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Abstract

Subspace-based direction-of-arrival (DoA) estimation commonly relies on the Principal-Component Analysis (PCA) of

the sensor-array recorded snapshots. Therefore, it naturally inherits the sensitivity of PCA against outliers that may

exist among the collected snapshots (e.g., due to unexpected directional jamming). In this work, we present

DoA-estimation based on outlier-resistant L1-norm principal component analysis (L1-PCA) of the realified snapshots

and a complete algorithmic/theoretical framework for L1-PCA of complex data through realification. Our numerical

studies illustrate that the proposed DoA estimation method exhibits (i) similar performance to the conventional

L2-PCA-based method, when the processed snapshots are nominal/clean, and (ii) significantly superior performance

when the snapshots are faulty/corrupted.

Keywords: Data contamination, Direction-of-arrival estimation, Faulty measurements, L1 norm, L2 norm, Multiple

signal classification, Principal-component analysis, Outlier resistance, Singular-value decomposition, Subspace data

processing

1 Introduction
Direction-of-arrival (DoA) estimation is a fundamental

problem in signal processing theory with important appli-

cations in localization, navigation, and wireless commu-

nications [1–6]. Existing DoA-estimation methods can be

broadly categorized as (i) likelihood maximization meth-

ods [7–13], (ii) spectral estimation methods, as in the

early works of [14, 15], and (iii) subspace-based methods

[16–19]. Subspace-based methods have enjoyed great

popularity in applications, mostly due to their favorable

trade-off between angle estimation quality and computa-

tional simplicity in implementation.

In their most common form, subspace-based DoA esti-

mation methods rely on the L2-norm principal compo-

nents (L2-PCs) of the recorded snapshots, which can

be simply obtained by means of singular-value decom-

position (SVD) of the sensor-array data matrix, or by

eigenvalue decomposition (EVD) of the received-signal

autocorrelation matrix [20]. Importantly, under nominal

system operation (i.e., no faulty measurements or unex-

pected jamming/interfering sources), in additive white
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Gaussian noise (AWGN) environment, such methods are

known to offer unbiased, asymptotically consistent DoA

estimates [21–23] and exhibit high target-angle resolution

(“super-resolution” methods).

However, in many real-world applications, the col-

lected snapshot record may be unexpectedly corrupted

by faulty measurements, impulsive additive noise [24–26],

and/or intermittent directional interference. Such inter-

ference may appear either as an endogenous characteristic

of the underlying communication system, as for exam-

ple in frequency-hopped spread-spectrum systems [27],

or as an exogenous factor (e.g., jamming). In cases of

such snapshot corruption, L2-PC-based methods are well

known to suffer from significant performance degradation

[28–30]. The reason is that, as squared error-fitting min-

imizers, L2-PCs respond strongly to corrupted snapshots

that appear in the processed data matrix as points that lie

far from the nominal signal subspace [29]. Accordingly,

DoA estimators that rely upon the L2-PCs are inevitably

misled.

At the same time, research in signal processing and data

analysis has shown that absolute error-fitting minimizers

place much less emphasis on individual data points that

diverge from the nominal signal subspace than square-

fitting-error minimizers. Based on this observation, in
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the past few years, there have been extended docu-

mented research efforts toward defining and calculating

L1-norm principal components (L1-PCs) of data under

various forms of L1-norm optimality, including absolute-

error minimization and projection maximization [31–46].

Recently, Markopoulos et al. [47, 48] calculated optimally

the maximum-projection L1-PCs of real-valued data, for

which up to that point only suboptimal approximations

were known [36–38]. Experimental studies in [47–53]

demonstrated the sturdy resistance of optimal L1-norm

principal-component analysis (L1-PCA) against out-

liers, in various signal processing applications. Recently,

[43, 45] introduced a heuristic algorithm for L1-PCA that

was shown to attain state-of-the-art performance/cost

trade-off. Another popular approach for outlier-resistant

PCA is “Robust PCA” (RPCA), as introduced in [29] and

further developed in [54, 55].

In this work, we consider system operation in the

presence of unexpected, intermittent directional inter-

ference and propose a new method for DoA-estimation

that relies on the L1-PCA of the recorded complex

snapshots. Importantly, this work introduces a com-

plete paradigm on how L1-PCA, defined and solved

over the real field [47, 48], can be used for processing

complex data, through a simple “realification" step. An

alternative approach for L1-PCA of complex-valued data

was presented in [46], where the authors reformulated

complex L1-PCA into unimodular nuclear-norm maxi-

mization (UNM) and estimated its solution through a

sequence of converging iterations. It is noteworthy that

for the UNM introduced in [46], no general exact solver

exists to date.

Our numerical studies show that the proposed L1-

PCA-based DoA-estimation method attains performance

similar to the conventional L2-PCA-based one (i.e.,

MUSIC [16]) in the absence of jamming sources, while

it offers significantly superior performance in the case

of unexpected, sporadic contamination of the snapshot

record.

Preliminary results were presented in [56]. The present

paper is significantly expanded to include (i) an Appendix

section with all necessary technical proofs, (ii) important

new theoretical findings (Proposition 3 on page 7), (iii)

new algorithmic solutions (Section 3.5), and (iv) extensive

numerical studies (Section 4).

The rest of the paper is organized as follows. In

Section 2, we present the system model and offer a pre-

liminary discussion on subspace-based DoA estimation.

In Section 3, we describe in detail the proposed L1-

PCA-based DoA-estimation method and present three

algorithms for L1-PCA of the snapshot record. Section 4

presents our numerical studies on the performance of the

proposedDoA estimationmethod. Finally, Section 5 holds

some concluding remarks.

1.1 Notation

We denote by R and C the set of real and complex

numbers, respectively, and by j the imaginary unit (i.e.,

j2 = −1). ℜ{(·)},ℑ{(·)}, (·)∗, (·)⊤, and (·)H denote the

real part, imaginary part, complex conjugate, transpose,

and conjugate transpose (Hermitian) of the argument,

respectively. Bold lowercase letters represent vectors and

bold uppercase letters represent matrices. diag(·) is the

diagonal matrix formed by the entries of the vector argu-

ment. For any A ∈ C
m×n, [A]i,q denotes its (i, q)th entry,

[A]:,q its qth column, and [A]i,: its ith row; ‖A‖p
△=

(

∑m
i=1

∑n
q=1 |[A]i,q |p

)
1
p
is the pth entry-wise norm of

A, ‖A‖∗ is the nuclear norm of A (sum of singular val-

ues), span(A) represents the vector subspace spanned by

the columns of A, rank(A) is the dimension of span(A),

and null(A⊤) is the kernel of span(A) (i.e., the nullspace

of A⊤). For any square matrix A ∈ C
m×m, det(A) denotes

its determinant, equal to the product of its eigenvalues.

