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Abstract—We use commercial wearable sensors to collect
three-dimensional acceleration signals from various gaits. Then,
we organize the collected measurements in three-way tensors and
present a simple, efficient gait classification scheme based on
TUCKER2 tensor decomposition. The proposed scheme derives
as multi-linear generalization of the nearest-subspace classifier.
QOur experimental studies show that the proposed approach
manages to automatically identify the motion axes of interest and
classify walking, jogging, and running gaits with high accuracy.

Index Terms—Acceleration, gait recognition, IMU, MEMS,
tensor decomposition, wearable sensors.

I. INTRODUCTION

Gait recognition/classification has attracted extended re-
search interest over the past decade. Modern applications of
gait analysis include, but are not limited to, security (e.g.,
biometric identification) [1], [2], sports medicine and injury
rehabilitation [3], [4], and disease diagnosis/prognosis [5]-[9].

Popular sensing modalities for gait recognition include
radar, imaging/video, and acceleration. In [10], authors used
radar micro-Doppler signatures to analyze gaits of elderly.
More recently, in [11] and [12], radar measurements were
used for gait abnormality classification and gait-cycle esti-
mation, respectively. A detailed presentation of methods and
applications for radar-based gait recognition is offered in [13].
Authors in [14] presented a method for multi-view video-based
gait recognition; a thorough review of vision-based gait recog-
nition is offered in [15]. Another promising sensing modality
for gait analysis is acceleration. The research background on
acceleration-based gait recognition is presented in [16], [17].
Detailed assessment of acceleration signals is offered in [18]-
[20]. Other modalities that have been recently used for gait
recognition include foot/floor pressure [21], Wi-Fi signals [22],
as well as various measurements from Microsoft Kinect [23],
[24], smartwatches [25], and smartphones [26], [27].

At the same time, the use of wearable sensors has been
continuously increasing over the past years in an array of
mainstream applications related to fitness and health-condition
monitoring [7]. A variety of available wearable sensing de-
vices, comprising sensors and respective signal processing
algorithms, are now employed to measure and analyze diverse
activities ranging from simple step counting to fatigue detec-
tion and injury prevention for professional athletes [28], [29].
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Regretfully, the sensing capabilities of such devices are often
under-utilized due to the complexity associated with storing,
transferring, processing, and, more importantly, interpreting
the large amounts of collected data. Instead, information-
bearing variance is often eliminated by either averaging (e.g.,
average distance walked per day), or isolation of extrema
(min/max) [30]. For example, beyond mere step counting,
continuous measurements of leg-motion acceleration have
clearly demonstrated the capacity to provide very important
insights on the wellness of patients [9], [31].

The increasing popularity of wearables can be in part
attributed to their high sensing accuracy, enabled by significant
advances in microelectromechanical systems (MEMS) tech-
nology [32] —and specifically inertial sensors (accelerometers,
gyroscopes), commonly combined in inertial measurement
units (IMU) [33]-[35]. MEMS-IMUs are low-cost/low-power,
small, lightweight, portable, and unobtrusive. Furthermore,
inertial signals can allow for complex motion analysis [36].

In this work, we focus on gait classification based on
acceleration signals collected from low-cost commercial wear-
able IMUs. Specifically, we collect acceleration data across
three dimensions, for walking, jogging, and running. Then, we
organize the collected data in three-way tensors, and process
them as such, so that measurement dependencies across the
time and sensing-orientation dimensions are preserved and
leveraged towards improved gait recognition. Finally, we em-
ploy a simple and efficient scheme for gait classification based
on TUCKER?2 tensor decomposition [37]. Our experimental
studies show that the proposed approach manages to classify
different gaits with very high accuracy.

