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ABSTRACT 
The redundancy allocation problem (RAP) for series-

parallel system is a system design problem by selecting an 

appropriate number of components from multiple choices for 

desired objectives, such as maximizing system reliability, 

minimizing system cost. RAP has been extensively studied in 

the last decades. The majority of existing RAP models assume 

that components for selection are from homogeneous 

populations. However, due to manufacturing difficulties and 

variations in raw materials, many manufactured 

components/parts are heterogeneous, consisting of multiple 

subpopulations. In this research, we consider a typical RAP 

with the objective of maximizing the system reliability subject 

to the constraint of system cost. Components in each choice are 

assumed to be degradation-based, and each choice consists one 

normal subpopulation and several abnormal subpopulations. 

Numerical examples are investigated to illustrate the impact of 

the component heterogeneity. 

KEY WORDS: Redundancy allocation problem, heterogeneity, 

Stochastic Degradation 

1. INTRODUCTION
In the redundancy allocation problem (RAP), a system 

contains a certain number of subsystems in series. Each 

subsystem has multiple choices for selection, and components 

within a subsystem are connected in parallel. Choices are 

usually characterized by reliability, cost and weight, etc. 

Therefore, RAP for series-parallel system is a system design 

problem of selecting an appropriate number of components 

from multiple choices in order to achieve a desired goal, such 

as maximization of system reliability, and minimization of 

system cost. In this research, we consider components from 

heterogeneous populations [1], and aim to maximize system 

reliability with a budget constraint.  

The formulation of RAP aims to maximize a desired 

objective but subject to some constraints. However, the 

component reliability is often given as a priori, and its dynamic 

behavior is often ignored in most existing RAP models. The 

RAP problem formulation and assumption vary from one 

research to another. 

There are two types of original system topology. One 

assumes that there are hi components that are already in 

subsystem i [2]. The other considers zero components 

originally, but at least ki components must be selected for 

subsystem i [3]. The state of a component can be binary, which 

is either good or failed. Typically, components are 

characterized by their reliability to represent the good or failed 

state [4]. RAP considering multi-state components is also 

widely studied [5]. Hierarchical performance level is employed 

to evaluate how good the components and system are. 

Generally, the objective in multi-state RAP is to minimize the 

total cost while insuring system performs above a certain level 

[6]. Components in a subsystem could be restricted from one 

choice or allowed to be selected from different choices, i.e., 
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mixing components. Fyffe et al. [7] give the optimal solution 

by applying Lagrangian multipliers if using the same 

components in a subsystem, with constraints on weight and cost. 

Coit et al. [4] show that a better system reliability can be 

achieved if mixing components is allowed. Mixing components 

results in a larger solution space, which is difficult to solve. 

Comparing to the analytical approach, which needs to make 

approximations on objective function, heuristic algorithm, i.e. 

genetic algorithm (GA), yields a reasonably good result in this 

problem [8].  

However, none of these afore-mentioned models considers 

how each component reliability is evaluated. In addition, the 

majority of existing RAP models assume that components for 

selection are from homogeneous populations. However, due to 

manufacturing difficulties and variations in raw materials, 

many manufactured components/parts are heterogeneous, 

consisting of several subpopulations: early failures where the 

mean time to failure (MTTF) is relatively ‘short’ and wear-out 

failures where the MTTF is relatively ‘long’. For example, 

certain classes of semiconductor devices tend either to fail very 

early or to last a relatively long time. Many Micro-Electro-

Mechanical Systems (MEMS) devices have also been found to 

have two subpopulations [9-11] due to the difficulty in 

manufacturing processes and variability in raw materials. 
Figure 1 illustrates the degradation paths from two 

subpopulations. 

 

 
Figure 1: Degradation paths with subpopulations 

In this research, we consider a typical RAP whose 

objective is to maximize the system reliability subject to the 

constraint of system cost. Components in each choice are 

assumed to be degradation-based, and each choice consists of 

one normal subpopulation and several abnormal subpopulations. 

We investigate the impacts of component heterogeneity by 

comparing the system reliabilities from cases where the 

heterogeneity is considered and cases where the heterogeneity 

is ignored. 
The remainder of the paper is organized as follows. Section 

2 formulates the RAP model with consideration of components’ 
heterogeneity. Section 3 presents the genetic algorithm used to 
seek the optimal system configuration. Numerical examples are 
provided in Section 4. Conclusions are given in Section 5. 

