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Abstract—We use commercial wearable sensors to collect
three-dimensional acceleration signals from various gaits. Then,
we organize the collected measurements in three-way tensors and
present a simple, efficient gait classification scheme based on
TUCKER2 tensor decomposition. The proposed scheme derives
as multi-linear generalization of the nearest-subspace classifier.
Our experimental studies show that the proposed approach
manages to automatically identify the motion axes of interest and
classify walking, jogging, and running gaits with high accuracy.

Index Terms—Acceleration, gait recognition, IMU, MEMS,
tensor decomposition, wearable sensors.

I. INTRODUCTION

Gait recognition/classification has attracted extended re-

search interest over the past decade. Modern applications of

gait analysis include, but are not limited to, security (e.g.,

biometric identification) [1], [2], sports medicine and injury

rehabilitation [3], [4], and disease diagnosis/prognosis [5]–[9].

Popular sensing modalities for gait recognition include

radar, imaging/video, and acceleration. In [10], authors used

radar micro-Doppler signatures to analyze gaits of elderly.

More recently, in [11] and [12], radar measurements were

used for gait abnormality classification and gait-cycle esti-

mation, respectively. A detailed presentation of methods and

applications for radar-based gait recognition is offered in [13].

Authors in [14] presented a method for multi-view video-based

gait recognition; a thorough review of vision-based gait recog-

nition is offered in [15]. Another promising sensing modality

for gait analysis is acceleration. The research background on

acceleration-based gait recognition is presented in [16], [17].

Detailed assessment of acceleration signals is offered in [18]–

[20]. Other modalities that have been recently used for gait

recognition include foot/floor pressure [21], Wi-Fi signals [22],

as well as various measurements from Microsoft Kinect [23],

[24], smartwatches [25], and smartphones [26], [27].

At the same time, the use of wearable sensors has been

continuously increasing over the past years in an array of

mainstream applications related to fitness and health-condition

monitoring [7]. A variety of available wearable sensing de-

vices, comprising sensors and respective signal processing

algorithms, are now employed to measure and analyze diverse

activities ranging from simple step counting to fatigue detec-

tion and injury prevention for professional athletes [28], [29].
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Regretfully, the sensing capabilities of such devices are often

under-utilized due to the complexity associated with storing,

transferring, processing, and, more importantly, interpreting

the large amounts of collected data. Instead, information-

bearing variance is often eliminated by either averaging (e.g.,

average distance walked per day), or isolation of extrema

(min/max) [30]. For example, beyond mere step counting,

continuous measurements of leg-motion acceleration have

clearly demonstrated the capacity to provide very important

insights on the wellness of patients [9], [31].

The increasing popularity of wearables can be in part

attributed to their high sensing accuracy, enabled by significant

advances in microelectromechanical systems (MEMS) tech-

nology [32] –and specifically inertial sensors (accelerometers,

gyroscopes), commonly combined in inertial measurement

units (IMU) [33]–[35]. MEMS-IMUs are low-cost/low-power,

small, lightweight, portable, and unobtrusive. Furthermore,

inertial signals can allow for complex motion analysis [36].

In this work, we focus on gait classification based on

acceleration signals collected from low-cost commercial wear-

able IMUs. Specifically, we collect acceleration data across

three dimensions, for walking, jogging, and running. Then, we

organize the collected data in three-way tensors, and process

them as such, so that measurement dependencies across the

time and sensing-orientation dimensions are preserved and

leveraged towards improved gait recognition. Finally, we em-

ploy a simple and efficient scheme for gait classification based

on TUCKER2 tensor decomposition [37]. Our experimental

studies show that the proposed approach manages to classify

different gaits with very high accuracy.

II. EXPERIMENTAL METHODS

A. Data Acquisition

For data acquisition, we used the MetaMotionR Developer

Kit of MBIENTLAB Inc. [38] which combines the low-power

IMU BMI160 [39], manufactured by BOSCH, together with a

pressure sensor, a magnetometer, a generic temperature sensor,

an ambient light sensor, and 8MB of flash memory. The kit is

bluetooth enabled, powered by an 80mAH lithium ion 3.7V

battery, and equipped with an ARM Cortex M4F processor.

In this work, we only collected and processed acceleration

data collected by the BMI160 IMU, which was set up to

provide a sensitivity range of +/-16g at 2048LSB/g and a

sample frequency of 200Hz.