II. EXPERIMENTAL METHODS
A. Data Acquisition

For data acquisition, we used the MetaMotionR Developer
Kit of MBIENTLAB Inc. [38] which combines the low-power
IMU BMI160 [39], manufactured by BOSCH, together with a
pressure sensor, a magnetometer, a generic temperature sensor,
an ambient light sensor, and 8MB of flash memory. The kit is
bluetooth enabled, powered by an 80mAH lithium ion 3.7V
battery, and equipped with an ARM Cortex M4F processor.
In this work, we only collected and processed acceleration
data collected by the BMI160 IMU, which was set up to
provide a sensitivity range of +/-16g at 2048LSB/g and a
sample frequency of 200Hz.

The sensing kit was placed on the right shoe heel of three
participants (3+1cm above the ground) as shown in Fig. 1.
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Fig. 1: Sensor placement and axis orientation.

Fig. 1 also shows the orientation of the three acceleration axes
across which measurements were collected. Each participant
wore shoes with different heel width and material depending
on individual comfort. The participants were between 18 and
24 years of age, with weight in the range 100-2001b and no
injury or pain. All measurements were collected over the same
day, indoors, while the participants were walking, jogging, and
running on a 100-feet-long straight track.

B. Data Pre-processing and Tensor Formation

With the process described above, we collected a varying-
length real-valued signal for each subject, gait, and acceler-
ation axis. Each of these signals comprises a sequence of
successive gait cycles. For the sake of clarity, we henceforth
assign indices p = 1,2, 3 to the three participants, g = 1,2, 3
to gaits walking, jogging, and running, respectively, and a =
1,2,3 to axes X, Y, and Z (see Fig. 1), respectively. Accord-
ingly, we denote by {z, 4.[n]} the length-N, , acceleration
signal for participant p, gait g, and axis a. N, 4 depends on
the sampling rate and measurement duration and varies across
each participant and gait. In the sequel, we present how these
signals were processed, before they were used for gait learning
and recognition.

Jitter Smoothing: First, we apply to each of the col-
lected acceleration signals a moving average filter (MAF) that
smooths short-term jitters, while it keeps the long term pattern
practically intact. Specifically, the output of the MAF when
applied to acceleration signal z,, 4 ,[n] is given by

1 upp(m)
Tp,galm] = dur(m) n%;(m)xp-,g,a[nL (D

for m = 1,2,..., N, 4, where upp(m) = min{N, 4, m +
|B/2]}, low(m) = max{l,m — |B/2|}, dur = upp(m) —
low(m) + 1, and odd smoothing window size B.

Data Segmentation and Length Normalization: The
smoothed acceleration signal {Z, 4 ,[n]} corresponds to mul-
tiple successive gait cycles. In the next pre-processing step, we
segment successive cycles, jointly across all axes (i.e., same
segmentation for Z, 4 1[n], Zp ¢,2[n], and , 4 3[n]). First, we
identify successive heel-offs by the deepest local minima of the
Z-axis signal; then, for each heel-off, we identify the previous
zero-crossing as the start point of the respective gait cycle and
segment {Z, 4 ,[n]} at these points (other methods for gait-
event detection in acceleration signals were presented in [20],
[40], [41]). Thus, for each gait cycle in {Z,, 4 .[n]}, we obtain
a sequence of short discrete-time signals of varying length

(across p and g). Finally, we normalize by interpolation or sub-
sampling the length of all single-cycle signals to some value
L, determined by the average cycle duration and the sampling
rate. The length-L signals obtained with the above procedure
are henceforth referred to as the acceleration signatures. Fig.
2 illustrates the signal smoothing, segmentation, and length-
normalization for walking.

Data Organization in Tensors: Each length-L acceleration
signature can also be represented as a vector in R”. Let
Xp,g,a,c € R be the signature for participant p, gait g, axis
a, and cycle index c. Henceforth, we fix the same number
of C cycles per (p,g,a) (C derives by the minimum value
of N,4/L across p and g). Concatenating the signatures
Xpge = Xpgies Xpg2.eXpgae € R>E we form a 2D
(i.e., matrix) participant-gait acceleration signature. Finally,
for all combinations of p and ¢ (in arbitrary order), we
concatenate X, , . as frontal slabs of the gait tensor dataset
X, € R3XLXN “for N = 3C.