2. MODEL DEVELOPMENT  
As components deteriorate, a system becomes less reliable. 

It’s commonly seen in lots of manufacturing machines. Adding 

redundant components is an efficient approach to improve 

system reliability. Therefore, we consider a combined series 

and parallel system. The system consists of s subsystems in 

series, and each subsystem has hi identical components in 

parallel originally in subsystem i. 

To improve the system reliability, we can add some 

number of components to each subsystem within the budget 

allowed. Let mi denote the maximum choices for subsystem i, 

xij denote the number of components added to subsystem i from 

choice j. For each subsystem, all components stay in parallel 

and each subsystem is a 1-out-of-n: G system, which means at 

least one component functioning can ensure subsystem in 

operation. All redundancy is in hot standby with the 

component’s deterioration rate remaining the same regardless 

whether in use or not.  

As mentioned before, most researchers ignore the 

heterogeneity of components. Therefore, we make following 

reasonable assumptions that are commonly seen reliability 

problems. 

1. All components are degradation-based, and their 

deterioration processes can be described by some stochastic 

processes. Although how the reliability of each component is 

calculated does not matter from the perspective of problem 

solving, evaluation of component’s reliability is a big problem 

in practice.  

2. For subsystem i, there are nij subpopulations in choice 

j among mi choices. All the choices have one normal 

subpopulation and several abnormal subpopulations. If the 

engineer is not aware of the existence of abnormal 

subpopulations, the reliability of components will be calculated 

only based on the normal subpopulation. 

3. Failed components do not damage the system and are 

not repairable. 

4. Mixture of components is allowed for a subsystem. 

For each subsystem, components can come from different 

choices, which can potentially achieve a higher reliability 

compared to the condition of allowing only one choice. 

5. The cost of components from choice j for subsystem i 

is cij. A choice with a slower degradation rate is more 

expensive. 

In most industries, what we care about is how to maintain 

the system functioning for a specific time period. For example, 

in aerospace industry, we need make sure no component goes 

wrong during the launching period for the launching system. 

The system required mission time is noted as T0. The whole 

problem, noted as P1, can be formulated as below:  
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P1: Maximize the mission success probability 

max Pr{t > To}=  1 2 0, ,  ..., ,sR Tx x x  

         

 

 

       Decision Variable: xij 

s.t. 

1 1

ims

ij ij

i j

x c C
 
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     1 2 0, ,  ..., ,sR Tx x x  is the reliability function of the 

system, and  1 2, ,  ..., 
ii i i imx x xx  represents the vector of 

components’ number from each choice. The problem is to find 

out all xij, which are the component numbers from choice j in 

subsystem i. The constraint ensures that the total cost of 

components cannot exceed the budget C. 

Because subsystems are in series, we have, 

       1 2 0 0

1

, ,  ..., , ,
s

s i i

i

R T R T


x x x x  , 

where  0,i iR Tx  is the reliability function for subsystem i. In 

subsystem i, there are hi identical components originally and xi 

new components. Therefore, we obtain 

       0 0 0

1
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i
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    , 

where  0ihR T  is the reliability function of original subsystem 

i, and  0ijR T is the reliability function of new components 

from choice i in subsystem j.  

There are nij subpopulations in choice j for subsystem i, 

then 

   0 0

1

ijn

ij ijk ijk

k

R T p R T


 . 

where pijk is the proportion of subpopulation k in choice j for 

subsystem i.  

 

3. Genetic Algorithm 
In this paper, we use GA to seek the optimal solutions. In 

GA, we use fitness function to simulate the natural selection 

and operation, e.g., crossover to simulate the reproduction 

process. After a long time, these genes will be the majority in 

the species population. Moreover, random changes in genes 

referred to as gene mutation takes place in nature. A good 

mutation provides a better chance in surviving, while an unfit 

mutation will surely be filtered by natural selection. In GA, 

every gene in child has a probability to mutate, known as 

mutation rate. The process is referred to as mutation. 

In our encoding, we need represent every component in 

vector vq since mixed components are allowed in each 

subsystem. In every component’s position, choice number is 

the coded value, which ranges from one to mi for subsystem i. 

Zero is used to represent empty position. And nmax is 

predetermined to define the maximum component number for 

all subsystem.  

For example, s = 3, m1 = 4, m2 = 2, m3 = 3, nmax = 5, vq = (3 

3 2 2 1|2 1 0 0 0| 2 2 2 0 0) represent a system that has 3 

subsystems. For subsystem 1, subsystem 2, subsystem 3, there 

are 4, 2, 3 choices, respectively. In subsystem 1, there is 1 

component from choice 1, 2 components from choice 2 and 2 

components from choice 3. In subsystem 2, there is 1 

component from choice 1, and 1 component from choice 2. In 

subsystem 3, there are 3 components from choice 2. All zeros 

represent no component in that position. Details of each step 

are provided in the next section. 