The sensing kit was placed on the right shoe heel of three

participants (3±1cm above the ground) as shown in Fig. 1.
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Fig. 1: Sensor placement and axis orientation.

Fig. 1 also shows the orientation of the three acceleration axes

across which measurements were collected. Each participant

wore shoes with different heel width and material depending

on individual comfort. The participants were between 18 and

24 years of age, with weight in the range 100-200lb and no

injury or pain. All measurements were collected over the same

day, indoors, while the participants were walking, jogging, and

running on a 100-feet-long straight track.

B. Data Pre-processing and Tensor Formation

With the process described above, we collected a varying-

length real-valued signal for each subject, gait, and acceler-

ation axis. Each of these signals comprises a sequence of

successive gait cycles. For the sake of clarity, we henceforth

assign indices p = 1, 2, 3 to the three participants, g = 1, 2, 3
to gaits walking, jogging, and running, respectively, and a =
1, 2, 3 to axes X, Y, and Z (see Fig. 1), respectively. Accord-

ingly, we denote by {xp,g,a[n]} the length-Np,g acceleration

signal for participant p, gait g, and axis a. Np,g depends on

the sampling rate and measurement duration and varies across

each participant and gait. In the sequel, we present how these

signals were processed, before they were used for gait learning

and recognition.

Jitter Smoothing: First, we apply to each of the col-

lected acceleration signals a moving average filter (MAF) that

smooths short-term jitters, while it keeps the long term pattern

practically intact. Specifically, the output of the MAF when

applied to acceleration signal xp,g,a[n] is given by

x̃p,g,a[m] =
1

dur(m)

upp(m)
∑

n=low(m)

xp,g,a[n], (1)

for m = 1, 2, . . . , Np,g , where upp(m) = min{Np,g,m +
⌊B/2⌋}, low(m) = max{1,m − ⌊B/2⌋}, dur = upp(m) −
low(m) + 1, and odd smoothing window size B.

Data Segmentation and Length Normalization: The

smoothed acceleration signal {x̃p,g,a[n]} corresponds to mul-

tiple successive gait cycles. In the next pre-processing step, we

segment successive cycles, jointly across all axes (i.e., same

segmentation for x̃p,g,1[n], x̃p,g,2[n], and x̃p,g,3[n]). First, we

identify successive heel-offs by the deepest local minima of the

Z-axis signal; then, for each heel-off, we identify the previous

zero-crossing as the start point of the respective gait cycle and

segment {x̃p,g,a[n]} at these points (other methods for gait-

event detection in acceleration signals were presented in [20],

[40], [41]). Thus, for each gait cycle in {x̃p,g,a[n]}, we obtain

a sequence of short discrete-time signals of varying length

(across p and g). Finally, we normalize by interpolation or sub-

sampling the length of all single-cycle signals to some value

L, determined by the average cycle duration and the sampling

rate. The length-L signals obtained with the above procedure

are henceforth referred to as the acceleration signatures. Fig.

2 illustrates the signal smoothing, segmentation, and length-

normalization for walking.
Data Organization in Tensors: Each length-L acceleration

signature can also be represented as a vector in R
L. Let

xp,g,a,c ∈ R
L be the signature for participant p, gait g, axis

a, and cycle index c. Henceforth, we fix the same number

of C cycles per (p, g, a) (C derives by the minimum value

of Np,g/L across p and g). Concatenating the signatures

Xp,g,c = [xp,g,1,c,xp,g,2,c,xp,g,3,c]
⊤ ∈ R

3×L, we form a 2D

(i.e., matrix) participant-gait acceleration signature. Finally,

for all combinations of p and c (in arbitrary order), we

concatenate Xp,g,c as frontal slabs of the gait tensor dataset

Xg ∈ R
3×L×N , for N = 3C.

III. TENSOR DECOMPOSITION FOR LEARNING AND

CLASSIFICATION

In this paper, we present a simple tensor-based method for

the classification of 2D gait signatures. The presented classi-

fication method is based on TUCKER2 [37], [42], [43] tensor

decomposition and derives as a multi-linear generalization of

the standard nearest-subspace classifier (NSC) [44]. Tensor

methods have also been successfully used in the past for gait

recognition from different sensing modalities [45]–[49].
We consider that Ntr,g training 2D signatures are available

from gait g (frontal slabs of tensor Xg) and organize them

in the training tensor Xtr,g ∈ R
3×L×Ntr,g . For simplicity, we

denote by Xtr,g(n) the n-th frontal slab of Xtr,g , [Xtr,g]:,:,n.

