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Abstract

when the snapshots are faulty/corrupted.

processing

Subspace-based direction-of-arrival (DoA) estimation commonly relies on the Principal-Component Analysis (PCA) of
the sensor-array recorded snapshots. Therefore, it naturally inherits the sensitivity of PCA against outliers that may
exist among the collected snapshots (e.g., due to unexpected directional jamming). In this work, we present
DoA-estimation based on outlier-resistant L1-norm principal component analysis (L1-PCA) of the realified snapshots
and a complete algorithmic/theoretical framework for L1-PCA of complex data through realification. Our numerical
studies illustrate that the proposed DoA estimation method exhibits (i) similar performance to the conventional

L 2-PCA-based method, when the processed snapshots are nominal/clean, and (i) significantly superior performance
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1 Introduction

Direction-of-arrival (DoA) estimation is a fundamental
problem in signal processing theory with important appli-
cations in localization, navigation, and wireless commu-
nications [1-6]. Existing DoA-estimation methods can be
broadly categorized as (i) likelihood maximization meth-
ods [7-13], (ii) spectral estimation methods, as in the
early works of [14, 15], and (iii) subspace-based methods
[16-19]. Subspace-based methods have enjoyed great
popularity in applications, mostly due to their favorable
trade-off between angle estimation quality and computa-
tional simplicity in implementation.

In their most common form, subspace-based DoA esti-
mation methods rely on the L2-norm principal compo-
nents (L2-PCs) of the recorded snapshots, which can
be simply obtained by means of singular-value decom-
position (SVD) of the sensor-array data matrix, or by
eigenvalue decomposition (EVD) of the received-signal
autocorrelation matrix [20]. Importantly, under nominal
system operation (i.e., no faulty measurements or unex-
pected jamming/interfering sources), in additive white
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Gaussian noise (AWGN) environment, such methods are
known to offer unbiased, asymptotically consistent DoA
estimates [21-23] and exhibit high target-angle resolution
(“super-resolution” methods).

However, in many real-world applications, the col-
lected snapshot record may be unexpectedly corrupted
by faulty measurements, impulsive additive noise [24—26],
and/or intermittent directional interference. Such inter-
ference may appear either as an endogenous characteristic
of the underlying communication system, as for exam-
ple in frequency-hopped spread-spectrum systems [27],
or as an exogenous factor (e.g., jamming). In cases of
such snapshot corruption, L2-PC-based methods are well
known to suffer from significant performance degradation
[28-30]. The reason is that, as squared error-fitting min-
imizers, L2-PCs respond strongly to corrupted snapshots
that appear in the processed data matrix as points that lie
far from the nominal signal subspace [29]. Accordingly,
DoA estimators that rely upon the L2-PCs are inevitably
misled.

At the same time, research in signal processing and data
analysis has shown that absolute error-fitting minimizers
place much less emphasis on individual data points that
diverge from the nominal signal subspace than square-
fitting-error minimizers. Based on this observation, in
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the past few years, there have been extended docu-
mented research efforts toward defining and calculating
Ll-norm principal components (L1-PCs) of data under
various forms of L1-norm optimality, including absolute-
error minimization and projection maximization [31-46].
Recently, Markopoulos et al. [47, 48] calculated optimally
the maximum-projection L1-PCs of real-valued data, for
which up to that point only suboptimal approximations
were known [36-38]. Experimental studies in [47-53]
demonstrated the sturdy resistance of optimal L1-norm
principal-component analysis (L1-PCA) against out-
liers, in various signal processing applications. Recently,
[43, 45] introduced a heuristic algorithm for L1-PCA that
was shown to attain state-of-the-art performance/cost
trade-off. Another popular approach for outlier-resistant
PCA is “Robust PCA” (RPCA), as introduced in [29] and
further developed in [54, 55].

In this work, we consider system operation in the
presence of unexpected, intermittent directional inter-
ference and propose a new method for DoA-estimation
that relies on the L1-PCA of the recorded complex
snapshots. Importantly, this work introduces a com-
plete paradigm on how L1-PCA, defined and solved
over the real field [47, 48], can be used for processing
complex data, through a simple “realification” step. An
alternative approach for L1-PCA of complex-valued data
was presented in [46], where the authors reformulated
complex L1-PCA into unimodular nuclear-norm maxi-
mization (UNM) and estimated its solution through a
sequence of converging iterations. It is noteworthy that
for the UNM introduced in [46], no general exact solver
exists to date.

Our numerical studies show that the proposed L1-
PCA-based DoA-estimation method attains performance
similar to the conventional L2-PCA-based one (i.e.,
MUSIC [16]) in the absence of jamming sources, while
it offers significantly superior performance in the case
of unexpected, sporadic contamination of the snapshot
record.

Preliminary results were presented in [56]. The present
paper is significantly expanded to include (i) an Appendix
section with all necessary technical proofs, (ii) important
new theoretical findings (Proposition 3 on page 7), (iii)
new algorithmic solutions (Section 3.5), and (iv) extensive
numerical studies (Section 4).

The rest of the paper is organized as follows. In
Section 2, we present the system model and offer a pre-
liminary discussion on subspace-based DoA estimation.
In Section 3, we describe in detail the proposed L1-
PCA-based DoA-estimation method and present three
algorithms for L1-PCA of the snapshot record. Section 4
presents our numerical studies on the performance of the
proposed DoA estimation method. Finally, Section 5 holds
some concluding remarks.
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1.1 Notation

We denote by R and C the set of real and complex
numbers, respectively, and by j the imaginary unit (i.e.,
2 = —1). RIOLIOLOSOT, and ()P denote the
real part, imaginary part, complex conjugate, transpose,
and conjugate transpose (Hermitian) of the argument,
respectively. Bold lowercase letters represent vectors and
bold uppercase letters represent matrices. diag(-) is the
diagonal matrix formed by the entries of the vector argu-
ment. For any A € C"™*", [ A];; denotes its (i, g)th entry,

[Al].4 its gth column, and [A];,; its ith row; [|A]], E
1

(Zf’;l Y= l[Alig |P)p is the pth entry-wise norm of
A, ||A|l« is the nuclear norm of A (sum of singular val-
ues), span(A) represents the vector subspace spanned by
the columns of A, rank(A) is the dimension of span(A),
and null(A") is the kernel of span(A) (i.e., the nullspace
of AT). For any square matrix A € C”*", det(A) denotes
its determinant, equal to the product of its eigenvalues.
® and © are the Kronecker and entry-wise (Hadamard)
product operators [57], respectively. 0%, 1uxn, and I,
are the m x n all-zero, m x n all-one, and size-m iden-

-1
tity matrices, respectively. Also, E,, 210 ] ® Iy, for

10
m € Nxj, and e;, is the ith column of I,,. Finally, E{-} is
the statistical-expectation operator.