The genetic algorithm has the following four steps. 

Step 1: Generate initial population 

Step 2: Crossover 

Step 3: Mutation 

Step 4: Cull infeasible child 

Step 5: Generate new population 

 

3.1 Generate initial population 
Randomly generate multiple solutions vq based on nmax and 

population size P. The whole population contains P solutions. 

In each solution, subsystem has no more than nmax components. 

For example, when s=3, m1=4, m2=2, m3=3, we have nmax = 5. 

For subsystem 1, we generate nmax = 5 random integers range in 

[0, 4], i.e. [1 0 3 4 2]. Then, we sort this vector in descending 

order, which is [4 3 2 1 0]. Therefore, we can get the choices in 

subsystem 1 and 2. Then we calculate the reliability and cost in 

each solution. 

 

3.2 Crossover 
To perform the crossover, we first sort current population 

in ascending order based on their reliability. We then randomly 

generate two different values U1 and U2 in range 1 to P as the 

index of parents. Each subsystem of the child is randomly 

selected from parents. Only one child is generated in each 

crossover operation. For example, s=3, m1=4, m2=2, m3=3, we 

have nmax = 5. 

Parent 1: vq = (3 3 2 2 1|2 1 0 0 0| 2 2 2 0 0) 

Parent 2: vq = (4 2 0 0 0|2 2 2 1 0| 3 3 1 0 0) 

Child:     vq = (3 3 2 2 1|2 2 2 1 0| 2 2 2 0 0) 

 

3.3 Mutation 
Each value in the values of a child has a probability, which 

is called the mutation rate, to change to other possible choices 

excluding itself, e.g., vq = (3 3 2 2 1|2 1 0 0 0| 2 2 2 0 0). 

Suppose that the second component in subsystem 1 is mutating. 

Then it has 3 choices to mutate with equal probability, which 

are 0, 1, 2 and 4 if the maximum number of choices is 4. If it 

mutates into 0, vq = (3 0 2 2 1|2 1 0 0 0| 2 2 2 0 0), then sort 

each subsystem in vq in descending order, which is vq = (3 2 2 1 

0|2 1 0 0 0| 2 2 2 0 0). 

 

3.4 Cull infeasible child 
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Check the feasibility of the child. Only if it is feasible, we 

add it to the offspring. If the size of offspring is less than 2P, 

keep doing crossover. 

 

3.5 Generate new population 
From previous steps, we obtain P solutions, which have the 

highest reliability from offspring to generate a new population. 

If current population generations exceed the maximum 

generation number, stop. Otherwise, go to step 2. 

 

4 NUMERICAL EXAMPLES  
 To assess the impacts of component heterogeneity on the 

RAP, we conduct the analysis through some numerical 

examples. 

 
4.1 Example 1: 

Consider a system that contains 3 subsystems, which have 

2, 4, 3 component choices. Assume that component degradation 

can be modeled by a gamma process, which is characterized by 

shape parameter α and scale parameter β. The mission time T0 

is 50 and system budget C is 50.  

 
Figure 2: System initial configuration in examples 

The subsystem information is shown in Table 1 and the 

initial configuration of system is illustrated in Figure 2. Take 

subsystem 1 as an example. Subsystem 1 has one component 

originally, which is noted as h. The shape parameter α and scale 

parameter β are 1 and 2 respectively with a failure threshold D 

equals to 50. There are two choices for this subsystem. Both of 

them have two subpopulations with the same β, D and 

subpopulation proportion p but a different α. For the 

convenience of comparison, we use subpopulation 1 in all 

choices as the normal population and let α = 1 in choice 1 in 

subsystem 1, and subpopulation 2 as the abnormal 

subpopulation and let α = 1.5 in choice 1 in subsystem 1. A 

lower α in the normal subpopulation has a higher cost. For 

subsystem 1, it costs 9 in each component from choice 1 and 5 

from choice 2, since α in subpopulation 1 in choice 1 is smaller 

than choice 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: System Parameters 

 

In GA, the population size is 40, and the offspring size is 

80. Mutation rate is 0.4. Maximum population generations are 

40 and nmax is 5. 

