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ABSTRACT

The redundancy allocation problem (RAP) for series-
parallel system is a system design problem by selecting an
appropriate number of components from multiple choices for
desired objectives, such as maximizing system reliability,
minimizing system cost. RAP has been extensively studied in
the last decades. The majority of existing RAP models assume
that components for selection are from homogeneous
populations. However, due to manufacturing difficulties and
variations in  raw  materials, many manufactured
components/parts are heterogeneous, consisting of multiple
subpopulations. In this research, we consider a typical RAP
with the objective of maximizing the system reliability subject
to the constraint of system cost. Components in each choice are
assumed to be degradation-based, and each choice consists one
normal subpopulation and several abnormal subpopulations.
Numerical examples are investigated to illustrate the impact of
the component heterogeneity.

KEY WORDS: Redundancy allocation problem, heterogeneity,
Stochastic Degradation

1. INTRODUCTION

In the redundancy allocation problem (RAP), a system
contains a certain number of subsystems in series. Each
subsystem has multiple choices for selection, and components
within a subsystem are connected in parallel. Choices are

usually characterized by reliability, cost and weight, etc.
Therefore, RAP for series-parallel system is a system design
problem of selecting an appropriate number of components
from multiple choices in order to achieve a desired goal, such
as maximization of system reliability, and minimization of
system cost. In this research, we consider components from
heterogeneous populations [1], and aim to maximize system
reliability with a budget constraint.

The formulation of RAP aims to maximize a desired
objective but subject to some constraints. However, the
component reliability is often given as a priori, and its dynamic
behavior is often ignored in most existing RAP models. The
RAP problem formulation and assumption vary from one
research to another.

There are two types of original system topology. One
assumes that there are 4; components that are already in
subsystem ¢ [2]. The other considers zero components
originally, but at least k; components must be selected for
subsystem i [3]. The state of a component can be binary, which
is either good or failed. Typically, components are
characterized by their reliability to represent the good or failed
state [4]. RAP considering multi-state components is also
widely studied [5]. Hierarchical performance level is employed
to evaluate how good the components and system are.
Generally, the objective in multi-state RAP is to minimize the
total cost while insuring system performs above a certain level
[6]. Components in a subsystem could be restricted from one
choice or allowed to be selected from different choices, i.e.,
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mixing components. Fyffe et al. [7] give the optimal solution
by applying Lagrangian multipliers if using the same

components in a subsystem, with constraints on weight and cost.

Coit et al. [4] show that a better system reliability can be
achieved if mixing components is allowed. Mixing components
results in a larger solution space, which is difficult to solve.
Comparing to the analytical approach, which needs to make
approximations on objective function, heuristic algorithm, i.e.
genetic algorithm (GA), yields a reasonably good result in this
problem [8].

However, none of these afore-mentioned models considers
how each component reliability is evaluated. In addition, the
majority of existing RAP models assume that components for
selection are from homogeneous populations. However, due to
manufacturing difficulties and variations in raw materials,
many manufactured components/parts are heterogeneous,
consisting of several subpopulations: early failures where the
mean time to failure (MTTF) is relatively ‘short’ and wear-out
failures where the MTTF is relatively ‘long’. For example,
certain classes of semiconductor devices tend either to fail very
early or to last a relatively long time. Many Micro-Electro-
Mechanical Systems (MEMS) devices have also been found to
have two subpopulations [9-11] due to the difficulty in
manufacturing processes and variability in raw materials.
Figure 1 illustrates the degradation paths from two
subpopulations.

Degradation Path

X(%)

Figure 1: Degradation paths with subpopulations

In this research, we consider a typical RAP whose
objective is to maximize the system reliability subject to the
constraint of system cost. Components in each choice are
assumed to be degradation-based, and each choice consists of

one normal subpopulation and several abnormal subpopulations.

We investigate the impacts of component heterogeneity by
comparing the system reliabilities from cases where the

heterogeneity is considered and cases where the heterogeneity
is ignored.

The remainder of the paper is organized as follows. Section
2 formulates the RAP model with consideration of components’
heterogeneity. Section 3 presents the genetic algorithm used to
seek the optimal system configuration. Numerical examples are
provided in Section 4. Conclusions are given in Section 5.

2, MODEL DEVELOPMENT

As components deteriorate, a system becomes less reliable.
It’s commonly seen in lots of manufacturing machines. Adding
redundant components is an efficient approach to improve
system reliability. Therefore, we consider a combined series
and parallel system. The system consists of s subsystems in
series, and each subsystem has /; identical components in
parallel originally in subsystem i.