2 System model and preliminaries

We consider a uniform linear antenna array (ULA) of D
elements. The length-D response vector to a far-field sig-
nal that impinges on the array with angle of arrival 6 €
(=7, 5] with respect to (w.r.t.) the broadside is defined as

2 fed sin(9 (D—1)2nfedsin®) 7T
_j2nfedsin®) _j D=1 fedsing >] W

s(Q)é[l,e y .., € c

where f; is the carrier frequency, ¢ is the signal
propagation speed, and d is the fixed inter-element spac-
ing of the array. We consider that the uniform inter-
element spacing d is no greater than half the carrier wave-
length, adhering to the Nyquist spatial sampling theorem;
ie,d < 2—2 Accordingly, for any two distinct angles of
arrival 6,6’ € (=%, 7], the corresponding array response
vectors s(6) and s(0’) are linearly independent.

The ULA collects N narrowband snapshots from K
sources of interest (targets) arriving from distinct DoAs
01,0o,...,0k € (—%, %] ,K < D < N.We assume that the
system may also experience intermittent directional inter-
ference from L independent sources (jammers), at angles
6],65,...,0; € (=%, %] A schematic illustration of the
targets and jammers is given in Fig. 1. We assume that
0; # 9,;, foranyi € {1,2,...,K}and q € {1,2,...,L}. For
any [ € {1,2,...,L}, the [-th jammer may be active dur-
ing any of the N snapshots with some fixed and unknown
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jammer 1

target 1

jammer L

target K

Fig. 1 Schematic representation of the K target sources and the L directional jammers

to the receiver probability p;. Accordingly, the #n-th down-
converted received data vector is of the form

K L
Yo = %uiSO0) + Y vnil, s (6)) +n, € CO, )
P =1 2)
n=12,...,N,

where, x,x and x;,l € C denote the statistically inde-
pendent signal values of target k and jammer /, respec-
tively, comprising power-scaled information symbols and
flat-fading channel coefficients, and y,; is the activity
indicator for jammer /, modeled as a {0, 1}-Bernoulli ran-
dom variable with activation probability p;. n, € CP*!
accounts for additive white Gaussian noise (AWGN) with
mean equal to zero and per-element variance o2; i.e., n,, ~
CN (OD, O’ZID). Henceforth, we refer to the case of target-
only presence in the collected snapshots (i.e., y,; = 0 for
everyn =1,2,...,Nandevery!/ = 1,2,...,L) as normal
system operation.

I7,x, 2

Defining x, é[xn,l,xn,z, .

A

x/n,L]T Tn =
[s(¢1)1 S(¢2), e
{¢1’ ¢2; e

/ / /
Xy =%, 1%

. A
dlag ([ Vn,l, yn,Z! B ] n,L]T )r and SCD =

,$(pm)] € CP*" for an

y S
om) € (=551

’ x}’l,K

ize-m set of

A
angles & = 1 (2) can be
rewritten as

Yn = Sox, + SeTux, +n, € ch<l y=1,2,...,N, 3)

for © = {01,6s,...,0¢) and © = {6],6),...,6,}. The
goal of a DoA estimator is to identify correctly all angles

in the DoA set ©. Importantly, by the Vandermonde
structure of Sg, it holds that

s(¢) < span(Se) < ¢ € O, (4)

for any ¢ € (—%, %] [16]. That is, given S 2 span(Se),
the receiver can decide accurately for any candidate angle
¢ € (—%, %] whether it is a DoA in ©, or not.

2.1 DoA estimation under normal system operation.
Considering for a moment p; = 0 for every [ €
{1,2,...,L}, (2) becomes

y,,:S@x,,+n,,e(CDX1, n=12,...,N (5)

with autocorrelation matrix R = E {y,,yln'[} = SoE {x,,x];}
SS + o2Ip. Certainly, S = span(Sg) coincides with the
K-dimensional principal subspace of R, spanned by its
K highest-eigenvalue eigenvectors [5]. Therefore, being
aware of R, the receiver could obtain S through stan-
dard EVD and then conduct accurate DoA estimation by
means of (4). However, in practice, the nominal received-
signal autocorrelation matrix R is unknown to the receiver
and sample-average estimated as R = % Zﬁl\lzl yayil [5,
16]. Accordingly, S is estimated by the span of the K
highest-eigenvalue eigenvectors of R, which coincide with

the K highest-singular-value left singular-vectors of Y 2
[Y1,¥2 ---,Yn]- The eigenvectors of R, or left singular-
vectors of Y, are also commonly referred to as the L2-PCs
of Y, since they constitute a solution to the L2-PCA
problem

Qo = R (6)

argmax
QECDXK, QHQ=I1<
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In accordance to (4), the DoA set © is estimated by the
arguments that yield the K local maxima (peaks) of the
familiar MUSIC [16] spectrum

P@) = (1o - Q@) s@),”, ¢ (-5.5]. @
which clarifies why MUSIC is, in fact, an L2-PCA-
based DoA estimation method. Certainly, as N increases
asymptotically, R tends to R,Qy, tends to span Se, and
P(¢) goes to infinity for every ¢ € © and finding
its peaks becomes a criterion equivalent to (4). There-
fore, for sufficient N, L2-PCA-based MUSIC is well-
known to attain high performance in normal system
operation.

2.2 Complications in the presence of unexpected
jamming

In this work, we focus on the case where p; > 0 for all
[, so that some snapshots in Y are corrupted by unex-
pected, unknown, directional interference, as modeled in
(2). In this case, the K eigenvectors of R = E{y,,,y,];[}
do not span S any more. Thus, the K eigenvectors of
R or singular-vectors of Y would be of no use, even
for very high sample-support N. In fact, interference-
corrupted snapshots in Y may constitute outliers with
respect to S. Accordingly, due to the well documented
high responsiveness of L2-PCA in (6) to outlying data,
Q2 may diverge significantly from S [29, 48], rendering
DoA estimation by means of (7) highly inaccurate. Below,
we introduce a novel method that exploits the outlier-
resistance of L1-PCA [36, 47, 48] to offer improved DoA
estimates.