⊗ and ⊙ are the Kronecker and entry-wise (Hadamard)

product operators [57], respectively. 0m×n, 1m×n, and Im
are the m × n all-zero, m × n all-one, and size-m iden-

tity matrices, respectively. Also, Em
△=

[

0 −1

1 0

]

⊗ Im, for

m ∈ N≥1, and ei,m is the ith column of Im. Finally, E{·} is
the statistical-expectation operator.

2 Systemmodel and preliminaries
We consider a uniform linear antenna array (ULA) of D

elements. The length-D response vector to a far-field sig-

nal that impinges on the array with angle of arrival θ ∈
(−π

2 ,
π
2 ] with respect to (w.r.t.) the broadside is defined as

s(θ)
△=

[

1, e−j
2π fcd sin(θ)

c , . . . , e−j
(D−1)2π fcd sin(θ)

c

]⊤
(1)

where fc is the carrier frequency, c is the signal

propagation speed, and d is the fixed inter-element spac-

ing of the array. We consider that the uniform inter-

element spacing d is no greater than half the carrier wave-

length, adhering to the Nyquist spatial sampling theorem;

i.e., d ≤ c
2fc

. Accordingly, for any two distinct angles of

arrival θ , θ ′ ∈ (−π
2 ,

π
2 ], the corresponding array response

vectors s(θ) and s(θ ′) are linearly independent.
The ULA collects N narrowband snapshots from K

sources of interest (targets) arriving from distinct DoAs

θ1, θ2, . . . , θK ∈
(

−π
2 ,

π
2

]

,K < D ≤ N .We assume that the

systemmay also experience intermittent directional inter-

ference from L independent sources (jammers), at angles

θ ′
1, θ

′
2, . . . , θ

′
L ∈

(

−π
2 ,

π
2

]

. A schematic illustration of the

targets and jammers is given in Fig. 1. We assume that

θi �= θ ′
q, for any i ∈ {1, 2, . . . ,K} and q ∈ {1, 2, . . . , L}. For

any l ∈ {1, 2, . . . , L}, the l-th jammer may be active dur-

ing any of the N snapshots with some fixed and unknown
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Fig. 1 Schematic representation of the K target sources and the L directional jammers

to the receiver probability pl. Accordingly, the n-th down-

converted received data vector is of the form

yn =
K

∑

k=1

xn,ks(θk) +
L

∑

l=1

γn,lx
′
n,ls

(

θ ′
l

)

+ nn ∈ C
D×1,

n = 1, 2, . . . ,N ,

(2)

where, xn,k and x′
n,l ∈ C denote the statistically inde-

pendent signal values of target k and jammer l, respec-

tively, comprising power-scaled information symbols and

flat-fading channel coefficients, and γn,l is the activity

indicator for jammer l, modeled as a {0, 1}-Bernoulli ran-
dom variable with activation probability pl. nn ∈ C

D×1

accounts for additive white Gaussian noise (AWGN) with

mean equal to zero and per-element variance σ 2; i.e., nn ∼
CN

(

0D, σ
2ID

)

. Henceforth, we refer to the case of target-

only presence in the collected snapshots (i.e., γn,l = 0 for

every n = 1, 2, . . . ,N and every l = 1, 2, . . . , L) as normal

system operation.

Defining xn
△=[ xn,1, xn,2, . . . , xn,K ]

⊤ , x′
n

△=[ x′
n,1, x

′
n,2, . . . ,

x′
n,L]

⊤ ,Ŵn
△= diag

(

[ γn,1, γn,2, . . . , γn,L]
⊤ )

, and S�
△=

[s(φ1), s(φ2), . . . , s(φm)] ∈ C
D×m for any size-m set of

angles �
△= {φ1,φ2, . . . ,φm} ∈

(

−π
2 ,

π
2

]m
,1 (2) can be

rewritten as

yn = S	xn + S	′Ŵnx
′
n + nn ∈ C

D×1, n = 1, 2, . . . ,N , (3)

for 	
△= {θ1, θ2, . . . , θK } and 	′ △=

{

θ ′
1, θ

′
2, . . . , θ

′
L

}

. The

goal of a DoA estimator is to identify correctly all angles

in the DoA set 	. Importantly, by the Vandermonde

structure of S	, it holds that

s(φ) ⊆ span(S	) ⇔ φ ∈ 	, (4)

for any φ ∈
(

−π
2 ,

π
2

]

[16]. That is, given S
△= span(S	),

the receiver can decide accurately for any candidate angle

φ ∈
(

−π
2 ,

π
2

]

whether it is a DoA in 	, or not.

2.1 DoA estimation under normal system operation.

Considering for a moment pl = 0 for every l ∈
{1, 2, . . . , L}, (2) becomes

yn = S	xn + nn ∈ C
D×1, n = 1, 2, . . . ,N (5)

with autocorrelation matrix R
△= E

{

yny
H
n

}

= S	E
{

xnx
H
n

}

SH	 + σ 2ID. Certainly, S = span(S	) coincides with the

K-dimensional principal subspace of R, spanned by its

K highest-eigenvalue eigenvectors [5]. Therefore, being

aware of R, the receiver could obtain S through stan-

dard EVD and then conduct accurate DoA estimation by

means of (4). However, in practice, the nominal received-

signal autocorrelationmatrixR is unknown to the receiver

and sample-average estimated as R̂ = 1
N

∑N
n=1 yny

H
n [5,

16]. Accordingly, S is estimated by the span of the K

highest-eigenvalue eigenvectors of R̂, which coincide with

the K highest-singular-value left singular-vectors of Y
△=

[ y1, y2, . . . , yN ]. The eigenvectors of R̂, or left singular-

vectors of Y, are also commonly referred to as the L2-PCs

of Y, since they constitute a solution to the L2-PCA

problem

QL2 = argmax
Q∈CD×K , QHQ=IK

∥

∥QHY
∥

∥

2

2
. (6)
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In accordance to (4), the DoA set 	 is estimated by the

arguments that yield the K local maxima (peaks) of the

familiar MUSIC [16] spectrum

P(φ) =
∥

∥

(

ID − QL2Q
H
L2

)

s(φ)
∥

∥

−2

2
, φ ∈

(

−π

2
,
π

2

]

, (7)

which clarifies why MUSIC is, in fact, an L2-PCA-

based DoA estimation method. Certainly, as N increases

asymptotically, R̂ tends to R,QL2 tends to span S	, and

P(φ) goes to infinity for every φ ∈ 	 and finding

its peaks becomes a criterion equivalent to (4). There-

fore, for sufficient N, L2-PCA-based MUSIC is well-

known to attain high performance in normal system

operation.