ITI. TENSOR DECOMPOSITION FOR LEARNING AND
CLASSIFICATION

In this paper, we present a simple tensor-based method for
the classification of 2D gait signatures. The presented classi-
fication method is based on TUCKER?2 [37], [42], [43] tensor
decomposition and derives as a multi-linear generalization of
the standard nearest-subspace classifier (NSC) [44]. Tensor
methods have also been successfully used in the past for gait
recognition from different sensing modalities [45]-[49].

We consider that Ny , training 2D signatures are available
from gait g (frontal slabs of tensor X ) and organize them
in the training tensor X, € R3*ExNes | For simplicity, we
denote by Xy 4(n) the n-th frontal slab of X, . [X, ]..n-
The proposed classifier seeks the pair of orthonormal bases
(U, € R¥>dwis V, € RIEXdine) for dys € {1,2,3} and
dime € {1,2,..., L}, that maximizes the aggregate low-rank
projection of the signatures of gait g. That is, we wish to solve

Nu,g
argmax Z HUTXmg(n)VHi, 2)
UeR?*uis;UT U=Ig4,; n—1
VeRF X dime, v T U=I,4,

(Ugvvg) -

where the squared Frobenius norm || - ||% returns the sum
of the squared entries of its matrix argument. The prob-
lem formulation in (2) is also known as Generalized Low-
Rank Approximation of Matrices (GLRAM) [50], [51], 2D-
PCA [37], Multilinear-PCA (MPCA) [46], or TUCKER2 [42]
decomposition of the training tensor X, , € R¥*ExNig,
The notion behind this formulation is that (U,, V) provide
a subspace description for the 2D-data of gait g, reducing
their dimensionality and suppressing any low-variance noise
components in the measurements. In this work, we consider
dais = 1, so that U, = uy € R3 is a vector that optimally
combines measurements across the three axes, in a way that
maximizes the preservation of variance. Accordingly, matrix
signature X, (n) € R3*% is reduced to the vector signature
y;(n) = u;]'—Xg (n)V, € R1*dine - A schematic illustration of
the presented TUCKER?2 decomposition is offered in Fig. 3.
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Fig. 2: (a) Acceleration measurements for walking. First row: Raw acceleration signal for Z-axis; Second row: Acceleration
signatures after segmentation; Third row: Acceleration signatures after length normalization. (b) Acceleration measurements for
walking, running, and jogging. First row: X-axis, Y-axis, Z-axis for walking; Second Row: X-axis, Y-axis, Z-axis for jogging;

Third Row: X-axis, Y-axis, Z-axis for running.

Solution to TUCKER? tensor decomposition in (2) is com-
monly pursued by means of the Higher-Order Singular-Value
Decomposition (HOSVD) algorithm, or the Higher-Order Or-
thogonal Iterations (HOOI) [37], [50] algorithm. To achieve
jointly optimal dimensionality reduction across the orientation-
axes and time domains, in this work we employ HOOI —
we recall that, instead, HOSVD would return (U,, V) by
disjoint singular-value decompositions (SVD) of the mode-1
and mode-2 flattenings/unfoldings of X, ;. Moreover, HOOI
is known to attain higher value to the metric in (2) than
HOSVD, which implies that it delivers bases that better
preserve the original data variance. A brief description of the
HOOI procedure follows.

First u, is initialized to the dominant left-singular
vector (SV) of Fy1 = [Xipg(l),..., Xug(Nug)] €
R3*LNwg uéo), obtainable by standard SVD. Then, V,
is initialized to the djme dominant left-SVs of F,o =
X g(1)T, ., X g(Niwg) ] € REX3Nes | Subsequently, the
algorithm proceeds iteratively. At the t-th iteration step, the
bases are updated as

Ni,g
ul) = argmax Z [u" X g()VEDZ (3)
ueR3[lulla=1 ;-
and
Nir,g
argmax Z ||VTXtryg(n)Tu§t)||%. 4)

v —
g
V eRL X diime 5VTVZIdumc n—1

The solution to (3) is given by the dominant left-SV of
Ko (VI X g (Vi) VY] € R3*duneNes  The

solution to (4) is given by the dine dominant left-SVs of
Ko () 0, X (Vi g) Tul)] € REXNes Thus, over-
all, HOOI delivers an approximate (in general) solution to
TUCKER? in (3) by a sequence of matrix SVDs. It is worth
noting that the HOOI iterations converge in the metric of (3).
Upon convergence (or earlier termination), HOOI returns the
gait class bases (uy, V) and the training process is completed.