3 Proposed DoA estimation method

3.1 Operation on realified snapshots

In order to employ L1-PCA algorithms that are defined for
the processing of real-valued data, the proposed DoA esti-
mation method operates on real-valued representations of
the recorded complex snapshots in (2), similar to a num-
ber of previous works in the field [58-60]. In particular,
we define the real-valued representation of any complex-
valued matrix A € C”*", by concatenating its real and
imaginary parts, as

— é &R{A}, _S{A} 2mx2n
AL [S{A}, i)’t{A}] eR ) ®)

In Lie algebras and representation theory, this transi-
tion from C"*" to R¥"*2" is commonly referred to as
complex-number realification [61, 62] and is a method
that allows for any complex system of equations to be con-
verted into (and solved through) a corresponding real sys-
tem [63]. Lemmas 1, 2, and 3 presented in the Appendix
provide three important properties of realification. By (8)
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and Lemma 1, the nth complex snapshot y, in (3) can be
realified as

¥, = SeX, + S T,X,, + 1, € R?D*2, 9)

In accordance with Lemma 2, the rank of Sg is 2K and,
hence, Sp 2 span (§@) is a 2K-dimensional subspace
wherein the K realified signal components of interest with
angles of arrival in @ lie. The following Proposition, deriv-
ing straightforwardly from (4) by means of Lemma 1 and
Lemma 2, highlights the utility of Sg for estimating the
target DoAs.

Proposition 1 Forany ¢ € (—%, %], it holds that
span (s(¢)) € Sk & ¢ € O.
Set equality may hold only if K = 1. |

(10)

By Proposition 1, given an orthonormal basis Qr €
R2P*2K that spans Sg, the receiver can decide accurately
whether some ¢ € (-3, 5] is a target DoA, or not, by
means of the criterion

(o — QrQF ) 5(#) = 0202 & @ € ©.

Similar to the complex-data case presented above, in

normal system operation, Sg coincides with the span of

the K dominant eigenvectors of Rg 2E {V,ﬁ;}. When

the receiver, instead of Rg, possesses only the realified
snapshot record Y, Sg can be estimated as the span of

(11)

Qrr2 = argmax (12)

—12
|73,
QE]RZDXZK, QTQ:IZK 2

Then, in accordance with (11), the target DoAs can be
estimated as the arguments that yield the K highest peaks

of the spectrum
Pr(¢; Qrr2) =) H (120 - QR,L2Q£L2> s(®) H;Z (
b e (—%, %]-

Similar to (6), the solution to (12) can be obtained
by singular-value decomposition (SVD) of Y. Interest-
ingly, the L2-PCA-based DoA estimator of (13) is equiv-
alent to the complex-field MUSIC estimator presented in
Section 2. In fact, as we prove in the Appendix,

Pr(¢3 Qur2) = P() Vo € [—% %)

Hence, exhibiting performance identical to that of
MUSIC, (12) can offer highly accurate estimates of the
target DoAs under normal system operation. However,
when Y contains corrupted snapshots, the L2-PCA-
calculated span (QR,LQ) is a poor approximation to Sg
and DoA estimation by means of Pr(¢; Qg,z2) tends to be
highly inaccurate. In the following subsection, we present

13)

(14)
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an alternative, L1-PCA-based method for obtaining an
outlier-resistant estimate of ®.

3.2 DoA estimation by realified L1-PCA

Over the past few years, L1-PCA has been shown to be far
more resistant than L2-PCA against outliers in the data
matrix [31-40, 47, 48]. In this work, we propose the use of
a DoA-estimation spectrum analogous to that in (13) that
is formed by the L1-PCs of Y. Specifically, the proposed
method has two steps. First, we obtain the L1-PCs of Y,
solving the L1-PCA problem

Qr1 = (15)

N
argmax Z H QT_,,

QeR2P2K, QTQ=hk =1

1 .

That is, (15) searches for the subspace that maximizes
data presence, quantified as the aggregate L1-norm of the
projected points.

Then, similarly to MUSIC, we estimate the target angles
in ® by the K highest peaks of the L1-PCA-based
spectrum

Pr(@; Quan) = 2| (lop — Qrir Qb1 )56 |

s
¢€(_2,2 .

(16)

In accordance to standard practice, to find the
K highest peaks of (16), we examine every angle

in [¢ =—Z+kA¢: ke [1,2,..., L&J ]}, for some
small scanning step A¢ > 0. Next, we place our focus on
solving the L1-PCA in (15).

3.3 Principles of realified L1-PCA

Although L1-PCA is not a new problem in the litera-
ture (see, e.g., [36—38]), its exact optimal solution was
unknown until the recent work in [48], where the authors
proved that (15) is formally NP-hard and offered the first
two exact algorithms for solving it. Proposition 2 below,
originally presented in [48] for real-valued data matri-
ces of general structure (i.e., not having necessarily the
realified structure of Y) translates L1-PCA in (15) to
a nuclear-norm maximization problem over the binary
field.

Proposition 2 If B, is a solution to

maximize ||YB||§ (17)
BE{:EI}ZNXZK
and YB,p; admits SVD YBoy = USox ok V', then
Qg1 =UV' (18)

is a solution to (15). Moreover, Q;LIYHI = ”YBOPtH*. [ |
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Since Qg1 can be obtained by B,p via standard SVD,
L1-PCA is in practice equivalent to a combinatorial opti-
mization problem over the 4NK binary variables in B. The
authors in [48] presented two algorithms for exact solu-
tion of (17), defined upon real-valued data matrices of
general structure.

In this work, for the first time, we simplify the solu-
tions of [48] in view of the special, realified structure of
Y. Specifically, in the following Proposition 3, we show
that for K = 1 we can exploit the special structure of Y
and reduce (17) to a binary quadratic-form maximization
problem over half the number of binary variables (i.e., 2N
instead of 4N). A proof for Proposition 3 is provided in the
Appendix.

Proposition 3 Ifb,,, is a solution to

maximize |[Yb||3, (19)
bE{:I:l}ZNXI

then [bopt, EnDbopt] is a solution to
maximize ||YB||§. (20)
BEH:I}ZNXZ

with |[Y [Dops Enbope] 12 = 4 [ Ybope 3. u

In view of Propositions 2 and 3, Qg 11 derives easily from
the solution of

maximize |[YB|, (21)

BE{:I:]}ZNXW’
form=1ifK=1orm=2K,if K > 1.

Since (21) is a combinatorial problem, the conceptually
simplest approach for solving it is an exhaustive search
(possibly in parallel fashion) over all elements of its feasi-
bility set {41} " By means of this method, one should
conduct 22N nuclear norm evaluations (e.g., by means of
SVD of YB) to identify the optimum argument in the fea-
sibility set; thus, the asymptotic complexity of this method
is O (22Nm). Exploiting the well-known nuclear-norm
properties of column-permutation and column-negation
invariance, we can expedite practically the exhaustive pro-
cedure by searching for a solution to (21) in the set of
all binary matrices that are column-wise built by the
elements of a size-m multiset? of {b € {£1}*N : [b]; = 1}.
By this modification, the exact number of binary matri-
ces examined (thus, the number of nuclear-norm evalu-
ations) decreases from 22V" tq (22N71;;2K _1). Of course,
exhaustive-search approaches, being of exponential com-
plexity in N, become impractical as the number of snap-
shots increases. For completeness, in Fig. 2, we provide
a pseudocode for the exhaustive-search algorithm pre-
sented above.