2.2 Complications in the presence of unexpected

jamming

In this work, we focus on the case where pl > 0 for all

l, so that some snapshots in Y are corrupted by unex-

pected, unknown, directional interference, as modeled in

(2). In this case, the K eigenvectors of R = E
{

yny
H
n

}

do not span S any more. Thus, the K eigenvectors of

R̂ or singular-vectors of Y would be of no use, even

for very high sample-support N. In fact, interference-

corrupted snapshots in Y may constitute outliers with

respect to S . Accordingly, due to the well documented

high responsiveness of L2-PCA in (6) to outlying data,

QL2 may diverge significantly from S [29, 48], rendering

DoA estimation by means of (7) highly inaccurate. Below,

we introduce a novel method that exploits the outlier-

resistance of L1-PCA [36, 47, 48] to offer improved DoA

estimates.

3 Proposed DoA estimationmethod
3.1 Operation on realified snapshots

In order to employ L1-PCA algorithms that are defined for

the processing of real-valued data, the proposed DoA esti-

mationmethod operates on real-valued representations of

the recorded complex snapshots in (2), similar to a num-

ber of previous works in the field [58–60]. In particular,

we define the real-valued representation of any complex-

valued matrix A ∈ C
m×n, by concatenating its real and

imaginary parts, as

A
△=

[

ℜ{A}, −ℑ{A}
ℑ{A}, ℜ{A}

]

∈ R
2m×2n. (8)

In Lie algebras and representation theory, this transi-

tion from Cm×n to R
2m×2n is commonly referred to as

complex-number realification [61, 62] and is a method

that allows for any complex system of equations to be con-

verted into (and solved through) a corresponding real sys-

tem [63]. Lemmas 1, 2, and 3 presented in the Appendix

provide three important properties of realification. By (8)

and Lemma 1, the nth complex snapshot yn in (3) can be

realified as

yn = S	xn + S	′Ŵnx′
n + nn ∈ R

2D×2. (9)

In accordance with Lemma 2, the rank of S	 is 2K and,

hence, SR
△= span

(

S	

)

is a 2K-dimensional subspace

wherein the K realified signal components of interest with

angles of arrival in	 lie. The following Proposition, deriv-

ing straightforwardly from (4) by means of Lemma 1 and

Lemma 2, highlights the utility of SR for estimating the

target DoAs.

Proposition 1 For any φ ∈
(

−π
2 ,

π
2

]

, it holds that

span (s(φ)) ⊆ SR ⇔ φ ∈ 	. (10)

Set equality may hold only if K = 1. �

By Proposition 1, given an orthonormal basis QR ∈
R
2D×2K that spans SR, the receiver can decide accurately

whether some φ ∈
(

−π
2 ,

π
2

]

is a target DoA, or not, by

means of the criterion
(

I2D − QRQ
⊤
R

)

s(φ) = 02D×2 ⇔ φ ∈ 	. (11)

Similar to the complex-data case presented above, in

normal system operation, SR coincides with the span of

the K dominant eigenvectors of RR
△= E

{

yny
⊤
n

}

. When

the receiver, instead of RR, possesses only the realified

snapshot record Y,SR can be estimated as the span of

QR,L2 = argmax
Q∈R2D×2K , Q⊤Q=I2K

∥

∥

∥
Q⊤Y

∥

∥

∥

2

2
. (12)

Then, in accordance with (11), the target DoAs can be

estimated as the arguments that yield the K highest peaks

of the spectrum

PR(φ; QR,L2)
△= 2

∥

∥

∥

(

I2D − QR,L2Q
⊤
R,L2

)

s(φ)

∥

∥

∥

−2

2
,

φ ∈ (−π

2
,
π

2
] .

(13)

Similar to (6), the solution to (12) can be obtained

by singular-value decomposition (SVD) of Y. Interest-

ingly, the L2-PCA-based DoA estimator of (13) is equiv-

alent to the complex-field MUSIC estimator presented in

Section 2. In fact, as we prove in the Appendix,

PR(φ;QR,L2) = P(φ) ∀φ ∈
[

−π

2
,
π

2

)

. (14)

Hence, exhibiting performance identical to that of

MUSIC, (12) can offer highly accurate estimates of the

target DoAs under normal system operation. However,

when Y contains corrupted snapshots, the L2-PCA-

calculated span
(

QR,L2

)

is a poor approximation to SR

and DoA estimation by means of PR(φ;QR,L2) tends to be

highly inaccurate. In the following subsection, we present
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an alternative, L1-PCA-based method for obtaining an

outlier-resistant estimate of 	.

3.2 DoA estimation by realified L1-PCA

Over the past few years, L1-PCA has been shown to be far

more resistant than L2-PCA against outliers in the data

matrix [31–40, 47, 48]. In this work, we propose the use of

a DoA-estimation spectrum analogous to that in (13) that

is formed by the L1-PCs of Y. Specifically, the proposed

method has two steps. First, we obtain the L1-PCs of Y,

solving the L1-PCA problem

QR,L1 = argmax
Q∈R2D×2K , Q⊤Q=I2K

N
∑

n=1

∥

∥

∥
Q⊤yn

∥

∥

∥

1
. (15)

That is, (15) searches for the subspace that maximizes

data presence, quantified as the aggregate L1-norm of the

projected points.

Then, similarly to MUSIC, we estimate the target angles

in 	 by the K highest peaks of the L1-PCA-based

spectrum

PR(φ;QR,L1) = 2
∥

∥

∥

(

I2D − QR,L1Q
⊤
R,L1

)

s(φ)

∥

∥

∥

−2

2
,

φ ∈ (−π

2
,
π

2
] .

(16)

In accordance to standard practice, to find the

K highest peaks of (16), we examine every angle

in
{

φ = −π
2 + k
φ : k ∈

{

1, 2, . . . ,
⌊

π

φ

⌋ }}

, for some

small scanning step 
φ > 0. Next, we place our focus on

solving the L1-PCA in (15).

3.3 Principles of realified L1-PCA

Although L1-PCA is not a new problem in the litera-

ture (see, e.g., [36–38]), its exact optimal solution was

unknown until the recent work in [48], where the authors

proved that (15) is formally NP-hard and offered the first

two exact algorithms for solving it. Proposition 2 below,

originally presented in [48] for real-valued data matri-

ces of general structure (i.e., not having necessarily the

realified structure of Y) translates L1-PCA in (15) to

a nuclear-norm maximization problem over the binary

field.

Proposition 2 If Bopt is a solution to

maximize
B∈{±1}2N×2K

‖YB‖2∗ (17)

and YBopt admits SVD YBopt = U�2K×2KV
⊤, then

QR,L1 = UV⊤ (18)

is a solution to (15). Moreover,
∥

∥Q⊤
R,L1Y

∥

∥

1
=

∥

∥YBopt

∥

∥

∗. �

Since QR,L1 can be obtained by Bopt via standard SVD,

L1-PCA is in practice equivalent to a combinatorial opti-

mization problem over the 4NK binary variables in B. The

authors in [48] presented two algorithms for exact solu-

tion of (17), defined upon real-valued data matrices of

general structure.