The proposed classifier seeks the pair of orthonormal bases

(Ug ∈ R
3×daxis ,Vg ∈ R

L×dtime), for daxis ∈ {1, 2, 3} and

dtime ∈ {1, 2, . . . , L}, that maximizes the aggregate low-rank

projection of the signatures of gait g. That is, we wish to solve

(Ug,Vg) = argmax
U∈R

3×daxis ;U�
U=Idaxis

V∈R
L×dtime ;V�

U=Idtime

Ntr,g
∑

n=1

∥

∥U⊤Xtr,g(n)V
∥

∥

2

F
, (2)

where the squared Frobenius norm ‖ · ‖2F returns the sum

of the squared entries of its matrix argument. The prob-

lem formulation in (2) is also known as Generalized Low-

Rank Approximation of Matrices (GLRAM) [50], [51], 2D-

PCA [37], Multilinear-PCA (MPCA) [46], or TUCKER2 [42]

decomposition of the training tensor Xtr,g ∈ R
3×L×Ntr,g .

The notion behind this formulation is that (Ug,Vg) provide

a subspace description for the 2D-data of gait g, reducing

their dimensionality and suppressing any low-variance noise

components in the measurements. In this work, we consider

daxis = 1, so that Ug = ug ∈ R
3 is a vector that optimally

combines measurements across the three axes, in a way that

maximizes the preservation of variance. Accordingly, matrix

signature Xg(n) ∈ R
3×L is reduced to the vector signature

y⊤
g (n) = u⊤

g Xg(n)Vg ∈ R
1×dtime . A schematic illustration of

the presented TUCKER2 decomposition is offered in Fig. 3.



Fig. 2: (a) Acceleration measurements for walking. First row: Raw acceleration signal for Z-axis; Second row: Acceleration

signatures after segmentation; Third row: Acceleration signatures after length normalization. (b) Acceleration measurements for

walking, running, and jogging. First row: X-axis, Y-axis, Z-axis for walking; Second Row: X-axis, Y-axis, Z-axis for jogging;

Third Row: X-axis, Y-axis, Z-axis for running.

Solution to TUCKER2 tensor decomposition in (2) is com-

monly pursued by means of the Higher-Order Singular-Value

Decomposition (HOSVD) algorithm, or the Higher-Order Or-

thogonal Iterations (HOOI) [37], [50] algorithm. To achieve

jointly optimal dimensionality reduction across the orientation-

axes and time domains, in this work we employ HOOI –

we recall that, instead, HOSVD would return (Ug,Vg) by

disjoint singular-value decompositions (SVD) of the mode-1

and mode-2 flattenings/unfoldings of Xtr,g . Moreover, HOOI

is known to attain higher value to the metric in (2) than

HOSVD, which implies that it delivers bases that better

preserve the original data variance. A brief description of the

HOOI procedure follows.

First ug is initialized to the dominant left-singular

vector (SV) of Fg,1 = [Xtr,g(1), . . . ,Xtr,g(Ntr,g)] ∈

R
3×LNtr,g , u

(0)
g , obtainable by standard SVD. Then, Vg

is initialized to the dtime dominant left-SVs of Fg,2 =
[Xtr,g(1)

⊤, . . . ,Xtr,g(Ntr,g)
⊤] ∈ R

L×3Ntr,g . Subsequently, the

algorithm proceeds iteratively. At the t-th iteration step, the

bases are updated as

u(t)
g = argmax

u∈R3;‖u‖2=1

Ntr,g
∑

n=1

‖u⊤Xtr,g(n)V
(t−1)
g ‖2F (3)

and

V(t)
g = argmax

V∈R
L×dtime ;V�V=Idtime

Ntr,g
∑

n=1

‖V⊤Xtr,g(n)
⊤u(t)

g ‖2F . (4)

The solution to (3) is given by the dominant left-SV of

[Xtr,g(1)V
(t−1)
g , . . . ,Xtr,g(Ntr,g)V

(t−1)
g ] ∈ R

3×dtimeNtr,g . The

solution to (4) is given by the dtime dominant left-SVs of

[Xtr,g(1)
⊤u

(t)
g , . . . ,Xtr,g(Ntr,g)

⊤u
(t)
g ] ∈ R

L×Ntr,g . Thus, over-

all, HOOI delivers an approximate (in general) solution to

TUCKER2 in (3) by a sequence of matrix SVDs. It is worth

noting that the HOOI iterations converge in the metric of (3).