For the case of engineering interest where N > D and D
is a constant, the authors in [48] presented a polynomial-
cost algorithm that solves (21) with complexity O(N 2Dmy
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Algorithm 1: Exponential-cost, optimal L1-PCA of Y

Input: i) Yapxon and il) K
1:  Byyyo2n-1 + concatenation of all vectors in {b € {+1}?" :
2: I K=1m+ 1;else, m+ 2K
3t Zopt ¢ AGMAX,c (15 | 22N-1}m s <sp<. <z || XBiz
4 Ifm=1, Bopt  [Bia,, EnB,. | else, Bope < B.
5:  (Uapxa2k, Xekx2k, Vokx2k ) < svd(XBopt)
Output: Qg1+ UV’

[b]: = 1}

| *

»Zopt

O (22"™) (m = 1,forK = 1;m = 2K, for K > 1)

Fig. 2 Algorithm for optimal computation of the 2K L1-PCs of rank-2D data matrix Yop o with exponential (w.r.t. N) asymptotic complexity

In the following subsection, we exploit further the struc-
ture of Y and reduce significantly the computational cost
of this algorithm.

3.4 Polynomial-cost realified L1-PCA

The authors in [48] showed that, according to
Proposition 2, a solution to (21) can be found among the
binary matrices that draw columns from

B2 [sgn (YTa) cac QgD] C (1)1 (22)

where Qup = {aeR*P*1: a|l, = 1,[alap > 0} —with
the positivity constraint in the last entry of a deriving from
the invariance of the nuclear norm to column negations of
its matrix argument. That is, a solution to (21) belongs to
the mth Cartesian power of B, B” C {41}2N>*,

In addition, [48] pointed out that, since the nuclear-norm
maximization is also invariant to column permutations of
the argument, we can maintain problem equivalence while
further narrowing down our search to the elements of a set
B, subset of B, that contains the (lB ‘t;" _1) binary matri-
ces that are built by the elements of all size-m multisets
of B. That is, we can obtain a solution to (21) by solving
instead

maximize | YB| . (23)
BeB

Importantly, 1B = (|B|+r;"_1) < |B" = |B"’~|. The
exact multiset-extraction procedure for obtaining B from

B follows. ~
Calculation of B from B [48]. For every i €

{1, 2,..., ('B‘erm*l) }, we define a distinct indicator func-

tion f; : B — {0,1,...,m} that assigns to every b € 5
a natural number f;(b) < m, such that Y 'y _zfi(b) = m.

Then, for every i € {1,2,...,(|B|+mm71)}, we define a

unique binary matrix B; € {£1)2N>*" guch that every
b € B appears exactly f;(b) times among the columns

of B;. Finally, we define the sought-after set as B 2

{Bl, By, ... ,B(|B\+mm—1) .

Evidently, the cost to solve (23), and thus (21), amounts
to the cost of constructing the feasibility set 53 added
to the cost of conducting nuclear-norm evaluations
(through SVD) over all its elements. Therefore, the cost
to solve (23) depends on the construction cost and car-
dinality of B. As seen above, 1B (lBIJZI”*l) and
B can be constructed online, by multiset selection on
B, with negligible computational cost. Therefore, for
determining the cardinality and construction cost of
B, we have to find the cardinality and construction
cost of 5.

Next, we present a novel method to construct B, dif-
ferent than the one in [48], that exploits the realified
structure of Y to achieve lower computational cost.

Construction of 53, in view of the structure of Y.

Considering that any group of m < 2D columns of
Y spans a m-dimensional subspace, for each index set
X € {1,2,...,2N} —elements in ascending order (e.a.0.)—
of cardinality |X| = 2D — 1, we denote by z(X) the
unique left-singular vector of [S_(]:, o that corresponds to
zero singular value. Calculation of z(X) can be achieved
either by means of SVD or by simple Gram-Schmidt
Orthonormalization (GMO) of [Y]:, v —both SVD and
GMO are of constant cost with respect to N. Accordingly,
we define

c(X) £ sgn([2(X)]ap)2(X) € Qop. (24)

Being a scaled version of z(&X),c(X) also belongs to
null <[Y]TX), satisfying [Y]TX c(X) = 0yp_1. Next, we
define the set of binary vectors

B =[b € (121 blye = sgn (Ve )} 25)

of cardinality |B(X)] = 22P71, where X*¢ 2
{1,2,...,2N} \ & (e.a.0.) is the complement of X. In [48],
the authors showed that
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B= |J Bw. (26)
XC{1,2,....2N}
|X|=2D—1
Since X can take (23\_{ 1) different values, 3 can be built

by (26) through (zgz 1) nullspace calculations in the form

of (24), with cost (leﬁl)DS € O (N?P). Accordingly, B
consists of
222

2D — 1 @7

)eom

elements. In fact, in view of [64], the exact cardinality
of Bis
2D—1

Bl=Y" <2N,,,_ 1) e O(NP).

d=0

(28)

Next, we show for the first time how we can reduce
the cost of calculating B, exploiting the realified structure
of Y.

Consider X7 C {1,2,...,N} (e.a.0.), Xy € {N +1,N +
2,...,2N} (e.a.0.), and their union X4 = {X7, X3} (e.a.0.),
such that |X;| < D and |Xy| = |A1| + |X| = 2D — 1.
Define also the set of indices Xz = {X; + N, X, — N}
(e.a.0.) with |Xg| = 2D — 1. By the structure of Y, it is
straightforward that

c(Xp) = Epc(Xa)sgn([c(Xa)]p).
In turn, by the definition in (25) and (29), it holds that
B(Xp) = sgn([ c(X4)]p )EnB(Xa). (30)

The proof of (29) and (30) is offered in the Appendix.
Notice now that, for every X C {1,2,...,2N} with |X| =
2D—1, thereexist X1 C {1,2,...,N}and X5 C {N+1,N+
2,...,2N}, satisfying |X1| < Dand | x| + |X,| =2D — 1,
such that

either X = {X1, A,}, or X = {X] + N, Xy — N}.
(31)

(29)

Thus, by (26) and (31), B can constructed as

D-1
B=J U B, X)), BAX: + N, X, — N}

d=0 X1C{1,2,...N}, | X1|=d
Xy C{{1,2,..,N}+N), | Xy |=2D—1—d

(32)

In view of (30), B({X1 +N, X3 — N}) can be directly con-
structed from B({X1, X»}) with negligible computational
overhead. In addition, for |X;| < D and |AX;| + |A,| =

2D — 1, by the Chu-Vandermonde binomial-coefficient
property [65], {X], X2} can take

:Zl <]:1[) (2D —N1 - d) - %(wzf 1)

=0

33)

values. Therefore, exploiting the structure of Y, the pro-
posed algorithm constructs B by (32), avoiding half the
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nullspace calculations needed in the generic method of
(48], presented in (26).