In this work, for the first time, we simplify the solu-

tions of [48] in view of the special, realified structure of

Y. Specifically, in the following Proposition 3, we show

that for K = 1 we can exploit the special structure of Y

and reduce (17) to a binary quadratic-form maximization

problem over half the number of binary variables (i.e., 2N

instead of 4N). A proof for Proposition 3 is provided in the

Appendix.

Proposition 3 If bopt is a solution to

maximize
b∈{±1}2N×1

‖Yb‖22, (19)

then [bopt, ENbopt] is a solution to

maximize
B∈{±1}2N×2

‖YB‖2∗. (20)

with ‖Y [bopt,ENbopt] ‖2∗ = 4 ‖Ybopt‖22. �

In view of Propositions 2 and 3,QR,L1 derives easily from

the solution of

maximize
B∈{±1}2N×m

‖YB‖∗, (21)

form = 1, if K = 1, orm = 2K , if K > 1.

Since (21) is a combinatorial problem, the conceptually

simplest approach for solving it is an exhaustive search

(possibly in parallel fashion) over all elements of its feasi-

bility set {±1}2N×m. By means of this method, one should

conduct 22Nm nuclear norm evaluations (e.g., by means of

SVD of YB) to identify the optimum argument in the fea-

sibility set; thus, the asymptotic complexity of this method

is O
(

22Nm
)

. Exploiting the well-known nuclear-norm

properties of column-permutation and column-negation

invariance, we can expedite practically the exhaustive pro-

cedure by searching for a solution to (21) in the set of

all binary matrices that are column-wise built by the

elements of a size-mmultiset2 of {b ∈ {±1}2N : [b]1 = 1}.
By this modification, the exact number of binary matri-

ces examined (thus, the number of nuclear-norm evalu-

ations) decreases from 22Nm to
(22N−1+2K−1

m

)

. Of course,

exhaustive-search approaches, being of exponential com-

plexity in N, become impractical as the number of snap-

shots increases. For completeness, in Fig. 2, we provide

a pseudocode for the exhaustive-search algorithm pre-

sented above.

For the case of engineering interest where N > D and D

is a constant, the authors in [48] presented a polynomial-

cost algorithm that solves (21) with complexityO(N2Dm).
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Fig. 2 Algorithm for optimal computation of the 2K L1-PCs of rank-2D data matrix Y2D×2N with exponential (w.r.t. N) asymptotic complexity

O
(

22Nm
)

(m = 1, for K = 1;m = 2K , for K > 1)

In the following subsection, we exploit further the struc-

ture of Y and reduce significantly the computational cost

of this algorithm.

3.4 Polynomial-cost realified L1-PCA

The authors in [48] showed that, according to

Proposition 2, a solution to (21) can be found among the

binary matrices that draw columns from

B
△=

{

sgn
(

Y
⊤
a
)

: a ∈ �2D

}

⊆ {±1}2N×1 (22)

where �2D
△=

{

a ∈ R
2D×1 : ‖a‖2 = 1, [a]2D > 0

}

–with

the positivity constraint in the last entry of a deriving from

the invariance of the nuclear norm to column negations of

its matrix argument. That is, a solution to (21) belongs to

themth Cartesian power of B,Bm ⊆ {±1}2N×m.

In addition, [48] pointed out that, since the nuclear-norm

maximization is also invariant to column permutations of

the argument, we canmaintain problem equivalence while

further narrowing down our search to the elements of a set

B̃, subset of Bm, that contains the
(|B|+m−1

m

)

binary matri-

ces that are built by the elements of all size-m multisets

of B. That is, we can obtain a solution to (21) by solving

instead

maximize
B∈B̃

∥

∥YB
∥

∥

2

∗ . (23)

Importantly, |B̃| =
(|B|+m−1

m

)

< |B|m = |Bm|. The
exact multiset-extraction procedure for obtaining B̃ from

B follows.

Calculation of B̃ from B [48]. For every i ∈
{

1, 2, . . . ,
(|B|+m−1

m

)

}

, we define a distinct indicator func-

tion fi : B �→ {0, 1, . . . ,m} that assigns to every b ∈ B

a natural number fi(b) ≤ m, such that
∑

b∈B fi(b) = m.

Then, for every i ∈
{

1, 2, . . . ,
(|B|+m−1

m

)

}

, we define a

unique binary matrix Bi ∈ {±1}2N×m such that every

b ∈ B appears exactly fi(b) times among the columns

of Bi. Finally, we define the sought-after set as B̃
△=

{

B1,B2, . . . ,B(|B|+m−1
m )

}

.

Evidently, the cost to solve (23), and thus (21), amounts

to the cost of constructing the feasibility set B̃ added

to the cost of conducting nuclear-norm evaluations

(through SVD) over all its elements. Therefore, the cost

to solve (23) depends on the construction cost and car-

dinality of B̃. As seen above, |B̃| =
(|B|+m−1

m

)

and

B̃ can be constructed online, by multiset selection on

B, with negligible computational cost. Therefore, for

determining the cardinality and construction cost of

B̃, we have to find the cardinality and construction

cost of B.

Next, we present a novel method to construct B, dif-

ferent than the one in [48], that exploits the realified

structure of Y to achieve lower computational cost.

Construction of B, in view of the structure of Y.

Considering that any group of m ≤ 2D columns of

Y spans a m-dimensional subspace, for each index set

X ⊆ {1, 2, . . . , 2N} –elements in ascending order (e.a.o.)–

of cardinality |X | = 2D − 1, we denote by z(X ) the

unique left-singular vector of
[

Y
]

:,X
that corresponds to

zero singular value. Calculation of z(X ) can be achieved

either by means of SVD or by simple Gram-Schmidt

Orthonormalization (GMO) of
[

Y
]

:,X
–both SVD and

GMO are of constant cost with respect to N. Accordingly,

we define

c(X )
△= sgn([ z(X )]2D )z(X ) ∈ �2D. (24)

Being a scaled version of z(X ), c(X ) also belongs to

null
(

[

Y
]⊤
:,X

)

, satisfying
[

Y
]⊤
:,X

c(X ) = 02D−1. Next, we

define the set of binary vectors

B(X )
△=

{

b ∈ {±1}2N×1 : [b]X c = sgn
(

[Y]⊤:,X c c(X )

)}

(25)

of cardinality |B(X )| = 22D−1, where X c △=
{1, 2, . . . , 2N} \ X (e.a.o.) is the complement of X . In [48],

the authors showed that
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B =
⋃

X⊆{1,2,...,2N}
|X |=2D−1

B(X ). (26)

Since X can take
( 2N
2D−1

)

different values, B can be built

by (26) through
( 2N
2D−1

)

nullspace calculations in the form

of (24), with cost
( 2N
2D−1

)

D3 ∈ O
(

N2D
)

. Accordingly, B

consists of

|B| ≤ 22D−1

(

2N

2D − 1

)

∈ O
(

N2D−1
)

(27)

elements. In fact, in view of [64], the exact cardinality

of B is

|B| =
2D−1
∑

d=0

(

2N − 1

d

)

∈ O
(

N2D−1
)

. (28)

Next, we show for the first time how we can reduce

the cost of calculating B, exploiting the realified structure

of Y.