Upon convergence (or earlier termination), HOOI returns the

gait class bases (ug,Vg) and the training process is completed.

When a new 2D signature X ∈ R
3×L (from an unknown

gait) is collected, the proposed method will classify it to gait

g∗, based on the nearest multi-linear subspace criterion

g∗ = argmax
g=1,2,3

∥

∥u⊤
g XVg

∥

∥

2

F
. (5)

That is, the classifier assigns X to the gait class whose

TUCKER2 bases best described X. It is interesting to notice

that if L = 1, the 2D gait measurements become vectors and

the above presented procedure simplifies to standard nearest

subspace classification (NSC) [44].

IV. EXPERIMENTATION

Following the data acquisition procedure presented above,

we collected N = 105 (35 from each participant) cycles for

walking, jogging, and running. After smoothing with MAF

(B = 5), signal segmentation, and length-normalization, we

obtained acceleration signatures of length L = 283, for each

participant, gait, and axis. Ntr = 90 cycles from each gait were

used for training; the remaining 15 cycles from each gait were

used for testing. In Fig. 4, we plot the recognition accuracy rate

of the proposed method, versus dtime = 2, 3, . . . , 6, calculated

over 2000 independent selections of training and testing data,



Fig. 3: Tensor structure and TUCKER2 decomposition.

following the standard cross-validation approach. We notice

that for dtime as low as 4, the proposed method attains

classification accuracy above 98%. Together with the proposed

method, we also plot the performance of 3 alternatives: NSC

only on the X-axis (equivalent to the proposed method for

fixing ug = [1, 0, 0]⊤ for every g), NSC on the Y-axis data

(i.e., ug = [0, 1, 0]⊤ for every g), and NSC on the Z-axis

data (i.e., ug = [0, 0, 1]⊤ for every g). We observe that the

NSC on the X-axis attains high performance, similar to that of

the proposed method, while all other single-axis approaches

exhibit markedly lower performance. At this point it is worth

noting that in our dataset, X-axis appears to be the most

discriminative axis across the three gaits (see Fig. 2). If that

was known beforehand, then one could indeed operate solely

on X-axis measurements and attain the high performance

of Fig. 4. However, in general, such information cannot be

considered available. Moreover, for more complicated gaits

–not studied in this work– it is reasonable to assume that

measurements from a single axis would not suffice. Quite

interestingly, the proposed tensor-decomposition method was

able to unveil this particular data structure in an automated

way (through joint optimization in the time and axis domains),

ultimately placing its focus on the X-axis. In future work, we

plan to investigate classification of more complex gaits such

as side-running and abnormal walking.

Next, we experiment with adding to each acceleration

measurement white Gaussian noise (WGN) of variance σ2.

In Fig. 5, we fix daxis to 1 and dtime to just 4 and plot

the gait recognition accuracy of the proposed method versus

noise variance σ2 = −12,−10, . . . , 2dB. We notice that the

proposed method and the oracle-informed X-axis NSC attain

classification accuracy close to 98%, superior to that of the

other approaches.

V. CONCLUSIONS

We used wearable commercial sensors to collect 3D acceler-

ation signals from walking, jogging, and running gaits. Then,

we smoothed, segmented, and length-normalized the collected

measurements, which we finally organized in 3-way gait

tensors. Accordingly, we proposed a gait recognition method

based on TUCKER2 tensor decomposition and a nearest multi-

linear subspace classifier. Our experimental studies showed
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that the proposed simple tensor-based method manages to

recognize the walking, jogging, and running gaits with high

accuracy.
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5 J. Pärkkä, S. Mahdiani, M. Bruun, M. Baroni, H. Rhodius-Meester, S.-
K. Herukka, M. van Gils, S. Hasselbalch, P. Mecocci, W. van der Flier,
A. Remes, H. Soininen, and J. Lötjönen, “Gait as predictor of dementia,”
in Proc. 27th Alzheimer Europe Conf., Berlin, Germany, Oct. 2017.