To improve the system reliability, we can add some
number of components to each subsystem within the budget
allowed. Let m; denote the maximum choices for subsystem i,
x;; denote the number of components added to subsystem i from
choice j. For each subsystem, all components stay in parallel
and each subsystem is a 1-out-of-n: G system, which means at
least one component functioning can ensure subsystem in
operation. All redundancy is in hot standby with the
component’s deterioration rate remaining the same regardless
whether in use or not.

As mentioned before, most researchers ignore the
heterogeneity of components. Therefore, we make following
reasonable assumptions that are commonly seen reliability
problems.

1. All components are degradation-based, and their
deterioration processes can be described by some stochastic
processes. Although how the reliability of each component is
calculated does not matter from the perspective of problem
solving, evaluation of component’s reliability is a big problem
in practice.

2. For subsystem i, there are n; subpopulations in choice
j among m; choices. All the choices have one normal
subpopulation and several abnormal subpopulations. If the
engineer is not aware of the existence of abnormal
subpopulations, the reliability of components will be calculated
only based on the normal subpopulation.

3. Failed components do not damage the system and are
not repairable.

4. Mixture of components is allowed for a subsystem.
For each subsystem, components can come from different
choices, which can potentially achieve a higher reliability
compared to the condition of allowing only one choice.

5. The cost of components from choice j for subsystem i
is ¢;. A choice with a slower degradation rate is more
expensive.

In most industries, what we care about is how to maintain
the system functioning for a specific time period. For example,
in aerospace industry, we need make sure no component goes
wrong during the launching period for the launching system.
The system required mission time is noted as 7p. The whole
problem, noted as P1, can be formulated as below:
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P1: Maximize the mission success probability
max Pr{z > To}:R(Xl,Xz, . XS,TO)

Decision Variable: x;;

s.t. inc <

i=l j=l1

R(X19X27 . XS,]B) is the reliability function of the

system, and X; = (le’xzza ‘oo xim,) represents the vector of

components’ number from each choice. The problem is to find
out all x;, which are the component numbers from choice j in
subsystem i. The constraint ensures that the total cost of
components cannot exceed the budget C.

Because subsystems are in series, we have,

R(x,,X,, ... X, T}) HR HT) .

where R, (XZ R 71)) is the reliability function for subsystem i. In

subsystem i, there are /; identical components originally and x;
new components. Therefore, we obtain

R (5.1 =1=(1=R, (1)) TI(1-R, (7))

J=1
s

where R, (To) is the reliability function of original subsystem

i, and Rl.j (7:)) is the reliability function of new components

from choice i in subsystem j.
There are n;; subpopulations in choice j for subsystem i,

then
T ) = Zptijijk (Z))
k=1

where pji is the proportion of subpopulation £ in choice j for
subsystem i.

3. Genetic Algorithm

In this paper, we use GA to seek the optimal solutions. In
GA, we use fitness function to simulate the natural selection
and operation, e.g., crossover to simulate the reproduction
process. After a long time, these genes will be the majority in
the species population. Moreover, random changes in genes
referred to as gene mutation takes place in nature. A good
mutation provides a better chance in surviving, while an unfit
mutation will surely be filtered by natural selection. In GA,
every gene in child has a probability to mutate, known as
mutation rate. The process is referred to as mutation.

In our encoding, we need represent every component in
vector vy since mixed components are allowed in each
subsystem. In every component’s position, choice number is

the coded value, which ranges from one to m; for subsystem i.
Zero is used to represent empty position. And Amax 1S
predetermined to define the maximum component number for
all subsystem.

For example, s =3, mi=4, mo=2, m3=3, Bmax = 5, vg = (3
322121000]2220 0) represent a system that has 3
subsystems. For subsystem 1, subsystem 2, subsystem 3, there
are 4, 2, 3 choices, respectively. In subsystem 1, there is 1
component from choice 1, 2 components from choice 2 and 2
components from choice 3. In subsystem 2, there is 1
component from choice 1, and 1 component from choice 2. In
subsystem 3, there are 3 components from choice 2. All zeros
represent no component in that position. Details of each step
are provided in the next section.

The genetic algorithm has the following four steps.

Step 1: Generate initial population

Step 2: Crossover

Step 3: Mutation

Step 4: Cull infeasible child

Step 5: Generate new population

3.1 Generate initial population

Randomly generate multiple solutions vq based on #max and
population size P. The whole population contains P solutions.
In each solution, subsystem has no more than nm.x components.
For example, when s=3, mi=4, my=2, m3=3, we have nmax = 5.
For subsystem 1, we generate 7nmax = 5 random integers range in
[0, 4], i.e. [1 0 3 4 2]. Then, we sort this vector in descending
order, which is [4 3 2 1 0]. Therefore, we can get the choices in
subsystem 1 and 2. Then we calculate the reliability and cost in
each solution.