        We give an example where engineers do not know the 

heterogeneity situation in each choice, we refer to it as scenario 

1. The engineers consider that there is only one subpopulation, 

which is the normal population in each choice. Therefore, 

engineers are led to wrong reliability. Ten replicate results are 

shown in Table 2 for 10 GA replicates. Column of reliability is 

the optimal solution in this replicate, with subsystem topology 

in column solution and system cost. We also show the actual 

system reliability in the third column. Averagely, the actual 

system reliability is 99.9% of the given optimal reliability. 

 

Table 2: Result of Scenario 1 with a proportion [0.9, 
0.1] 

Subsystem 1 Subsystem 2 Subsystem 3

quantity α β D p cost

1 1 2 50 NA NA

1 [1, 1.5] [2,2] [50,50] [0.9,0.1] 9

2 [1.5, 2] [2,2] [50,50] [0.9,0.1] 5

quantity α β D p cost

2 1 2 50 NA NA

1 [1.1,1.6] [2,2] [50,50] [0.9,0.1] 8

2 [1.3,1.8] [2,2] [50,50] [0.9,0.1] 6

3 [1.5,2] [2,2] [50,50] [0.9,0.1] 4

4 [1.7,2.2] [2,2] [50,50] [0.9,0.1] 2

quantity α β D p cost

3 1 2 50 NA NA

1 [1.2,1.7] [2,2] [50,50] [0.9,0.1] 7

2 [1.4,1.9] [2,2] [50,50] [0.9,0.1] 5

3 [1.6,2.1] [2,2] [50,50] [0.9,0.1] 3

subsystem 3

h

choice NA

subsystem 2

h

choice NA

subsystem 1

h

choice NA
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Table 3 shows the results when engineers know the 

heterogeneity information in each choice, we refer to it as 

scenario 2. Given the same parameters, the average reliability 

in ten replicates is 0.99116, which is higher than the actual 

reliability 0.99051 in scenario 1.  

 

Table 3: Result of Scenario 2 with proportion [0.9, 0.1] 

 

We can conclude that the consideration of reliability 

calculation is important, especially when heterogeneous 

subpopulations exist in components. Potential improvement of 

reliability in system reliability can be achieved when we fully 

consider the heterogeneity of components. 

 

4.2 Example 2: 
In the second numerical example, all parameters remain 

the same as in numerical example 1, except the proportion of 

subpopulation. The proportions of subpopulations 1 and 2 

change from [0.9, 0.1] into [0.6, 0.4].  

Table 4 shows the result of scenario 1 when proportion of 

subpopulation is [0.6, 0.4]. The actual reliability is only 97.8% 

of the optimal reliability. In comparison with the percentage in 

Table 2, where the actual reliability is 99.9% of the optimal 

reliability, the increased proportion of abnormal subpopulation 

yields a larger deviation from the actual reliability.  

 

 

 

 

 

 

 

 

 

Table 4: Result of Scenario 1 with proportion [0.6, 0.4] 

 
 

Table 5 shows the result of scenario 2 when subpopulation 

proportion is [0.6, 0.4]. Comparing with the actual reliability in 

Table 4, the optimal reliability when knowing the heterogeneity 

information can result in a better system reliability. Numerical 

example 2 further confirms the necessity of considering 

components’ heterogeneity. 

 

Table 5: Result of Scenario 2 with proportion [0.6, 0.4] 

1 2 3

1 0.9946 0.9915 49 2 1 1 0 0 4 3 2 2 1 0 0 0 0 0

2 0.9909 0.9892 49 1 1 1 0 0 4 4 3 2 0 3 2 0 0 0

3 0.9947 0.9907 49 1 1 0 0 0 2 1 0 0 0 2 2 1 0 0

4 0.9949 0.9912 47 1 1 0 0 0 4 4 1 1 0 3 3 3 0 0

5 0.9924 0.9886 48 1 1 0 0 0 4 3 3 2 2 3 3 3 0 0

6 0.9937 0.9896 49 1 1 0 0 0 4 3 1 0 0 2 2 1 0 0

7 0.9949 0.9914 49 1 1 0 0 0 3 3 3 1 1 3 0 0 0 0

8 0.994 0.9906 49 2 1 1 0 0 4 4 4 2 1 3 3 0 0 0

9 0.9954 0.9916 48 1 1 0 0 0 2 2 1 0 0 3 1 0 0 0

10 0.9947 0.9907 50 1 1 0 0 0 4 4 2 1 0 3 3 1 0 0

Average 0.99402 0.99051     

Max 0.9954 0.9916     

Min 0.9909 0.9886     

Variance 1.72E-06 9.71E-07     

reliability
actual 

reliability
cost

solution(subsystem)