Consider X1 ⊆ {1, 2, . . . ,N} (e.a.o.), X2 ⊆ {N + 1,N +
2, . . . , 2N} (e.a.o.), and their union XA = {X1,X2} (e.a.o.),
such that |X1| < D and |XA| = |X1| + |X2| = 2D − 1.

Define also the set of indices XB = {X1 + N ,X2 − N}
(e.a.o.) with |XB| = 2D − 1. By the structure of Y, it is

straightforward that

c(XB) = EDc(XA)sgn([ c(XA)]D ). (29)

In turn, by the definition in (25) and (29), it holds that

B(XB) = sgn([ c(XA)]D )ENB(XA). (30)

The proof of (29) and (30) is offered in the Appendix.

Notice now that, for every X ⊂ {1, 2, . . . , 2N} with |X | =
2D−1, there existX1 ⊂ {1, 2, . . . ,N} andX2 ⊂ {N+1,N+
2, . . . , 2N}, satisfying |X1| < D and |X1| + |X2| = 2D − 1,

such that

either X = {X1,X2}, or X = {X1 + N ,X2 − N}.
(31)

Thus, by (26) and (31), B can constructed as

B =
D−1
⋃

d=0

⋃

X1⊂{1,2,...,N}, |X1|=d
X2⊂{{1,2,...,N}+N}, |X2 |=2D−1−d

{B({X1,X2}),B({X1 + N ,X2 − N})} .

(32)

In view of (30), B({X1+N ,X2−N}) can be directly con-

structed from B({X1,X2}) with negligible computational

overhead. In addition, for |X1| < D and |X1| + |X2| =
2D − 1, by the Chu-Vandermonde binomial-coefficient

property [65], {X1,X2} can take

D−1
∑

d=0

(

N

d

)(

N

2D − 1 − d

)

= 1

2

(

2N

2D − 1

)

(33)

values. Therefore, exploiting the structure of Y, the pro-

posed algorithm constructs B by (32), avoiding half the

nullspace calculations needed in the generic method of

[48], presented in (26).

In view of (28), the feasibility set of (23), B̃, consists of

exactly

|B̃| =
(|B| + m − 1

m

)

=
(

∑2D−1
d=0

(2N−1
d

)

+ m − 1

m

)

∈ O
(

N2Dm−m
)

(34)

elements. Thus, O(N2Dm−m) nuclear-norm evaluations

suffice to obtain a solution to (17). The asymptotic com-

plexity for solving (15) by the presented algorithm is then

O
(

N2Dm−m
)

. The described polynomial-time algorithm

is presented in detail in Fig. 3, including element-by-

element construction of B.

3.5 Iterative realified L1-PCA

For large problem instances (large N ,D), the above pre-

sented optimal L1-PCA calculators could be computa-

tionally impractical. Therefore, at this point we present

and employ the bit-flipping-based iterative L1-PCA cal-

culator, originally introduced in [43] for processing gen-

eral real-valued data matrices. Given Y ∈ R
2D×2N ,

and some m < 2 min(D,N), the algorithm presented

below attempts to solve (21), by conducting a converging

sequence of optimal single-bit flips.

Specifically, the algorithm is initializes at a 2N × m

binary matrix B(1) and conducts optimal single-bit flip-

ping iterations. Specifically, at the tth iteration step (t >

1), the algorithm generates the new matrix B(t) so that

(i) B(t) differs from B(t−1) in exactly one entry (bit flip-

ping) and (ii) ‖YB(t)‖∗ > ‖YB(t−1)‖∗. Mathematically, we

notice that if we flip at the tth iteration the (n, k)th bit of

B(t−1) setting B(t) = B(t−1) − 2
[

B(t−1)
]

n,k
en,2Nek,m

⊤, it
holds that

YB(t) = YB(t−1) − 2
[

B(t−1)
]

n,k
[Y]:,n ek,m

⊤. (35)

Therefore, at step t, the presented algorithm searches for

a solution (n, k) to

maximize
(j,l)∈{1,2,...,2N}×{1,2,...,m}

(l−1)2N+j∈L(t)

∥

∥

∥

∥

YB(t−1) − 2
[

B(t−1)
]

j,l
[Y]:,j e

m
l

⊤
∥

∥

∥

∥

∗
.

(36)

The constraint set L(t) ⊆ {1, 2, . . . , 2Nm}, employed

to restrain the greediness of the presented itera-

tions, contains the indices3 of bits that have not

been flipped before and, thus, is initialized as

L(1) = {1, 2, . . . , 2Nm}. Having obtained the solution

to (36), (n, k), the algorithm proceeds as follows. If
∥

∥

∥
YB(t−1) − 2

[

B(t−1)
]

n,k
[Y]:,n e

⊤
k,m

∥

∥

∥

∗
>

∥

∥YB(t−1)
∥

∥

∗, the

algorithm generates B(t) = B(t−1) −2
[

B(t−1)
]

n,k
en,2Ne

⊤
k,m
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Fig. 3 Algorithm for optimal computation of the 2K L1-PCs of the rank-2D data matrix Y2D×2N with polynomial (w.r.t. N) asymptotic complexity

O
(

N4DK−m+1
)

(m = 1 for K = 1;m = 2K , for K > 1)

and updates L(t+1) to L(t) \ {(k− 1)2N +n}. If, otherwise,
∥

∥

∥
YB(t−1) − 2

[

B(t−1)
]

n,k
[Y]:,n e

⊤
k,m

∥

∥

∥

∗
≤

∥

∥YB(t−1)
∥

∥

∗, the

algorithm obtains a new solution (n, k) to (36) after reset-

ting L(t) to {1, 2, . . . , 2Nm}. If this new (n, k) is such that
∥

∥

∥
YB(t−1) − 2

[

B(t−1)
]

n,k
[Y]:,n e

⊤
k,m

∥

∥

∥

∗
>

∥

∥YB(t−1)
∥

∥

∗, then

the algorithm sets B(t) = B(t−1) − 2[B(t−1)]n,k en,2Ne
⊤
k,m

and updates L(t+1) = L(t) \ {(k − 1)2N + n}. Otherwise,

the iterations terminate and the algorithm returns B(t)

as a heuristic solution to (21). Notice that since at each

iteration, the optimization metric increases. At the same

time, the metric is certainly upper-bounded by ‖YBopt‖∗.
Therefore, the iterations are guaranteed to terminate

in a finite number of steps, for any initialization B(1).

