature extraction followed by SVM) with L1-Tucker2 parameters
dy = do = 5. We repeat this experiment over 1000 statistically independent realizations of training/testing
samples selection and salt-&-pepper corruption, and plot the average classification accuracy attained by both
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(a) (b)
Figure 2: Numerical Study 1: Average classification of handwritten digits versus number of data samples when
(a) operating on nominal data and (b) when data are corrupted by mislabeling.

—©—Tucker2 + SVM §
—>—L1-Tucker2 + SVM

87 %

86 % [

85 %

84 %

83 %

Average classification accuracy

82 O/O Il Il Il Il Il Il
10% 15% 20% 25% 30% 35% 40% 45% 50%

Sample corruption ratio
Figure 3: Numerical study 2: Average classification accuracy versus sample corruption ratio. Tucker2 parameters:
d1 = ds = 5, 40 training and 32 testing samples per class.

L1-Tucker2 and Tucker2 in Fig. 3. We observe that L1-Tucker2 attains higher average classification accuracy
across increasing sample corruption ratio illustrating the robustness of L1-Tucker2 compared to Tucker2. Next,
for the same study, we compute the average classification accuracy attained by a plain SVM classifier (SVM on
the vectorized raw images) which exhibits average classification accuracies 83.64% and 82.93% for p = 10% and
p = 50%, respectively. Finally, for comparison purposes, we compute the classification accuracy of plain SVM,
joint-class L1-Tucker2 feature extraction followed by SVM, and joint-class Tucker2 feature extraction followed
by SVM when all training samples are nominal (i.e., p = 0 and no training samples are replaced by samples from
classes that do not participate in this experiment). The respective average classification accuracies attained are
99.33%, 99.56%, and 99.68%.

5.3 Numerical Study 3: Classification of Text Documents with Approach 3

We continue our studies with a classification task of text documents. Specifically, we work with the top 30
categories TDT2 corpus (Nist Topic Detection and Tracking corpus) dataset which is available online [57] and
contains 9394 text documents from 30 classes. Each document comes in the form of a length-36771 numerical
vector resulting from text-to-vector transformation approaches of [58, 59, 60]. Our experimental setup follows.
For every class we randomly pick 7" samples for training and Ties; samples for testing. The classification approach
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Figure 4: Numerical Study 2: Classification of text documents: average classification accuracy versus (a) number
of training samples (per class) and (b) number of principal components of NS classifier.

followed in this study is the approach described in Section 4.3; i.e., the training data tensor is a 3-way tensor
X e R3677IxT*30  The parameters for Tucker2 are w < 36771 and ¢ < T. Tucker2 decomposition returns tensor
X € R"%t%30 and a NS classifier is employed. That is, we compute 30 SVDs —one for each class— and retain the
most dominant k singular vectors of each slab. Every unknown sample is classified in accordance with 4.3. First,
we fix @ = 200, t = 8, k = 6, and Tiest = 12. We let T vary in {10, 20, 30,40} and compute the classification
accuracy attained by both Tucker2 and L1-Tucker2. As a benchmark, we also include the performance of a
plain NS classifier with & = 6 components. We repeat this study across 100 realizations of training/testing
data. At each realization there is no overlap between training and testing data. In Fig. 4a, we plot the average
classification accuracy versus number of training data samples (per class). We observe that L1-Tucker2 followed
by NS attains the the highest performance across the board. The performance of the plain NS classifier follows.
Tucker2 followed by NS exhibits comparable but lower performance than the plain NS classifier. Thereafter,
we fix the number of training samples per class to T = 30 and let the number of principal components of
the NS classifier k vary in {1,2,...,7}. We compute the average classification accuracy (over 350 independent
realizations of training/testing samples) versus k and illustrate the corresponding classification accuracy curves
in Fig. 4b. Once again, L1-Tucker2 feature extraction followed by NS attains the highest accuracy across the
board. For k& < 2 Tucker2 followed by NS outperforms the plain NS classifier. Interestingly, L1-Tucker2 followed
by NS attains the best performance for £ = 1 component.

