


filters and the corresponding channels in the filters of the

next layer. They do not require feature map reprojection,

however they discard a large amount of information when

eliminating entire filter channels.

In this paper, we propose the Cascaded Projection (CaP)

compression method which combines the superior recon-

struction ability of factorization methods with the multi-

layer cascaded compression of pruning methods. Instead

of selecting a subset of features, as is done in pruning meth-

ods, CaP forms linear combinations of the original features

that retain more information. However, unlike factorization

methods, CaP brings the kernels in the next layer to low di-

mensional feature space and therefore does not require ad-

ditional memory for reprojection.

Figure 1 provides a visual representation of the differ-

ences between the three methods: factorization (top row)

reprojects to higher dimensional space and increases mem-

ory, pruning (middle row) masks filters and eliminates their

channels, and our proposed CaP methods (bottom row)

combines filters to a smaller number without reprojecting.

Our results demonstrate that by forming filters based on lin-

ear combinations instead of pruning with a mask, more in-

formation is kept in the filtering operations and better net-

work classification accuracy is achieved. The primary con-

tributions of this paper are the following:

1. We propose the CaP compression method that finds a

low dimensional projection of the feature kernels and

cascades the projection to compress the input channels

of the kernels in the next layers.

2. We introduce proxy matrix projection backpropaga-

tion, the first method to optimize the compression pro-

jection for each layer using end-to-end training with

standard backpropagation and stochastic gradient de-

scent.

3. Our optimization method allows us to use a new loss

function that combines the reconstruction loss with

classification loss to find a better solution.

4. The CaP method is the first to simultaneously optimize

the compression projection for all layers of residual

networks.

5. Our results illustrate that CaP compressed networks

achieve state-of-the-art accuracy while reducing the

network’s number of parameters, computational load

and memory consumption.

2. Related Work

The goal of network compression and acceleration is

to reduce the number of parameters and computations

performed in deep networks without sacrificing accuracy.

Early work in network pruning dates back to the 1990’s

[14]. However, the area did not gain much interest until

deep convolutional networks became common [31, 32, 43]

and the redundancy of network parameters became apparent

[9]. Recent works aim to develop smaller network architec-

tures that require fewer resources [20, 25, 42].

Quantization techniques [4, 6, 13, 28] use integer or

mixed precision arithmetic only available on state-of-the-

art GPUs [38]. These methods reduce the computation time

and the amount of storage required for the network param-

eters. They can be applied in addition to other methods

to further accelerate compressed networks, as was done in

[30].

Network sparsification [36], sometimes referred to as un-

structured pruning, reduces the number of connections in

deep networks by imposing sparsity constraints. The work

in [21] proposed recasting the sparsified network into sepa-

rate groups of operations where the filters in each layer are

only connected to a subset of the input channels. In [52]

k-means clustering is used to encourage similarity between

features to aid in compression. However, these methods re-

quire training the network from scratch which is not practi-

cal or efficient.

Filter factorization methods reduce computations at the

cost of increased memory load for storing intermediate fea-

ture maps. Initial works focused on factorizing the three-

dimensional convolutional kernels into three separable one-

dimensional filters [10, 29]. In [33] CP-decomposition is

used to decompose the convolutional layers into five lay-

ers with lower complexity. More recently [55] performed a

channel decomposition that found a projection of the con-

volutional filters in each layer such that the asymmetric re-

projection error was minimized.

Channel pruning methods [35, 37, 39, 44, 56] remove

entire feature kernels for network compression. In [13] ker-

nels are pruned based on their magnitudes, under the as-

sumption that kernels with low magnitudes provide little in-

formation to the network. Li et al. [35] suggested a similar

pruning technique based on kernel statistics. He et al. [19]

proposed pruning filters based on minimizing the recon-

struction error of each layer. Luo et al. [37] further extended

the concepts in [19] to prune filters that have minimal im-

pact on the reconstruction of the next layer. Yu et al. [54]

proposed Neuron Importance Score Propagation (NISP) to

calculate the importance of each neuron based on its contri-

bution to the final feature representation and prune feature

channels that provide minimal information to the final fea-

ture representation.