3.2 Crossover

To perform the crossover, we first sort current population
in ascending order based on their reliability. We then randomly
generate two different values U; and U, in range 1 to P as the
index of parents. Each subsystem of the child is randomly
selected from parents. Only one child is generated in each
crossover operation. For example, s=3, mi=4, my=2, ms=3, we
have 7max = 5.

Parent 1: vq=(33221[21000/22200)

Parent 2: vq=(42000[22210/33100)

Child: v¢q=(33221[22210/22200)

3.3 Mutation

Each value in the values of a child has a probability, which
is called the mutation rate, to change to other possible choices
excluding itself, e.g., vq=(3322121000/22200).
Suppose that the second component in subsystem 1 is mutating.
Then it has 3 choices to mutate with equal probability, which
are 0, 1, 2 and 4 if the maximum number of choices is 4. If it
mutates into 0, vq=(3022121000]2 220 0), then sort
each subsystem in vq in descending order, which is vg=(32 2 1
021000[/22200).

3.4 Cull infeasible child
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Check the feasibility of the child. Only if it is feasible, we
add it to the offspring. If the size of offspring is less than 2P,
keep doing crossover.

3.5 Generate new population

From previous steps, we obtain P solutions, which have the
highest reliability from offspring to generate a new population.
If current population generations exceed the maximum
generation number, stop. Otherwise, go to step 2.

4 NUMERICAL EXAMPLES

To assess the impacts of component heterogeneity on the
RAP, we conduct the analysis through some numerical
examples.

4.1 Example 1:

Consider a system that contains 3 subsystems, which have
2, 4, 3 component choices. Assume that component degradation
can be modeled by a gamma process, which is characterized by
shape parameter o and scale parameter . The mission time 7o
is 50 and system budget C is 50.

Subsystem 3

Subsystem 1

Subsystem 2

Figure 2: System initial configuration in examples

The subsystem information is shown in Table 1 and the
initial configuration of system is illustrated in Figure 2. Take
subsystem 1 as an example. Subsystem 1 has one component
originally, which is noted as /4. The shape parameter o and scale
parameter f are 1 and 2 respectively with a failure threshold D
equals to 50. There are two choices for this subsystem. Both of
them have two subpopulations with the same f, D and
subpopulation proportion p but a different a. For the
convenience of comparison, we use subpopulation 1 in all
choices as the normal population and let @ = 1 in choice 1 in
subsystem 1, and subpopulation 2 as the abnormal
subpopulation and let & = 1.5 in choice 1 in subsystem 1. A
lower a in the normal subpopulation has a higher cost. For
subsystem 1, it costs 9 in each component from choice 1 and 5
from choice 2, since a in subpopulation 1 in choice 1 is smaller
than choice 2.

Table 1: System Parameters

subsystem 1

quantity a B D P cost
h 1 1 2 50 NA NA
choice 1 NA [1, 1.5] [2,2] [50,50] | [0.9,0.1] 9
2 [1.5,2] [2,2] [50,50] | [0.9,0.1] 5
subsystem 2
quantity a B D )4 cost
h 2 1 2 50 NA NA
1 [1.1,L.6] | [22] [50,50] | [0.9,0.1] 8
choice 2 NA [13,1.8] | [22] [50,50] | [0.9,0.1] 6
3 [1.52] [2,2] [50,50] | [0.9,0.1] 4
4 [1.72.2] | [22] [50,50] | [0.9,0.1] 2
subsystem 3
quantity a p D P cost
h 3 1 2 50 NA NA
1 [1.2,1.7] ] [22] [50,50] | [0.9,0.1] 7
choice 2 NA [1.41.9]] [22] [50,50] | [0.9,0.1] 5
3 [1.62.1] ]| [22] [50,50] | [0.9,0.1] 3

In GA, the population size is 40, and the offspring size is
80. Mutation rate is 0.4. Maximum population generations are
40 and 7max 1s 5.

We give an example where engineers do not know the
heterogeneity situation in each choice, we refer to it as scenario
1. The engineers consider that there is only one subpopulation,
which is the normal population in each choice. Therefore,
engineers are led to wrong reliability. Ten replicate results are
shown in Table 2 for 10 GA replicates. Column of reliability is
the optimal solution in this replicate, with subsystem topology
in column solution and system cost. We also show the actual
system reliability in the third column. Averagely, the actual
system reliability is 99.9% of the given optimal reliability.