5.4 Numerical Study 4: Foreground Detection in Video Sequences

In this study, we operate on T = 150 frames of a selected video from the popular CAVIAR database [61]. Each
frame is of size (Dy = 202)-by-(Dy = 269) pixels. 130 of these frames include a mowving foreground component
and 20 are background-only. We organize the video frames in a 3-way tensor Y € RDP1xD2xT and perform L1-
Tucker2 (and Tucker2) on Y to obtain bases Q; € RP1*4! and Q, € RP2*92, In accordance with the approach
presented in Section 4.4, we classify each frame Y; = [Y)]..;, ¢ € {1,2,...,150}, as a background-only frame, if

@b, - @iQD)Yi1n, - Q)| <. (16)

for some detection threshold 7 taking values in 7" = {0,,2t, ..., A}, for maximum value A = max;c(1,2,... 150 [| Yl F
and step t = W%O‘ If the inequality in (16) does not hold true for some frame Y;, then a foreground signal com-
ponent is detected in that frame. Next, we denote by B C {1,2,...,150} the set of all indices that correspond
to frames that were classified as background-only (BG), and accordingly, we denote by F = {1,2,...,150} \ B
the set of indices corresponding to frames in which a foreground component was detected (BG4+FG). Then, we

estimate the video background as B = ﬁ > icn Yi- In view of the background estimate, for every frame in
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which a foreground component was detected, we estimate the foreground component as 1?‘z =Y, — ]’_5>7 1€ F.
It is important to note that, in this application, it is crucial that the classifier maintains low (ideally 0) false
positives (FPs) —i.e., BG+FG frames detected as BG— in order to attain satisfactory background estimation. At
the same time, a high number of true positives (TPs) further increases performance.

In our first study, we vary the detection threshold 7 in 7 and identify a value Tpest that (i) maximizes the
number of TPs (i.e., correctly detected BG frames), while (ii) restricts the number of FPs to 0. For Tucker2,
the optimal threshold is Tt = 532¢, attaining 18 TPs. For L1-Tucker2, the optimal threshold is et = 550¢,
attaining 20 TPs (i.e., all 20 BG frames are correctly identified). In Fig. 5a, we show the 50-th frame of the
video sequence. In Figs. 5b-5e, we show the estimated background and the foreground of the 50-th frame, as
computed by means of Tucker2 and L1-Tucker for the optimal thresholds 7. (that yield FP equal to 0). The
results are visually satisfying.

Then, we increase the detection thresholds and plot in Fig. 6a how the true positives and false positives vary
for the two methods. We observe, for example, that for 7 = 7yt + 25¢, L1-Tucker2 still attains TP equal to
20, while there is a small increase of FP to 1 (i.e., one BG+FG frame was detected as BG). On the other hand,
for the same threshold increase, Tucker2 is significantly affected, attaining FP equal to 11. The correspondingly
estimated background/foregrounds for 7 = Tyest +25t are shown in Figs. 5f-5i, where the robustness of L1-Tucker2
is clearly illustrated.

To offer an even broader view of the performance of the two methods, in Fig. 6b, we plot the receiver
operating characteristic (ROC) curve, computed for 7 varying in 7. We observe that HOSVD attains probability
of detection (PD) equal to 0.9, for probability of false alarm (PFA) equal to 0. Moreover, HOSVD attains PD
equal to 1, for PFA 0.1. On the other hand, L1-HOSVD attains PD equal to 1 for PFA equal to 0.

6. CONCLUSIONS

In this work, we presented a selection of successful Tucker tensor decomposition-based approaches for classification
of multi-way data and combined them with L1-Tucker, a corruption resistant L1-norm reformulation of standard
Tucker. Numerical studies on multiple real-world datasets corroborate the corruption resistance and classification
accuracy afforded by L1-Tucker.
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