When a new 2D signature X € R3**% (from an unknown
gait) is collected, the proposed method will classify it to gait
g*, based on the nearest multi-linear subspace criterion

g* = argmax Hu;XVgHi ) (5)
9=1,2,3
That is, the classifier assigns X to the gait class whose
TUCKER?2 bases best described X. It is interesting to notice
that if L = 1, the 2D gait measurements become vectors and
the above presented procedure simplifies to standard nearest
subspace classification (NSC) [44].

IV. EXPERIMENTATION

Following the data acquisition procedure presented above,
we collected N = 105 (35 from each participant) cycles for
walking, jogging, and running. After smoothing with MAF
(B = b5), signal segmentation, and length-normalization, we
obtained acceleration signatures of length L = 283, for each
participant, gait, and axis. Ny = 90 cycles from each gait were
used for training; the remaining 15 cycles from each gait were
used for testing. In Fig. 4, we plot the recognition accuracy rate
of the proposed method, versus diye = 2,3, .. .,6, calculated
over 2000 independent selections of training and testing data,
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Fig. 3: Tensor structure and TUCKER2 decomposition.

following the standard cross-validation approach. We notice
that for dyme as low as 4, the proposed method attains
classification accuracy above 98%. Together with the proposed
method, we also plot the performance of 3 alternatives: NSC
only on the X-axis (equivalent to the proposed method for
fixing u, = [1,0,0]" for every g), NSC on the Y-axis data
(e, ug = [0,1,0]" for every g), and NSC on the Z-axis
data (i.e., u, = [0,0,1]7 for every g). We observe that the
NSC on the X-axis attains high performance, similar to that of
the proposed method, while all other single-axis approaches
exhibit markedly lower performance. At this point it is worth
noting that in our dataset, X-axis appears to be the most
discriminative axis across the three gaits (see Fig. 2). If that
was known beforehand, then one could indeed operate solely
on X-axis measurements and attain the high performance
of Fig. 4. However, in general, such information cannot be
considered available. Moreover, for more complicated gaits
—not studied in this work— it is reasonable to assume that
measurements from a single axis would not suffice. Quite
interestingly, the proposed tensor-decomposition method was
able to unveil this particular data structure in an automated
way (through joint optimization in the time and axis domains),
ultimately placing its focus on the X-axis. In future work, we
plan to investigate classification of more complex gaits such
as side-running and abnormal walking.

Next, we experiment with adding to each acceleration
measurement white Gaussian noise (WGN) of variance o2.
In Fig. 5, we fix duis to 1 and dipe to just 4 and plot
the gait recognition accuracy of the proposed method versus
noise variance 02 = —12,—10,...,2dB. We notice that the
proposed method and the oracle-informed X-axis NSC attain
classification accuracy close to 98%, superior to that of the
other approaches.

V. CONCLUSIONS

We used wearable commercial sensors to collect 3D acceler-
ation signals from walking, jogging, and running gaits. Then,
we smoothed, segmented, and length-normalized the collected
measurements, which we finally organized in 3-way gait
tensors. Accordingly, we proposed a gait recognition method
based on TUCKER?2 tensor decomposition and a nearest multi-
linear subspace classifier. Our experimental studies showed

Fig. 4: Classification accuracy vs. dime, for Ny = 90.

Fig. 5: Classification accuracy vs. 02 = —12,-10,...,2dB,

for Ny = 90 and djjpme = 4.

that the proposed simple tensor-based method manages to
recognize the walking, jogging, and running gaits with high
accuracy.
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