Our studies have shown that, in fact, the iterations

terminate for t < 2Nm, with very high frequency of

occurrence.

For solving (36), one has to calculate
∥

∥

∥
YB(t−1) − 2

[

B(t−1)
]

j,l
[Y]:,j e

⊤
l,m

∥

∥

∥

∗
, for all (j, l) ∈ {1, 2, . . . , 2N} ×

{1, 2, . . . ,m} such that (l − 1)2N + j ∈ L. At worst case,

L = {1, 2, . . . , 2Nm} and this demands 2Nm independent

singular-value/nuclear-norm calculations. Therefore, the

total cost for solving (36) is O
(

N2m3
)

. If we limit the

number of iterations to 2Nm, for the sake of practical-

ity, then the total cost for obtaining a heuristic solu-

tion to (21) is O
(

N3m4
)

–significantly lower than the

cost of the polynomial-time optimal algorithm presented

above, O
(

N2Dm−m
)

. When the iterations terminate, the

algorithm returns the bit-flipping-derived L1-PC matrix

QR,BF
△= UV⊤, where U�2K×2KV

⊤ svd= YBopt. Formal per-

formance guarantees for the presented bit-flipping proce-

dure were offered in [43], for general real-valued matrices

and K = 1.

A pseudocode of the presented algorithm for the calcu-

lation of the 2K L1-PCs Y2D×2N is presented in Fig. 4.

4 Numerical results and discussion
We present numerical studies to evaluate the DoA estimation

performance of realified L1-PCA, compared to other PCA

calculation counterparts. Our focus lies on cases where a

nominal source (the DoA of which we are looking for)

operates in the intermittent presence of a jammer located at

a different angle. Ideally, we would like the DoA estimator

to be able to identify successfully the DoA of the source of

interest, despite the unexpected directional interference.

To offer a first insight into the performance of the pro-

posed method, in Fig. 5 we present a realization of the

DoA-estimation spectra PR(φ;QR,L1) and PR(φ;QR,L2), as

defined in (14) and (16), respectively. In this study, we cal-

culate the exact L1-PCs of Y, using the polynomial-cost

optimal algorithm of Fig. 3. The receiver antenna-array

is equipped with D = 3 elements and collects N = 8

snapshots. All snapshots contain a signal from the single

source of interest (K = 1) impinging on the array with

DoA − 20◦. One out of the eight snapshots is corrupted
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Fig. 4 Algorithm for estimation of the 2K L1-PCs of rank-2D data matrix Y2D×2N with cubic (w.r.t. N) asymptotic complexityO
(

N3m4
)

(m = 1 for

K = 1;m = 2K , for K > 1)

by two jamming sources with DoAs 31◦ and 54◦. The
signal-to-noise ratio (SNR) is set to 2 dB for the target

source and to 5 dB for each of the jammers. We observe

that standard MUSIC (L2-PCA) is clearly misled by the

two jammer-corrupted measurement. Interestingly, the

proposed L1-PCA-based method manages to identify the

target location successfully.

Next, we generalize our study to include probabilistic

presence of an jammer. Specifically, we keep D = 3 and

N = 8 and consider K = 1 target at θ = − 41◦ with

Fig. 5 DoA-estimation spectra PR(φ;QR,L2) (MUSIC) and PR(φ;QR,L2) (proposed); one target and two jamming signals with angles of arrival marked

by � and •, •, respectively
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SNR 2 dB, and L = 1 jammer at θ ′ = 24◦ with activation

probability p taking values in {0, .1, .2, .3, .4, .5}.
In Fig. 6, we plot the root-mean-square-error (RMSE)4,

calculated over 5000 independent realizations, vs. jam-

mer SNR, for three DoA estimators: (a) the standard

L2-PCA-based one (MUSIC), (b) the proposed L1-PCA

DoA estimator with the L1-PCs calculated optimally by

means of the polynomial-cost algorithm of Fig. 3, and (c)

the proposed L1-PCA estimator with the L1-PCs found

by means of the algorithm of Fig. 4. For all three meth-

ods, we plot the performance attained for each value

of p ∈ {0, .1, .2, .3, .4, .5}. Our first observation is that

the two L1-PCA-based estimators exhibit almost identi-

cal performance for every value of p and jammer SNR.

Then, we notice that, in normal system operation (p = 0)

the RMSEs of the L2-PCA-based and L1-PCA-based esti-

mators are extremely close to each other and low, with

slight (almost negligible) superiority of the L2-PCA-based

method. Quite interestingly, for any non-zero jammer

activation probability p and over the entire range of jam-

mer SNR values, the RMSE attained by the proposed

L1-PCA-based methods is lower than that attained by the

L2-PCA-based one. For instance, for jammer SNR 12 dB

and p = .1, the proposed methods offer 8◦ smaller RMSE

than MUSIC. Of course, at high jammer SNR values and

p = .5 the RMSE of both methods approaches 65◦,
which is the angular distance of the target and the jammer;

i.e. both methods tend to peak the significantly (18 dB)

stronger jammer present in half the snapshots.

In Fig. 7, we change the metric and study the more

general Subspace Representation Ratio (SRR), attained by

L2-PCA and L1-PCA. For any orthonormal basis Q ∈
R
2D×2K , SRR is defined as

SRR(Q)
△=

∥

∥Q⊤s(θ)
∥

∥

2

2
∥

∥Q⊤s(θ ′)
∥

∥

2

2
+

∥

∥Q⊤s(θ)
∥

∥

2

2

. (37)

In Fig. 7, we plot SRR(QR,L2) (L2-PCA), SRR(QR,L1)

(optimal L1-PCA), and SRR(QR,BF) averaged over 5000

realizations, for multiple values of p, versus the jammer

SNR.We observe that, again, the performance of the opti-

mal and heuristic L1-PCA calculators almost coincides

for every value of p and jammer SNR. Also, we notice

that under normal system operation (p = 0) the spans of

QR,L2,QR,L1, and QR,BF are equally good approximations

to SR and their respective SRR curves lie close (as close

as the target SNR and the number of snapshots allow) to

the benchmark of SRR(U), where U is an orthonormal

basis for the exact SR. On the other hand, when half the

snapshots are jammer corrupted (p = .5) both methods

capture more of the interference. Similar to Fig. 6, for any

jammer activation probability and over the entire range of

jammer SNR values, the SRR attained by L1-PCA (both

algorithms) is superior to that attained by conventional

L2-PCA.