In view of (28), the feasibility set of (23), B, consists of
exactly

Bl = Bl +m—1 _ (21261(21\;71)+m—1
m m

cO (NZDm—m)
(34)

elements. Thus, O(NZP"=") pyclear-norm evaluations
suffice to obtain a solution to (17). The asymptotic com-
plexity for solving (15) by the presented algorithm is then
@ (NZD’”_’”). The described polynomial-time algorithm
is presented in detail in Fig. 3, including element-by-
element construction of B.

3.5 Iterative realified L1-PCA

For large problem instances (large N, D), the above pre-
sented optimal L1-PCA calculators could be computa-
tionally impractical. Therefore, at this point we present
and employ the bit-flipping-based iterative L1-PCA cal-
culator, originally introduced in [43] for processing gen-
eral real-valued data matrices. Given Y e R2?P*2N
and some m < 2 min(D,N), the algorithm presented
below attempts to solve (21), by conducting a converging
sequence of optimal single-bit flips.

Specifically, the algorithm is initializes at a 2N x m
binary matrix B and conducts optimal single-bit flip-
ping iterations. Specifically, at the zth iteration step (¢ >
1), the algorithm generates the new matrix B so that
(i) B® differs from B¢~V in exactly one entry (bit flip-
ping) and (ii) [YB® ||, > |[YB¢~D|,. Mathematically, we
notice that if we flip at the tth iteration the (n, k)th bit of
BU~D setting B = B¢™V —2[BUV] | enonery | it
holds that

YB® = YB¢D —2 [B“—“] e (35)
n,
Therefore, at step ¢, the presented algorithm searches for
a solution (#, k) to

maximize
G.Del(1,2,...2N}x{1,2,...,m)
(I-1)2N+jeL®

YB¢D _ 2 [B“‘”]ﬂ [Y],je""

*

(36)

The constraint set £ < {1,2,...,2Nm}, employed
to restrain the greediness of the presented itera-
tions, contains the indices® of bits that have not
been flipped before and, thus, is initialized as
LY = {1,2,...,2Nm}. Having obtained the solution
to (36), (m, k), the algorithm proceeds as follows. If

HYB(;:_D —2[B¢D] Ve, ” - [YBUD, the
» M|

algorithm generates B®) = B¢~V —2[B¢~V]  e,one]
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Algorithm 2: Polynomial-cost, optimal L1-PCA of Y

Input: i) Yapxon and il) K

1: IfK =1 m+ 1;else, m+ 2K
Bonxa compute,camdidates(?T)7 M+ {1,2,...,M}

2:

3: Zopt < argmaszMm,z1§22§...§zm HXBHZ”*

4: Ifm =1, Bopt < [B:zope, ENB. 2., ]; else, Bopt < B.

5. (Uapxak, B2k x2k, Varxzi) < svd(XBopt)
Output: Qg1 < uv’

»Zopt

Function compute_candidates (Znxm) —with n > m

ford=0:D -1
for all X; C {1,...

1

2

3 for all Xo C {5 +1,...

4: T={X, X}, iei+],

5 Cmx1 < null([Z]z,.), ¢ + sgn(cm)c

6: F « sgn(Zc)1im

7 [F|z,: < all 2™ binary vectors of length m
8 Bz, i—1)2miruem < F, i+ i+1

9 Bz (i—y2mi1i2m < sgn(cz )ExF

10: Return B

2} st | Xa| =d

,n}tst. | Xo|=m—-1-d

)t

Fig. 3 Algorithm for optimal computation of the 2K L1-PCs of the rank-2D data matrix Y2px 2y with polynomial (w.r.t. N) asymptotic complexity

O (NOK=mH1Y (m = 1 forK = 1;m = 2K, for K > 1)

and updates L&D to L\ {(k — 1)2N + n}. If, otherwise,
TRt-1 -1 V1 oT VR(-1
HYB“ ) —2[BCV] (Ve H* < |[¥YBED|,, the

algorithm obtains a new solution (7, k) to (36) after reset-
ting L® to {1,2,...,2Nm}. If this new (n, k) is such that
[YBOD —2[BED], Ninef,| > [YBD], then
the algorithm sets B®) = B¢~1 — o[ B¢V, e,,,zNe,Im
and updates L+ = £O \ {(k — 1)2N + n}. Otherwise,
the iterations terminate and the algorithm returns B
as a heuristic solution to (21). Notice that since at each
iteration, the optimization metric increases. At the same
time, the metric is certainly upper-bounded by ||YBopt||*.
Therefore, the iterations are guaranteed to terminate
in a finite number of steps, for any initialization B,
Our studies have shown that, in fact, the iterations
terminate for ¢ < 2Nm, with very high frequency of
occurrence.

For solving (36), one has to calculate ”YB(FI) _9

[B(t_l)]j,l [Y]:,,»ezm K for all (,0) € {1,2,...,2N} x
{1,2,...,m} such that ({ — 1)2N +j € L. At worst case,
L ={1,2,...,2Nm} and this demands 2Nm independent
singular-value/nuclear-norm calculations. Therefore, the
total cost for solving (36) is O (N*m?). If we limit the
number of iterations to 2Nm, for the sake of practical-
ity, then the total cost for obtaining a heuristic solu-
tion to (21) is O (N3m4) —significantly lower than the
cost of the polynomial-time optimal algorithm presented

above, O (NZD’"_”’). When the iterations terminate, the
algorithm returns the bit-flipping-derived L1-PC matrix

QrF 2 UVT, where U0k V' svd YBopt. Formal per-

formance guarantees for the presented bit-flipping proce-
dure were offered in [43], for general real-valued matrices
and K = 1.

A pseudocode of the presented algorithm for the calcu-
lation of the 2K L1-PCs Yopxon is presented in Fig. 4.