Table 2: Result of Scenario 1 with a proportion [0.9,
0.1]
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actual solution(subsystem)

reliability o cost
reliability 1 2 3

0.9946 | 0.9915 49 21100[43221]00000

0.9909 | 0.9892 49 11100144320]32000

0.9947 | 0.9907 49 11000)21000]22100

0.9949 [ 0.9912 47 11000({44110]33300

0.9924 [ 0.9886 48 11000(43322]33300

0.9937 [ 0.9896 49 11000({43100]22100

0.9949 [ 0.9914 49 11000[33311])30000

0.994 [ 0.9906 49 21100({44421)33000

O|lo([Q|n|n||wWIN|—

0.9954 | 0.9916 48 11000122100]31000

10 0.9947 | 0.9907 50 11000]14421033100

Average [ 0.99402 | 0.99051
Max 0.9954 | 0.9916
Min 0.9909 | 0.9886

Variance | 1.72E-06 | 9.71E-07

Table 3 shows the results when engineers know the
heterogeneity information in each choice, we refer to it as
scenario 2. Given the same parameters, the average reliability
in ten replicates is 0.99116, which is higher than the actual
reliability 0.99051 in scenario 1.

Table 3: Result of Scenario 2 with proportion [0.9, 0.1

reliability | cost solution(subsystem)
1 2 3
1 0.9914 50 21100|33210({20000
2 0.9908 49 21100|43210(33000
3 0.9921 50 11000|44411(31000
4 0.992 50 11000|42110(32000
5 0.9925 49 11100/44410(32000
6 0.9899 49 11100]43320(33000
7 0.9889 47 11000]41000({21100
8 0.9906 49 11000/32100(32200
9 0.9916 48 11000]42110(33000
10 0.9918 50 11000|33110({32000
Average | 0.99116
Max 0.9925
Min 0.9889
Variance | 1.12E-06

We can conclude that the consideration of reliability
calculation is important, especially when heterogeneous
subpopulations exist in components. Potential improvement of
reliability in system reliability can be achieved when we fully
consider the heterogeneity of components.

4.2 Example 2:

In the second numerical example, all parameters remain
the same as in numerical example 1, except the proportion of
subpopulation. The proportions of subpopulations 1 and 2
change from [0.9, 0.1] into [0.6, 0.4].

Table 4 shows the result of scenario 1 when proportion of
subpopulation is [0.6, 0.4]. The actual reliability is only 97.8%
of the optimal reliability. In comparison with the percentage in
Table 2, where the actual reliability is 99.9% of the optimal
reliability, the increased proportion of abnormal subpopulation
yields a larger deviation from the actual reliability.

Table 4: Result of Scenario 1 with proportion [0.6, 0.4]

reliability avctu.a.l cost solution(subsystem)
reliability 1 2 3
0.9953 | 0.9749 50 21100({42110]30000
0.9956 | 0.9723 49 11000[(32210{10000
0.9938 | 0.9713 47 21100(43100/31000
0.9961 | 0.9727 50 11000[31100]21000
0.9957 | 0.9721 49 11000[11000]22200
0.9951 | 0.9739 50 21100(42210|20000
0.9937 [ 0.9692 50 11000[43100(33210
0.9947 [ 0.9819 48 11100]43310[(30000
0.9955 | 0.9741 49 21100(41100]32000
10 0.9948 | 0.9726 46 21100(42100/10000
Average | 0.99503 | 0.9735
Max 0.9961 | 0.9819
Min 0.9937 [ 0.9692
Variance | 5.66E-07 | 1.01E-05

O[R[N ]|—

Table 5 shows the result of scenario 2 when subpopulation
proportion is [0.6, 0.4]. Comparing with the actual reliability in
Table 4, the optimal reliability when knowing the heterogeneity
information can result in a better system reliability. Numerical
example 2 further confirms the necessity of considering
components’ heterogeneity.

Table 5: Result of Scenario 2 with proportion [0.6, 0.4]
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reliability | cost solution(subsystem)
1 2 3
1 0.9814 49 11100/31000(22000
2 0.9775 50 11100]44200(32200
3 0.9808 50 11100/44100(33200
4 0.972 48 21100|43310]10000
5 0.9804 49 11100/22000(31000
6 0.9814 50 21110]/41000(32000
7 0.9785 49 21110]/44200]10000
8 0.9788 48 11100]44320[10000
9 0.9708 50 21100]/41000(31100
10 0.9721 47 11000/11000(33100
Average | 0.97737
Max 0.9814
Min 0.9708
Variance | 1.57E-05

5. CONCLUSION

In this research, we consider a typical RAP whose objective
is to maximize the system reliability subject to the constraint of
system cost. Components in each choice are assumed to be
degradation based, and each choice consists one normal
subpopulation and several abnormal subpopulations. Numerical
analysis is conducted to assess the necessity of considering
components’ heterogeneity. Our numerical examples show that
ignoring the heterogeneity in components can lead to inferior
system reliability.

In this research, we consider a simple parallel system for
illustration purpose. In future, more numerical experiments can
be conducted to assess the impacts of components’
heterogeneity on different system structures. It is also worth
considering a joint optimization of redundancy allocation and
preventive maintenance with the presence of components’
heterogeneity.
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