Other recent works have focused less on finding the op-

timal set of features to prune and more on finding the op-

timal amount of features to remove from each layer of the

network. This is important to study because the amount of

pruning performed in each layer is often set arbitrarily or

through extensive experimentation. In [53, 54] the authors

propose automatic pruning architecture methods based on

statistical measures. In [18, 24] methods are proposed

which use reinforcement learning to learn an optimal net-

10716





input to layer i is Ii, while the output of layer i+1 is the

input to layer i+ 2, denoted by Ii+2 and given below.

Ii+2 = G(G(Ii ∗Wi + bi) ∗Wi+1 + bi+1) (4)

After substituting our compressed representation with re-

projection for layer i in the above we get:

Ii+2 = G(G((Ii∗Wi∗Pi+bi∗Pi)∗P
T

i )∗Wi+1+bi+1) (5)

To avoid reprojecting the low dimensional features back

to higher dimensional space with P
T

i
, we seek two projec-

tions. The first PO

i
which captures the optimal lower di-

mensional representation of the features in the current layer,

and the second P
I

i
which pulls the kernels of the next layer

down to lower dimensional space. This formulation leads

to an optimization problem over the projection operators:

{PI

i

∗

,PO

i

∗

}=argmin
PI

i
,PO

i

‖Ii+2−G(G((Ii∗Wi∗P
O

i

+bi∗P
O

i ))∗PI

i ∗Wi+1+bi+1)‖
2
F

(6)

To make the problem tractable, we enforce two strong

constraints on the projections. We require that they are

orthonormal and transposes of each other: P
I

i
= (PO

i
)T .

For the remainder of this work we replace P
O

i
and P

I

i
with

Pi and P
T

i
, respectively. These constraints make the opti-

mization problem more feasible by reducing the parameter

search space to a single projection operator for each layer.

P
∗

i = argmin
Pi,Pi∈On×m

‖Ii+2−G(G((Ii∗Wi∗Pi

+bi∗Pi))∗P
T

i ∗Wi+1+bi+1)‖
2
F

(7)

We solve the optimization of a single projection oper-

ator for each layer using a novel data-driven optimization

method for projection operators discussed in Section 3.6.

3.3.1 Kernel Compression and Relaxation

Once the projection optimization is complete, we re-

place the kernels and biases in the current layer with their

projected versions WO

i
=Wi∗Pi and b

O

i
=bi∗Pi respec-

tively. We also replace the kernels in the next layer with

their input compressed versions WI

i+1
=P

T

i
∗Wi+1. Thus,

Ii+2 = G(G((Ii ∗W
O

i + b
O

i )) ∗WI

i+1 + bi+1) (8)

Figure 2 depicts how the filters W
I

i+1
in the next layer

are compressed using the projection P
T

i
and are therefore

smaller than the kernels in the original network. Utilizing

the compressed kernels W
O

i
and W

I

i
results in twice the

speedup over traditional factorization methods for all com-

pressed intermediate layers (other than first and last layers).

Following kernel projection, we perform an additional

round of training in which only the compressed kernels are

optimized. We refer to this step as kernel relaxation because

we are allowing the kernels to find a better optimal solution

after our projection optimization step.

3.4. Mixture Loss

A benefit of gradient based optimization is that a loss

function can be altered to minimize both reconstruction and

classification error. Previous methods have focused on ei-

ther reconstruction error minimization [19, 37] or classi-

fication [54] based metrics when pruning each layer. We

propose using a combination of the standard cross entropy

classification loss, LClass, and the reconstruction loss LR,

shown in Figure 2. The reconstruction loss for layer i is

given as:

LR(i) = ‖Ii+2 −G(G((Ii ∗Wi ∗Pi

+bi ∗Pi)) ∗P
T

i ∗Wi+1 + bi+1)‖
2
F

(9)

The mixture loss used to optimize the projections in layer i

is given as

L(i) = LR(i) + γLClass (10)

where γ is a mixture parameter that allows adjusting the im-

pact of each loss during training. By using a combination of

the two losses we obtain a compressed network that main-

tains classification accuracy while having feature represen-

tations for each layer which contain the maximal amount of

information from the original network.