1 2 3

1 0.9914 50 2 1 1 0 0 3 3 2 1 0 2 0 0 0 0

2 0.9908 49 2 1 1 0 0 4 3 2 1 0 3 3 0 0 0

3 0.9921 50 1 1 0 0 0 4 4 4 1 1  3 1 0 0 0

4 0.992 50 1 1 0 0 0 4 2 1 1 0 3 2 0 0 0

5 0.9925 49 1 1 1 0 0 4 4 4 1 0 3 2 0 0 0

6 0.9899 49 1 1 1 0 0 4 3 3 2 0 3 3 0 0 0

7 0.9889 47 1 1 0 0 0 4 1 0 0 0 2 1 1 0 0

8 0.9906 49 1 1 0 0 0 3 2 1 0 0 3 2 2 0 0

9 0.9916 48 1 1 0 0 0 4 2 1 1 0 3 3 0 0 0

10 0.9918 50 1 1 0 0 0 3 3 1 1 0 3 2 0 0 0

Average 0.99116

Max 0.9925

Min 0.9889

Variance 1.12E-06

reliability cost
solution(subsystem)

1 2 3

1 0.9953 0.9749 50 2 1 1 0 0 4 2 1 1 0 3 0 0 0 0

2 0.9956 0.9723 49 1 1 0 0 0 3 2 2 1 0 1 0 0 0 0

3 0.9938 0.9713 47 2 1 1 0 0 4 3 1 0 0 3 1 0 0 0

4 0.9961 0.9727 50 1 1 0 0 0 3 1 1 0 0 2 1 0 0 0

5 0.9957 0.9721 49 1 1 0 0 0 1 1 0 0 0 2 2 2 0 0

6 0.9951 0.9739 50 2 1 1 0 0 4 2 2 1 0 2 0 0 0 0 

7 0.9937 0.9692 50 1 1 0 0 0 4 3 1 0 0 3 3 2 1 0

8 0.9947 0.9819 48 1 1 1 0 0 4 3 3 1 0 3 0 0 0 0

9 0.9955 0.9741 49 2 1 1 0 0 4 1 1 0 0 3 2 0 0 0

10 0.9948 0.9726 46 2 1 1 0 0 4 2 1 0 0 1 0 0 0 0

Average 0.99503 0.9735     

Max 0.9961 0.9819     

Min 0.9937 0.9692     

Variance 5.66E-07 1.01E-05     

reliability
actual 

reliability
cost

solution(subsystem)
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5. CONCLUSION 

In this research, we consider a typical RAP whose objective 

is to maximize the system reliability subject to the constraint of 

system cost. Components in each choice are assumed to be 

degradation based, and each choice consists one normal 

subpopulation and several abnormal subpopulations. Numerical 

analysis is conducted to assess the necessity of considering 

components’ heterogeneity. Our numerical examples show that 

ignoring the heterogeneity in components can lead to inferior 

system reliability. 

In this research, we consider a simple parallel system for 

illustration purpose. In future, more numerical experiments can 

be conducted to assess the impacts of components’ 

heterogeneity on different system structures. It is also worth 

considering a joint optimization of redundancy allocation and 

preventive maintenance with the presence of components’ 

heterogeneity.  
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1 2 3

1 0.9814 49 1 1 1 0 0 3 1 0 0 0 2 2 0 0 0

2 0.9775 50 1 1 1 0 0 4 4 2 0 0 3 2 2 0 0

3 0.9808 50 1 1 1 0 0 4 4 1 0 0 3 3 2 0 0

4 0.972 48 2 1 1 0 0 4 3 3 1 0 1 0 0 0 0

5 0.9804 49 1 1 1 0 0 2 2 0 0 0 3 1 0 0 0

6 0.9814 50 2 1 1 1 0 4 1 0 0 0 3 2 0 0 0

7 0.9785 49 2 1 1 1 0 4 4 2 0 0 1 0 0 0 0

8 0.9788 48 1 1 1 0 0 4 4 3 2 0 1 0 0 0 0

9 0.9708 50 2 1 1 0 0 4 1 0 0 0 3 1 1 0 0

10 0.9721 47 1 1 0 0 0 1 1 0 0 0 3 3 1 0 0

Average 0.97737

Max 0.9814

Min 0.9708

Variance 1.57E-05

cost
solution(subsystem)

reliability
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