4 Numerical results and discussion
We present numerical studies to evaluate the DoA estimation
performance of realified L1-PCA, compared to other PCA
calculation counterparts. Our focus lies on cases where a
nominal source (the DoA of which we are looking for)
operates in the intermittent presence of a jammer located at
a different angle. Ideally, we would like the DoA estimator
to be able to identify successfully the DoA of the source of
interest, despite the unexpected directional interference.
To offer a first insight into the performance of the pro-
posed method, in Fig. 5 we present a realization of the
DoA-estimation spectra Pr(¢; Qr 1) and Pr(¢; Qrr2), as
defined in (14) and (16), respectively. In this study, we cal-
culate the exact L1-PCs of Y, using the polynomial-cost
optimal algorithm of Fig. 3. The receiver antenna-array
is equipped with D = 3 elements and collects N = 8
snapshots. All snapshots contain a signal from the single
source of interest (K = 1) impinging on the array with
DoA — 20°. One out of the eight snapshots is corrupted
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Algorithm 3: Cubic-cost L1-PCA of Y (heuristic)

Input: i) Yapxon and i) K

Output: Qg,Br + uv’

1. IfK =1 m<+ 1;else, m <+ 2K

2. Banxm ¢ bfk(Y,BW,m)

3: Ifm=1, B+ [B,ExyB]

4:  (Uapxar, Zokxak, Varxak) < svd(YB)

(bit-flipping derived estimate to Qr,r1)

Function bfK(Y2pxan, Banxm, m < min{2N,2D})

—2[Bluiev2ne, ), avi + [|Z]1

[Bly,k ¢ —[Blyk, w < ayr, L+ L\{2N({ —1) +v}
elseif w > ay, and |£] < 2Nm, L < {1,2,...,2Nm}

1 w+ |YB].
2 L+ {1,2,...,2Nm}
3:  while true (or terminate at 2Nm bit-flippings)
4: forxe L1+ [55],ve2—-2N({—-1)
5: [~, 2, ~] + svd(Y(B
6: (y, k) + arg MaXy (1) 2N (1-1)+veL}) vl
T if ayr>w,
8:
9:
10: else, break
11:  Return B

K=1,m=2K,forK > 1)

Fig. 4 Algorithm for estimation of the 2K L1-PCs of rank-2D data matrix Y2px 2y with cubic (w.rt. N) asymptotic complexity © (/\/3m4) (m=1for

by two jamming sources with DoAs 31° and 54°. The
signal-to-noise ratio (SNR) is set to 2 dB for the target
source and to 5 dB for each of the jammers. We observe
that standard MUSIC (L2-PCA) is clearly misled by the

proposed L1-PCA-based method manages to identify the
target location successfully.

Next, we generalize our study to include probabilistic
presence of an jammer. Specifically, we keep D = 3 and

two jammer-corrupted measurement. Interestingly, the N = 8 and consider K = 1 target at § = — 41° with
T T T A T T ' T ' T T
1.5 : - -
------ A target
""" @® jammer
— — — L2-PCA (MUSIC)
g L1-PCA (proposed)
= :
(0]
[oR
wn
ci
o
©
E
7
L
<
(@]
o
0.5
-80 -60 -40 -20 0 20 40 60 80
¢
Fig. 5 DoA-estimation spectra Pr(¢; Qg2) (MUSIC) and Pr(¢; Qr2) (proposed); one target and two jamming signals with angles of arrival marked
by A and e, e, respectively
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SNR 2 dB, and L = 1 jammer at ' = 24° with activation
probability p taking values in {0, .1, .2, .3, 4, .5}.

In Fig. 6, we plot the root-mean-square-error (RMSE)*4,
calculated over 5000 independent realizations, vs. jam-
mer SNR, for three DoA estimators: (a) the standard
L2-PCA-based one (MUSIC), (b) the proposed L1-PCA
DoA estimator with the L1-PCs calculated optimally by
means of the polynomial-cost algorithm of Fig. 3, and (c)
the proposed L1-PCA estimator with the L1-PCs found
by means of the algorithm of Fig. 4. For all three meth-
ods, we plot the performance attained for each value
of p € {0,.1,.2,.3,.4,.5}. Our first observation is that
the two L1-PCA-based estimators exhibit almost identi-
cal performance for every value of p and jammer SNR.
Then, we notice that, in normal system operation (p = 0)
the RMSEs of the L2-PCA-based and L1-PCA-based esti-
mators are extremely close to each other and low, with
slight (almost negligible) superiority of the L2-PCA-based
method. Quite interestingly, for any non-zero jammer
activation probability p and over the entire range of jam-
mer SNR values, the RMSE attained by the proposed
L1-PCA-based methods is lower than that attained by the
L2-PCA-based one. For instance, for jammer SNR 12 dB
and p = .1, the proposed methods offer 8° smaller RMSE
than MUSIC. Of course, at high jammer SNR values and
p = .5 the RMSE of both methods approaches 65°,
which is the angular distance of the target and the jammer;
i.e. both methods tend to peak the significantly (18 dB)
stronger jammer present in half the snapshots.

In Fig. 7, we change the metric and study the more
general Subspace Representation Ratio (SRR), attained by
L2-PCA and L1-PCA. For any orthonormal basis Q €
R2D*2K SRR is defined as

(2019) 2019:30
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|Q750)];
|Qs@)]; + [QTs®) |3

SRR(Q) = (37)

In Fig. 7, we plot SRR(Qgr2) (L2-PCA), SRR(Qg1)
(optimal L1-PCA), and SRR(Qgpgr) averaged over 5000
realizations, for multiple values of p, versus the jammer
SNR. We observe that, again, the performance of the opti-
mal and heuristic L1-PCA calculators almost coincides
for every value of p and jammer SNR. Also, we notice
that under normal system operation (p = 0) the spans of
Qr.2,Qrr1, and Qg pr are equally good approximations
to Sg and their respective SRR curves lie close (as close
as the target SNR and the number of snapshots allow) to
the benchmark of SRR(U), where U is an orthonormal
basis for the exact Sg. On the other hand, when half the
snapshots are jammer corrupted (p = .5) both methods
capture more of the interference. Similar to Fig. 6, for any
jammer activation probability and over the entire range of
jammer SNR values, the SRR attained by L1-PCA (both
algorithms) is superior to that attained by conventional
L2-PCA.