3.5. Compressing Multi­Branch Networks

Multi-branch networks are popular due to their excellent

performance and come in a variety of forms such as the In-

ception networks [46, 47, 45], Residual networks (ResNets)

[15] and Dense Networks (DenseNets) [22] among others.

We primarily focus on applying CaP network compression

to ResNets, but our method can be integrated with other

multi-branch networks. We select the ResNet architecture

for two reasons. First, ResNets have a proven record of pro-

ducing state-of-the art results [15, 16]. And second, the skip

connections work well with network compression, as they

allow propagating information through the network regard-

less of the compression process within the individual layers.

Our CaP modification for ResNet compression is illus-

trated in Figure 3. In our approach, we do not alter the

structure of the residual block outputs, therefore we do not

compress the outputs of the last convolution layers in each

residual block, as was done by [37]. In [35, 54] pruning

is performed on the residual connections, but we do not af-

fect them, because pruning these layers has a large negative

impact on the network’s accuracy.

We calculate the reconstruction error in ResNets at the

outputs of each residual block, as shown in Fig. 3, in con-

trast to single branch networks where we calculate the re-

construction error at the next layer as shown in Fig. 2. By

calculating the reconstruction error after the skip connec-

tions, we leverage the information in the skip connections

in our projection optimization.

10718









Method Parameters Memory (Mb) FLOPs GPU Speedup Top-5 Accuracy / Baseline

VGG16 [43] (Baseline) 14.71M 3.39 30.9B 1 89.9

Low-Rank [29] - - - 1.01* 80.02 / 89.9

Asym. [55] 5.11M 3.90 3.7B 1.55* 86.06 / 89.9

Channel Pruning [19] 7.48M 1.35 6.8B 2.5* 82.0 / 89.9

CaP (based on [19] arch) 7.48M 1.35 6.8B 3.05 86.57 / 90.38

CaP Optimal 7.93M 1.11 6.8B 3.44 88.23 / 90.38

Table 3. Network compression results of pruning and factorization based methods without fine-tuning. The top-5 accuracy of the baseline

VGG16 network varies slightly for each of the methods due to different models and frameworks. (Bold numbers are best). Results marked

with * were obtained from [19].

Method
Mem.

FLOPs
Top-5 Acc.

(Mb) / Baseline

VGG16 [43] 3.39 30.9B 89.9

Scratch [19] 1.35 6.8B 88.1

COBLA [34] 4.21 7.7B 88.9 / 89.9

Tucker [30] 4.96 6.3B 89.4 / 89.9

CP [19] 1.35 6.8B 88.9 / 89.9

ThiNet-2 [37] 1.44 6.7B 88.86 / 90.01

CaP 1.11 6.8B 89.39 / 90.38

Table 4. Network compression results of pruning and factorization

based methods with fine-tuning. (Bold numbers are best).

4.4. VGG16 Compression with ImageNet

We compress the VGG16 network trained on Ima-

geNet2012 [8] and compare the results of CaP with other

state-of-the-art methods. We present two sets of results,

without fine-tuning and with fine-tuning, in Tables 3 and 4

respectively. Fine-tuning on ImageNet is time intensive and

requires significant computation power. This is a hindrance

for many applications where users do not have enough re-

sources to retrain a compressed network.