Next, we set D = 4,N = 10, θ = − 20◦ and θ ′ =
50◦. The source SNR is set to 5 dB. In Fig. 8, we plot

the RMSE vs. jamming SNR performance attained by L2-

PCA, RPCA5 (algorithm of [29]), and L1-PCA (proposed

–computed by efficient Algorithm 3), all computed on the

realified snapshots. We observe that for p = 0 (i.e., no

jamming corruption) all methods perform well; in partic-

ular, L2-PCA and L1-PCA demonstrate almost identical

performance of about 3◦ RMSE. For jammer operation

probability p > 0, we observe that the proposed L1-PCA

method outperforms clearly all counterparts, exhibiting

Fig. 6 Root-mean-squared-error (RMSE) vs. jammer SNR, for: L2-PCA (MUSIC), optimal L1-PCA, calculated by means of Algorithm 2 in Fig. 3, and

L1-PCA by means of Algorithm 3 in Fig. 4. For each estimator, we present the RMSE curves for p = 0, .1, .2, .3, .4, .5. N = 8,D = 3, θ = − 41◦ , θ ′ = 24◦ ,
source SNR 2 dB
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Fig. 7 Average SRR vs. jammer SNR, for: L2-PCA (MUSIC), optimal L1-PCA, calculated by means of Algorithm 2 in Fig. 3, and L1-PCA by means of

Algorithm 3 in Fig. 4. For each estimator, we present the RMSE curves for p = 0, .1, .2, .3, .4, .5. N = 8,D = 3, θ = − 41◦ , θ ′ = 24◦ , source SNR 2 dB

from 5◦ (for jammer SNR 6 dB) to 20◦ (for jammer SNR

11 dB) lower RMSE.

In Fig. 9. we plot the RMSE attained by the three

counterparts, this time fixing jamming SNR to 10 dB

and varying the snapshot corruption probability p ∈
{0, .1, .2, .3, .4, .5, .6}. Once again, we observe that, for p =
0 (no jamming activity), all methods perform well. For

p > 0, L1-PCA outperforms both counterparts across the

board.

Finally, in the study of Fig. 9, we measure the computa-

tion time expended by the three PCA methods, for p = 0

and p = 0.5.We observe that standard PCA, implemented

by SVD, is the fastest method, with average computation

time about 4 · 10−5 s, for both values of p. The computa-

tion time of RPCA is 1.5 ·10−2 s for p = 0 and 1.9 ·10−2 s

for p = 0.5. L1-PCA (Algorithm 3) computation takes, on

average, 4.3 · 10−2 s for both values of p, comparable to

RPCA.6

Fig. 8 RMSE vs. jammer SNR, for: L2-PCA (MUSIC), RPCA [29], and L1-PCA by means of Algorithm 3 in Fig. (4). For each estimator, we present the

RMSE curves for p = 0, .2. N = 10,D = 4, θ = − 20◦ , θ ′ = 50◦ , source SNR 5 dB
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Fig. 9 RMSE vs. jammer operation probability p, for: L2-PCA (MUSIC), RPCA [29], and L1-PCA by means of Algorithm 3 in Fig. 4.

N = 10,D = 4, θ = −20◦ , θ ′ = 50◦ , source SNR 5dB, jammer SNR 10 dB

5 Conclusions
We considered the problem of DoA estimation in the

possible presence of unexpected, intermittent directional

interference and presented a new method that relies on

the L1-PCA of the recorded snapshots. Accordingly, we

presented three algorithms (two optimal ones and one

iterative/heuristic) for realified L1-PCA; i.e., L1-PCA of

realified complex data matrices. Our numerical studies

showed that the proposed method attains performance

similar to conventional L2-PCA-based DoA estimation

(MUSIC) in normal system operation (absence of jam-

mers), while it attains significantly superior performance

in the case of unexpected, sporadic corruption of the

snapshots.

Endnotes
1S� ∈ C

D×m is a transposed Vandermonde matrix [66]

and has rankm if |�| = m < D.
2For any underlying set of elements A of cardinality n,

a size m multiset may be defined as a pair
(

A, f
)

where

f : A → N≥1 is a function from A to N≥1 such

that
∑

a∈A f (a) = m; the number of all distinct size m

multisets defined uponA is
(n+m−1

m

)

[67].
3The (n, k)th bit of the binary matrix argument in (21)

has the corresponding single-integer index (k−1)2N+n ∈
{1, 2, . . . , 2Nm}.

4Denoting by θ the DoA and θ̂ the DoA estimate, RMSE

is defined as the square root of the average value of

|θ̂ − θ |2.
5Given Y, RPCA minimizes ‖L‖∗ + λ‖O‖1, over L and

O, subject to Y = L + O and λ =
√
max{2D, 2N}−1

[29]. Then, it returns the 2K L2-PCs of L (computed

by SVD).
6Reported computation times are measured in MAT-

LAB R2017a, run on a computer equipped with Intel(R)

core(TM) i7-6700 processor 3.40 GHz and 32 GB RAM.

The MATLAB code of L1-PCA (Algorithm 3) can be

found at [68]. TheMATLAB code for RPCAwas provided

at [69].

Appendix
Useful properties of realification

Lemma 1 below follows straightforwardly from the defini-

tion in (8).

Lemma 1 For anyA,B ∈ C
m×n, it holds that (A + B) =

A + B. For any A ∈ C
m×n and B ∈ C

n×q, it holds that

(AB) = A B and
(

AH
)

= A
⊤
. �

Lemma 2 below was discussed in [70] and [20], in the

form of problem 8.6.4. Here, we also provide a proof, for

the sake of completeness.

Lemma 2 For any A ∈ C
m×n, rank(A) = 2 rank(A).

In particular, each singular value of A will appear twice

among the singular values of A. �

Proof Consider a complex matrix A ∈ C
m×n of rank

k ≤ min{m, n} and its singular value decompositionA
SVD=

Um×m�m×nV
H
n×n, where

� =
[

diag(σ ) 0k×(n−k)

0(m−k)×k 0(m−k)×(n−k)

]

(38)
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and σ
△=[ σ1, σ2, . . . , σk]

⊤ ∈ R
k
+ is the length k vector con-

taining (in descending order) the positive singular values

of A. By Lemma 1,

A = U � V
⊤

(39)

with U
⊤
U = U U

⊤ = I2m and V
⊤
V = V V

⊤ = I2n.

Define now, for every a, b ∈ N≥1, the ab×ab permutation

matrix

Za,b
△=

[

Ia ⊗ eb1, Ia ⊗ eb2, . . . , Ia ⊗ ebb

]⊤
(40)

where ebi
△=[ Ib]:,i, for every i ∈ {1, 2, . . . , b}. Then,

Z⊤
a,bZa,b =

b
∑

i=1

(

Ia ⊗
(

ebi

)⊤)⊤ (

Ia ⊗
(

ebi

)⊤)

= Ia ⊗

⎛

⎝

b
∑

i=1

ebi

(

ebi

)⊤
⎞

⎠ = Ia ⊗ Ib = Iab.