Next, we set D = 4,N = 10,0 = — 20° and 0’ =
50°. The source SNR is set to 5 dB. In Fig. 8, we plot
the RMSE vs. jamming SNR performance attained by L2-
PCA, RPCA?® (algorithm of [29]), and L1-PCA (proposed
—computed by efficient Algorithm 3), all computed on the
realified snapshots. We observe that forp = 0 (i.e., no
jamming corruption) all methods perform well; in partic-
ular, L2-PCA and L1-PCA demonstrate almost identical
performance of about 3° RMSE. For jammer operation
probability p > 0, we observe that the proposed L1-PCA
method outperforms clearly all counterparts, exhibiting

— — —L2-PCA, p=0

RMSE

), p=0
““““““ L1-PCA (Alg. 3), p=0
— A — | 2-PCA, p=0.1
—A— L1-PCA (Alg. 2), p=0.1
O L1-PCA (Alg. 3), p=0.1
— ¢ —L2-PCA, p=0.2
—<— L1-PCA (Alg. 2), p
<+ L1-PCA (Alg. 3), p
— B — L2-PCA, p=0.3
—a— L1-PCA (Alg. 2), p=0.3
O L1-PCA (Alg. 3), p=0.3
—© — L2-PCA, p=0.4
—6— L1-PCA (Alg. 2), p
O+ L1-PCA (Alg. 3), p:
— % —L2-PCA, p=0.5

0.2
0.2

0.4
0.4

10 1 1 1

L1-PCA (Alg. 2), p=0.5
~%+ L1-PCA (Alg. 3), p=0.5

Jammer SNR (dB)

source SNR 2 dB

Fig. 6 Root-mean-squared-error (RMSE) vs. jammer SNR, for: L2-PCA (MUSIC), optimal L1-PCA, calculated by means of Algorithm 2 in Fig. 3, and
L1-PCA by means of Algorithm 3 in Fig. 4. For each estimator, we present the RMSE curves forp = 0,.1,.2,.3,4,5.N = 8,D = 3,0 = — 41°,0" = 24°,
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— — —L2-PCA, p=0

SRR

L1-PCA (Alg. 2),
-------- L1-PCA (Alg. 3),
— A — | 2-PCA, p=0.1
—4&—11-PCA (Alg. 2), p=0.1
4 L1-PCA (Alg. 3), p=0.1
— & —L2-PCA, p=0.2
—<— L1-PCA (Alg. 2), p=0.2
O L1-PCA (Alg. 3), p=0.2
— 8 —L2-PCA, p=0.3
—&—L1-PCA (Alg. 2), p=0.3
@ L1-PCA (Alg. 3), p=0.3
— & —L2-PCA, p=0.4
—6—L1-PCA (Alg. 2), p=0.4
©+0+ L1-PCA (Alg. 3), p=0.4
— % —L2-PCA, p=0.5

&| ——L1-PCA (Alg. 2), p=0.5
X L1-PCA (Alg. 3), p=0.5

p=0
p=0

0 5 10 15
Jammer SNR (dB)

Fig. 7 Average SRR vs. jammer SNR, for: L2-PCA (MUSIC), optimal L1-PCA, calculated by means of Algorithm 2 in Fig. 3, and L1-PCA by means of
Algorithm 3 in Fig. 4. For each estimator, we present the RMSE curves forp = 0,.1,.2,.3,4,.5.N = 8,D = 3,60 = — 41°,6" = 24°, source SNR 2 dB

from 5° (for jammer SNR 6 dB) to 20° (for jammer SNR
11 dB) lower RMSE.

In Fig. 9. we plot the RMSE attained by the three
counterparts, this time fixing jamming SNR to 10 dB
and varying the snapshot corruption probability p €
{0,.1,.2,.3, 4, .5, .6}. Once again, we observe that, for p =
0 (no jamming activity), all methods perform well. For
p > 0, L1-PCA outperforms both counterparts across the
board.

Finally, in the study of Fig. 9, we measure the computa-
tion time expended by the three PCA methods, for p = 0
and p = 0.5. We observe that standard PCA, implemented
by SVD, is the fastest method, with average computation
time about 4 - 107> s, for both values of p. The computa-
tion time of RPCA is 1.5-10 % sforp = 0and 1.9-107% s
for p = 0.5. L1-PCA (Algorithm 3) computation takes, on
average, 4.3 - 1072 s for both values of p, comparable to
RPCA.®

25

RMSE

20

15

45 T T T T T T T T
— B — | 2-PCA, p=0

40 | — & — RPCA, p=0
— & — L1-PCA (Alg. 3), p=0

35 [| —®— L2-PCA, p=0.2 T
—A— RPCA, p=0.2

30 [| —4— L1-PCA (Alg. 3), p=0.2

7.5 8

Jammer SNR (dB)

Fig. 8 RMSE vs. jammer SNR, for: L2-PCA (MUSIC), RPCA [29], and L1-PCA by means of Algorithm 3 in Fig. (4). For each estimator, we present the
RMSE curves forp = 0,.2.N = 10,0 = 4,0 = — 20°,0’ = 50°, source SNR 5 dB
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70 T T T T
—&— L2-PCA
—A— RPCA

—4&— L1-PCA (Alg. 3)

0 1 1 1 1
0 0.05 0.1 0.15 0.2

N=10,D=4,0 = —20°06" = 50°, source SNR 5dB, jammer SNR 10 dB

025 0.3
Jamming Probability, p

Fig. 9 RMSE vs. jammer operation probability p, for: L2-PCA (MUSIC), RPCA [29], and L1-PCA by means of Algorithm 3 in Fig. 4.

035 04 045 05

5 Conclusions

We considered the problem of DoA estimation in the
possible presence of unexpected, intermittent directional
interference and presented a new method that relies on
the L1-PCA of the recorded snapshots. Accordingly, we
presented three algorithms (two optimal ones and one
iterative/heuristic) for realified L1-PCA; i.e., L1-PCA of
realified complex data matrices. Our numerical studies
showed that the proposed method attains performance
similar to conventional L2-PCA-based DoA estimation
(MUSIC) in normal system operation (absence of jam-
mers), while it attains significantly superior performance
in the case of unexpected, sporadic corruption of the
snapshots.

Endnotes

1Se € CP* is a transposed Vandermonde matrix [66]
and has rank m if |®| = m < D.

2For any underlying set of elements A of cardinality #,
a size m multiset may be defined as a pair (A, f) where
f : A — Ny is a function from A to N>; such
that 3" . ,f(@) = m; the number of all distinct size m
multisets defined upon A is ("’L:”n_l) [67].

3The (n, k)th bit of the binary matrix argument in (21)
has the corresponding single-integer index (k—1)2N+#n €
{(1,2,...,2Nm).

4Denoting by 6 the DoA and  the DoA estimate, RMSE
is defined as the square root of the average value of
16 — 62

5Given Y, RPCA minimizes ||L||x + A||O||1, over L and
O, subject to Y = L+ O and A = m_l

[29]. Then, it returns the 2K L2-PCs of L (computed
by SVD).

®Reported computation times are measured in MAT-
LAB R2017a, run on a computer equipped with Intel(R)
core(TM) i7-6700 processor 3.40 GHz and 32 GB RAM.
The MATLAB code of L1-PCA (Algorithm 3) can be
found at [68]. The MATLAB code for RPCA was provided
at [69].

Appendix

Useful properties of realification

Lemma 1 below follows straightforwardly from the defini-
tion in (8).