In Table 3 we compare CaP with factorization and prun-

ing methods, all without fine-tuning. As expected, factor-

ization methods suffer from increased memory load due

to their additional intermediate feature maps. The chan-

nel pruning method in [19] has a significant reduction in

memory consumption but under-performs the factorization

method in [55] without fine-tuning. We present two sets of

results for the CaP algorithm, each with different levels of

compression for each layer. To match the architecture used

in [19] we compressed layers 1-7 to 33% of their original

size, and filters in layers 8-10 to 50% of their original size,

while the remaining layers are left uncompressed . We also

used the CaP method with a compression architecture that

was selected based on our layer-wise training experiments.

The results in Table 3 demonstrate that the proposed CaP

compression achieves higher speedup and higher classifica-

tion accuracy than the factorization or pruning methods.

In Table 4 we compare CaP with state-of-the-art net-

work compression methods, all with fine-tuning. The un-

compressed VGG16 results are from [43]. We include re-

sults from training a compressed version of VGG16 from

scratch on the ImageNet dataset as reported in [19]. We

compare CaP with the results of two factorization methods

[34, 30] and two pruning methods [19], [37]. Both factor-

ization methods achieve impressive classification accuracy,

but this comes at the cost of increased memory consump-

tion. The pruning methods reduce both the FLOPs and

the memory consumption of the network, while maintain-

ing high classification accuracy. However, they rely heavily

on fine-tuning to achieve high accuracy. We lastly provide

the results of the CaP compression optimized at each layer.

Our results demonstrate that the CaP algorithm gives state-

of-the-art results, has the largest reduction in memory con-

sumption, and outperforms the pruning methods in terms of

top-5 accuracy.

5. Conclusion

In this paper, we propose cascaded projection, an end-

to-end trainable framework for network compression that

optimizes compression in each layer. Our CaP approach

forms linear combinations of kernels in each layer of the

network in a manner that both minimizes reconstruction er-

ror and maximizes classification accuracy. The CaP method

is the first in the field of network compression to optimize

the low dimensional projections of the layers of the network

using backpropagation and SGD, using our proposed Proxy

Matrix Projection optimization method.

We demonstrate state-of-the-art performance compared

to pruning and factorization methods, when the CaP method

is used to compress standard network architectures trained

on standard datasets. A side benefit of the CaP formula-

tion is that it can be performed using standard deep learning

frameworks and hardware, and it does not require any spe-

cialized libraries for hardware for acceleration. In future

work, the CaP method can be combined with other meth-

ods, such as quantization and hashing, to further accelerate

deep networks.

10722



References

[1] P. A. Absil, R. Mahony, and R. Sepulchre. Optimization al-

gorithms on matrix manifolds. Princeton University Press,

2009.

[2] P. A. Absil and J. Malick. Projection-like retractions on ma-

trix manifolds. SIAM Journal on Optimization, 22(1):135–

158, 2012.

[3] A. Canziani, A. Paszke, and E. Culurciello. An analysis of

deep neural network models for practical applications. arXiv

preprint arXiv:1605.07678, 2016.

[4] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen.

Compressing neural networks with the hashing trick. In Pro-

ceedings of the International Conference on Machine Learn-

ing (ICML) (ICML), pages 2285–2294, 2015.

[5] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary,

and S.-F. Chang. An exploration of parameter redundancy

in deep networks with circulant projections. In Proceedings

of the IEEE International Conference on Computer Vision

(ICCV), pages 2857–2865, 2015.

[6] M. Courbariaux, Y. Bengio, and J.-P. David. Training deep

neural networks with low precision multiplications. In Pro-

ceedings of the International Conference on Machine Learn-

ing (ICML) Workshop, 2014.

[7] J. P. Cunningham and Z. Ghahramani. Linear dimensionality

reduction: survey, insights, and generalizations. Journal of

Machine Learning Research, 16(1):2859–2900, 2015.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

Proceedings of the IEEE conference on Computer Vision and

Pattern Recognition (CVPR), pages 248–255, 2009.