6 J. Klucken, J. Barth, P. Kugler, J. Schlachetzki, T. Henze, F. Marxreiter,
Z. Kohl, R. Steidl, J. Hornegger, B. M. Eskofier, and J. Winkler, “Unbiased
and mobile gait analysis detects motor impairment in Parkinson’s disease,”
PloS One, vol. 8, no. 2, pp. e56 956:1–9, Feb. 2013.



7 A. Muro-de-la Herran, B. Garcia-Zapirain, and A. Mendez-Zorrilla, “Gait
analysis methods: An overview of wearable and non-wearable systems,
highlighting clinical applications,” Advances in Pediatrics, vol. 14, no. 2,
pp. 3362–3394, Feb. 2014.

8 A. Mannini, D. Trojaniello, A. Cereatti, and A. M. Sabatini, “A machine
learning framework for gait classification using inertial sensors: Appli-
cation to elderly, post-stroke and huntingtons disease patients,” Sensors,
vol. 16, no. 1, pp. 134:1–14, Jan. 2016.

9 D. Jarchi, J. Pope, T. K. Lee, L. Tamjidi, A. Mirzaei, and S. Sanei,
“A review on accelerometry based gait analysis and emerging clinical
applications,” IEEE Rev. Biomed. Eng., Feb. 2018.

10 M. G. Amin, F. Ahmad, Y. D. Zhang, and B. Boashash, “Micro-doppler
characteristics of elderly gait patterns with walking aids,” in Proc. SPIE

Radar Sensor Tech. XIX; Act. Pass. Sign. VI, vol. 9461, Baltimore, MD,
Apr. 2015, pp. 94 611A1:1–6.

11 A. K. Seifert, A. M. Zoubir, and M. G. Amin, “Radar classification of
human gait abnormality based on sum-of-harmonics analysis,” in Proc.

IEEE Radar Conf., Oklahoma City, OK, Apr. 2018, pp. 940–945.
12 P. Lei, Y. Zhang, J. Wang, and J. Sun, “Estimation of human gait cycle

based on cepstrum of radar micro-doppler signatures,” in Proc. Progress

Electromag. Research Symp., Singapore, Singapore, Nov. 2017, pp. 2356–
2359.

13 A.-K. Seifert, M. G. Amin, and A. M. Zoubir, “Toward unobtrusive
in-home gait analysis based on radar micro-doppler signatures,” arXiv

preprint arXiv:1809.06653, 2018.
14 T. Wolf, M. Babaee, and G. Rigoll, “Multi-view gait recognition using 3D

convolutional neural networks,” in Proc. IEEE Int. Conf. Image Process.,
Phoenix, AZ, Sep. 2016, pp. 4165–4169.

15 T. K. Lee, M. Belkhatir, and S. Sanei, “A comprehensive review of past
and present vision-based techniques for gait recognition,” Multimedia

Tools Appl., vol. 72, no. 3, pp. 2833–2869, Oct. 2014.
16 S. Sprager and M. B. Juric, “Inertial sensor-based gait recognition: A

review,” Sensors, vol. 15, no. 9, pp. 22 089–22 127, Sep. 2015.
17 C.-C. Yang and Y.-L. Hsu, “A review of accelerometry-based wearable

motion detectors for physical activity monitoring,” Sensors, vol. 10, no. 8,
pp. 7772–7788, Aug. 2010.

18 A. Millecamps, K. A. Lowry, J. S. Brach, S. Perera, M. S. Redfern, and
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19 E. Sejdić, K. A. Lowry, J. Bellanca, M. S. Redfern, and J. S. Brach, “A
comprehensive assessment of gait accelerometry signals in time, frequency
and time-frequency domains,” IEEE Trans. Neural Syst. Rehab. Eng.,
vol. 22, no. 3, p. 603, May 2014.
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27 E. Sejdić, A. Millecamps, J. Teoli, M. Rothfuss, N. G. Franconi, S. Perera,
A. Jones, J. S. Brach, and M. H. Mickle, “Assessing interactions among
multiple physiological systems during walking outside a laboratory: an
android based gait monitor,” Comput. Meth. Prog. Biomed, vol. 122, no. 3,
pp. 450–461, Dec. 2015.

28 R. T. Li, S. R. Kling, M. J. Salata, S. A. Cupp, J. Sheehan, and J. E.

Voos, “Wearable performance devices in sports medicine,” Sports Health,
vol. 8, no. 1, pp. 74–78, Feb. 2016.
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