_Lemma 1 Forany A,B € C"*", it holds that (A + B) =
A + B. For any A € C"™" and B € C"*9, it holds that

(AB) = ABand (AH) =A . [ ]

Lemma 2 below was discussed in [70] and [20], in the
form of problem 8.6.4. Here, we also provide a proof, for
the sake of completeness.

Lemma 2 For any A € C™", rank(A) = 2 rank(A).
In particular, each singular value of A will appear twice
among the singular values of A. |

Proof Consider a complex matrix A € C"*” of rank
k < min{m, n} and its singular value decomposition A SYD
UmmemX,,V;{m, where

Om—tyxk Om—kyx (n—k)
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and o é[ 01,09,...,04] | € ler is the length k vector con-
taining (in descending order) the positive singular values
of A. By Lemma 1,

— =T

A=UXV (39)

withU'U=0U =DLyandVV=VV =,
Define now, for every a, b € Nx1, the ab x ab permutation
matrix

A T
Zop = [Ia e, ,®e, ..., ,® ez] (40)
where e;’ é[ I,].;, for everyi € {1,2,...,b}. Then,
b T
T T
2= (1es (<)) (Lo ())
i=1
b T
=LY ¢ (ef) =L eI, =1,
i=1
(41)
By (39),
A=UZ],2,,32},2:,"
_ _ T
= (02],,) (Zom ® 27],) (VZ3,,)
=Uxv’ (42)

where U2 UZ],,VEVZ] ,and £ £ Z,,,(L® £)Z] .
It is easy to show that U'U = UUT = Igm,\v/T\v/ =
VT = I, and ¥ = ¥ ® I,. Therefore, (42) consti-
tutes the standard (sorted singular values) SVD of A and
rank(A) = 2k. O

Lemma 3 below follows from Lemmas 1 and 2.

Lemma 3 Forany A € C"™", |A|3 = L|A|3. [ |
Proof of (14)
We commence our proof with the following auxiliary

Lemma 4.

Lemma 4 For any matrix A €
R2mx2 | < 41 <y is a solution to

cmxn, lereal €

. —T
maximize  [[A Q2. (43)
Q€R2m><21, QTQ:IQI
and Qcomp. € CL is a solution to
maximize ||AHQ||2, (44)
QE(CWIXZ, QHQ:Il

T 7~ N = =T
then QrealQreal = (QcompAQg,mp) = Qcomp‘QcomP,' u

Proof Orthonormal basis (U] .1:21, defined in the proof
of Lemma 2 above, contains the 2/ highest-singular-value
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left-singular vectors of A, and, thus, solves (43) [20]. Since
the objective value in (43) is invariant to column permu-
tations of the argument Q, any column permutation of
[lVJ];,wl is still a solution to (43). Next, we define the per-
mutation matrix W, é[l;, le(m_l)]T and notice that
[IVJ];,MZ =U[Ly e, [,®eY, ..., I,®e]"] isa column per-
mutation of U(Iy ® W) = U \V_m,l, which, by Lemma 1,
equals (UWW,,;) = [Ul.14. Thus, [U]. 1, solves (43) too.
At the same time, by (39), [ U].1,; contains the / highest-
singular-value left-singular vectors of A and solves (44)
[20]. By the above, we conclude that a realification per (8)

of any solution to (44) constitutes a solution to (43) and,

At .
thus, QrealQ;zal = (QcomP-QIc—E)mp) = Qcomp.Qcomp.' O
By Lemmas 1, 3, and 4, (14) holds true.

Proof of (29)
We commence our proof by defining d = |&7| and the sets

XS E (1,2, 2N}\ Xy (ea0)and XS 2 (1,2,...,2N}\
Xg (e.a.0.) Then, we notice that
[Ion],ap = En[Ion], 2, P, (45)

A ..
where P = [_[ IZD—I]:,d+1:2D—1 ) [IZD—I]:,I:d ] SlmllarIY7

[Ion],xg = En[Ion], x¢ Pe, (46)
where | 2
[—[Tan—2D+1).N—dt+1ov—2D+415 [Ton—2p11]:1:8—a |-
Then,
[Y],x; = Y[Ian). 2y = YEN[Ion],x, P
= EpY[Lol,x, P = Ep[Y],x, P. (47)

Consider now z = sgn([ c¢(X4)]p )Epc(Xy4). It holds that
[Z]2D > 0and

(Y17, z = sgn([c(X)]p)PT (Y]], EREpc(Xa)
= sgn([ c(Xa)]p)P" [Y]y, c(Xa) = Oop.
(48)

Therefore, z = ¢(B) =€ null ([Y];'—XB) N Qop and,
hence, (29) holds true.

Proof of Prop. 3
We begin by rewriting the maximization argument of
(20) as

IYBI2 = |YBI3 +2,/det (BTY ' YB)

= [ Yb1]I3 + [[Yb,]I3

_ _ T \2
+ 2/ Vb 31¥b203 - (b]Y o), (49)
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where b; and by are the first and second columns of
B, respectively. Evidently, the maximum value attained at
(17) is upper bounded as

max _[|YB|2 < max I1Yby 113
Be{41)2Nx2 b1e{£1}2N bye{+1}2N
+ [1Yby 113 + 2[Yb1 [I2[1Yb2 |2
=4 max |Yb|3. (50)
be{+1}2N 2
Considering now a solution bopt to
maximizep,e 4 1y2vx1 ||Yb||%, and defining bgpt = Enbopt,
we notice that ||Ybi)pt||% = I YEnboptl|3
J— J— _T_
[EpYboptll3 = [ Ybope3 and bl Y Ybl, =
—T— —T. —
b Y YExbopt = by, Y EpYboy = 0. Therefore,

Y [bopt,bgpt] 12 = 4 |Ybep|2 and, in view of (50),
[bopt, ENbopt] is a solution to (20).

Proof of (30)
By (29) and (46), it holds that

[Y],\xe (Xp) = sgn([ e(Xa)Ip)P Y]] e ESEDC(Xa)

= sgn([ e(X0)1p)P [Y] ye c(Xa). (51)

Consider now some b € B(X4) and define b’ 2
sgn([c(X4)]p )Exb. By (46), (51), and the definition in
(25), it holds that

[b']; =[sgn({c(Xa)]p ) Exb] g = sgn(( c(Xa)]p)[Tan] x Enb
= sgn([ ¢(Xa)]p ) (En[Ton].x, Po) "Exb
= sgn([¢(Xa)]p)P, [Tan]x, b = sgn([ c(Xa)]p)P/ [bl.x,
= sgn([ ¢(Xa)]p )P sgn([Y]/y, c(A4))
= sgn(sgn([ c(Xa)]p)P] [Y]]y, c(A4))
= sgn([Y]jXE c(Xp)).

Hence, b’ belongs to B(X) and (30) holds true.
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