[9] M. Denil, B. Shakibi, L. Dinh, N. De Freitas, et al. Pre-

dicting parameters in deep learning. In Advances in Neural

Information Processing Systems (NIPS), pages 2148–2156,

2013.

[10] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fer-

gus. Exploiting linear structure within convolutional net-

works for efficient evaluation. In Advances in Neural Infor-

mation Processing Systems (NIPS), pages 1269–1277, 2014.

[11] X. Dong, J. Huang, Y. Yang, and S. Yan. More is less: A

more complicated network with less inference complexity. In

Proceedings of the IEEE International Conference on Com-

puter Vision (ICCV), 2017.

[12] J. C. Gower, G. B. Dijksterhuis, et al. Procrustes problems,

volume 30. Oxford University Press on Demand, 2004.

[13] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural networks with pruning, trained quanti-

zation and huffman coding. In International Conference on

Learning Representations (ICLR), 2015.

[14] B. Hassibi and D. G. Stork. Second order derivatives for

network pruning: Optimal brain surgeon. In Advances in

Neural Information Processing Systems (NIPS, pages 164–

171, 1993.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 770–778, 2016.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. In Proceedings of the IEEE Euro-

pean Conference on Computer Vision (ECCV), pages 630–

645. Springer, 2016.

[17] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang. Soft filter

pruning for accelerating deep convolutional neural networks.

In International Joint Conference on Artificial Intelligence

(IJCAI), 2018.

[18] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han. Amc:

Automl for model compression and acceleration on mobile

devices. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 784–800, 2018.

[19] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerat-

ing very deep neural networks. In Proceedings of the IEEE

International Conference on Computer Vision (ICCV), Oct

2017.

[20] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017.

[21] G. Huang, S. Liu, L. van der Maaten, and K. Q. Weinberger.

Condensenet: An efficient densenet using learned group con-

volutions. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), June 2018.

[22] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten.

Densely connected convolutional networks. In Proceedings

of the IEEE conference on Computer Vision and Pattern

Recognition (CVPR), volume 1, page 3, 2017.

[23] L. Huang, X. Liu, B. Lang, A. W. Yu, Y. Wang, and B. Li.

Orthogonal weight normalization: Solution to optimization

over multiple dependent stiefel manifolds in deep neural net-

works. arXiv preprint arXiv:1709.06079, 2017.

[24] Q. Huang, K. Zhou, S. You, and U. Neumann. Learning

to prune filters in convolutional neural networks. In Pro-

ceedings of the IEEE Winter Conference on Applications of

Computer Vision (WACV), pages 709–718, 2018.

[25] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.

Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy

with 50x fewer parameters and¡ 0.5 mb model size. arXiv

preprint arXiv:1602.07360, 2016.

[26] C. Ionescu, O. Vantzos, and C. Sminchisescu. Matrix Back-

propagation for Deep Networks with Structured Layers. In

Proceedings of the IEEE International Conference on Com-

puter Vision (ICCV), 2015.

[27] C. Ionescu, O. Vantzos, and C. Sminchisescu. Training deep

networks with structured layers by matrix backpropagation.

arXiv preprint arXiv:1509.07838, 2015.

[28] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard,

H. Adam, and D. Kalenichenko. Quantization and training

of neural networks for efficient integer-arithmetic-only infer-

ence. arXiv preprint arXiv:1712.05877, 2017.

[29] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up

convolutional neural networks with low rank expansions.

In Proceedings of the British Machine Vision Conference

(BMVC), 2014.

[30] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin.

Compression of deep convolutional neural networks for fast

10723



and low power mobile applications. In International Confer-

ence on Learning Representations (ICLR), 2016.

[31] A. Krizhevsky. Learning multiple layers of features from tiny

images. Technical report, Department of Computer Science,

University of Toronto, 2009.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. Ad-

vances in Neural Information Processing Systems (NIPS),

25:1097–1105, 2012.

[33] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and

V. Lempitsky. Speeding-up convolutional neural net-

works using fine-tuned cp-decomposition. arXiv preprint

arXiv:1412.6553, 2014.

[34] C. Li and C. Richard Shi. Constrained optimization based

low-rank approximation of deep neural networks. In Pro-

ceedings of the IEEE European Conference on Computer Vi-

sion (ECCV), pages 732–747, 2018.

[35] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf.

Pruning filters for efficient convnets. In International Con-

ference on Learning Representations (ICLR), 2016.

[36] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky.

Sparse convolutional neural networks. In Proceedings of the

IEEE conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 806–814, 2015.

[37] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level prun-

ing method for deep neural network compression. In Pro-

ceedings of the IEEE International Conference on Computer

Vision (ICCV), Oct 2017.

[38] S. Markidis, S. W. Der Chien, E. Laure, I. B. Peng, and J. S.

Vetter. Nvidia tensor core programmability, performance &

precision. arXiv preprint arXiv:1803.04014, 2018.

[39] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz.

Pruning convolutional neural networks for resource efficient

inference. In Proceedings of the International Conference on

Learning Representations (ICLR), 2017.

[40] V. Nair and G. E. Hinton. Rectified linear units improve re-

stricted boltzmann machines. In Proceedings of the Interna-

tional Conference on Machine Learning (ICML), pages 807–

814, 2010.

[41] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. In NIPS-W, 2017.

[42] J. Redmon and A. Farhadi. Yolov3: An incremental improve-

ment. arXiv, 2018.

[43] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In Proceedings

of the International Conference on Learning Representations

(ICLR), 2015.

[44] S. Srinivas and R. V. Babu. Data-free parameter pruning for

deep neural networks. In Proceedings of the British Machine

Vision Conference (BMVC), 2015.

[45] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.

Inception-v4, inception-resnet and the impact of residual

connections on learning. In AAAI, volume 4, page 12, 2017.

[46] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proceedings of the

IEEE onference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 1–9, 2015.

[47] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision. In

Proceedings of the IEEE conference on Computer Vision and

Pattern Recognition (CVPR), June 2016.

[48] H. D. Tagare. Notes on optimization on stiefel manifolds.

Technical report, Technical report, Yale University, 2011.

[49] Y. Takane and H. Hwang. Regularized linear and kernel re-

dundancy analysis. Computational Statistics & Data Analy-

sis, 52(1):394–405, 2007.

[50] Y. Takane and S. Jung. Generalized constrained redundancy

analysis. Behaviormetrika, 33(2):179–192, 2006.

[51] Z. Wen and W. Yin. A feasible method for optimization

with orthogonality constraints. Mathematical Programming,

142(1-2):397–434, 2013.

[52] J. Wu, Y. Wang, Z. Wu, Z. Wang, A. Veeraraghavan, and

Y. Lin. Deep k-means: Re-training and parameter sharing

with harder cluster assignments for compressing deep con-

volutions. In Proceedings of the 35th International Con-

ference on Machine Learning, volume 80 of Proceedings

of Machine Learning Research, pages 5363–5372, Stock-

holmsmssan, Stockholm Sweden, 10–15 Jul 2018.

[53] K. Yamamoto and K. Maeno. Pcas: Pruning channels with

attention statistics. arXiv preprint arXiv:1806.05382, 2018.

[54] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han,

M. Gao, C.-Y. Lin, and L. S. Davis. Nisp: Pruning net-

works using neuron importance score propagation. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2018.

[55] X. Zhang, J. Zou, X. Ming, K. He, and J. Sun. Efficient

and accurate approximations of nonlinear convolutional net-

works. In Proceedings of the IEEE conference on Computer

Vision and Pattern Recognition (CVPR), pages 1984–1992,

2015.

[56] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu,

J. Huang, and J. Zhu. Discrimination-aware channel pruning

for deep neural networks. In Advances in Neural Information

Processing Systems 31, pages 875–886. 2018.

10724