(41)

By (39),

A = UZ⊤
2,mZ2,m�Z⊤

2,nZ2,nV
⊤

=
(

UZ⊤
2,m

) (

Z2,m(I2 ⊗ �)Z⊤
2,n

) (

VZ⊤
2,n

)⊤

= Ǔ�̌V̌⊤ (42)

where Ǔ
△= UZ⊤

2,m, V̌
△= VZ⊤

2,n, and �̌
△= Z2,m(I2 ⊗�)Z⊤

2,n.

It is easy to show that Ǔ⊤Ǔ = ǓǓ⊤ = I2m, V̌
⊤V̌ =

V̌V̌⊤ = I2n, and �̌ = � ⊗ I2. Therefore, (42) consti-

tutes the standard (sorted singular values) SVD of A and

rank(A) = 2k.

Lemma 3 below follows from Lemmas 1 and 2.

Lemma 3 For any A ∈ C
m×n, ‖A‖22 = 1

2‖A‖22. �

Proof of (14)

We commence our proof with the following auxiliary

Lemma 4.

Lemma 4 For any matrix A ∈ C
m×n, if Qreal ∈

R
2m×2l, l < m ≤ n is a solution to

maximize
Q∈R2m×2l , Q⊤Q=I2l

‖A⊤
Q‖2. (43)

andQcomp. ∈ C
m×l is a solution to

maximize
Q∈Cm×l , QHQ=Il

‖AHQ‖2, (44)

thenQrealQ
⊤
real =

(

Qcomp.QH
comp.

)

= Qcomp.Q
⊤
comp.. �

Proof Orthonormal basis [ Ǔ]:,1:2l, defined in the proof

of Lemma 2 above, contains the 2l highest-singular-value

left-singular vectors of A, and, thus, solves (43) [20]. Since

the objective value in (43) is invariant to column permu-

tations of the argument Q, any column permutation of

[ Ǔ]:,1:2l is still a solution to (43). Next, we define the per-

mutation matrix Wm,l
△=[ Il, 0l×(m−l)]

⊤ and notice that

[ Ǔ]:,1:2l = U[ I2⊗em1 , I2⊗em2 , . . . , I2⊗eml ] is a column per-

mutation ofU(I2 ⊗Wm,l) = U Wm,l, which, by Lemma 1,

equals
(

UWm,l

)

= [U]:,1:l. Thus, [U]:,1:l solves (43) too.

At the same time, by (39), [U]:,1:l contains the l highest-

singular-value left-singular vectors of A and solves (44)

[20]. By the above, we conclude that a realification per (8)

of any solution to (44) constitutes a solution to (43) and,

thus,QrealQ
⊤
real =

(

Qcomp.QH
comp.

)

= Qcomp.Q
⊤
comp..

By Lemmas 1, 3, and 4, (14) holds true.

Proof of (29)

We commence our proof by defining d = |X1| and the sets
X c
A

△= {1, 2, . . . , 2N}\XA (e.a.o.) andX c
B

△= {1, 2, . . . , 2N}\
XB (e.a.o.) Then, we notice that

[ I2N ]:,XB = EN [ I2N ]:,XA P, (45)

where P
△=

[

−[ I2D−1]:,d+1:2D−1 , [ I2D−1]:,1:d
]

. Similarly,

[ I2N ]:,X c
B
= EN [ I2N ]:,X c

A
Pc, (46)

where Pc
△=

[

−[ I2N−2D+1]:,N−d+1:2N−2D+1 , [ I2N−2D+1]:,1:N−d

]

.

Then,

[Y]:,XB = Y[ I2N ]:,XB = YEN [ I2N ]:,XA P

= EDY[ I2N ]:,XA P = ED[Y]:,XA P. (47)

Consider now z = sgn([ c(XA)]D )EDc(XA). It holds that

[ z]2D > 0 and

[Y]T:,XB
z = sgn([ c(XA)]D )P⊤[Y]⊤:,XA

E⊤
DEDc(XA)

= sgn([ c(XA)]D )P⊤[Y]⊤:,XA
c(XA) = 02D.

(48)

Therefore, z = c(B) =∈ null
(

[Y]⊤:,XB

)

∩ �2D and,

hence, (29) holds true.

Proof of Prop. 3

We begin by rewriting the maximization argument of

(20) as

‖YB‖2∗ = ‖YB‖22 + 2

√

det
(

B⊤Y
⊤
YB

)

= ‖Yb1‖22 + ‖Yb2‖22

+ 2

√

‖Yb1‖22‖Yb2‖22 −
(

b⊤
1 Y

⊤
Yb2

)2
, (49)
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where b1 and b2 are the first and second columns of

B, respectively. Evidently, the maximum value attained at

(17) is upper bounded as

max
B∈{±1}2N×2

‖YB‖2∗ ≤ max
b1∈{±1}2N ,b2∈{±1}2N

‖Yb1‖22

+ ‖Yb1‖22 + 2‖Yb1‖2‖Yb2‖2
= 4 max

b∈{±1}2N
‖Yb‖22. (50)

Considering now a solution bopt to

maximizeb∈{±1}2N×1 ‖Yb‖22, and defining b′
opt = ENbopt,

we notice that ‖Yb′
opt‖22 = ‖YENbopt‖22 =

‖EDYbopt‖22 = ‖Ybopt‖22 and b⊤
optY

⊤
Yb′

opt =
b⊤
optY

⊤
YENbopt = b⊤

optY
⊤
EDYbopt = 0. Therefore,

‖Y
[

bopt,b
′
opt

]

‖2∗ = 4 ‖Ybopt‖22 and, in view of (50),
[

bopt, ENbopt
]

is a solution to (20).

Proof of (30)

By (29) and (46), it holds that

[Y]⊤:,X c
B
c(XB) = sgn([ c(XA)]D )P⊤

c [Y]
⊤
:,X c

A
E⊤
DEDc(XA)

= sgn([ c(XA)]D )P⊤
c [Y]

⊤
:,X c

A
c(XA). (51)

Consider now some b ∈ B(XA) and define b′ △=
sgn([ c(XA)]D )ENb. By (46), (51), and the definition in

(25), it holds that

[b′]X c
B

=[ sgn([ c(XA)]D )ENb]X c
B
= sgn([ c(XA)]D )[ I2N ]

⊤
:,X c

B
ENb

= sgn([ c(XA)]D )(EN [ I2N ]:,XA Pc)
⊤ENb

= sgn([ c(XA)]D )P⊤
c [ I2N ]

⊤
:,XA

b = sgn([ c(XA)]D )P⊤
c [b]:,XA

= sgn([ c(XA)]D )P⊤
c sgn([Y]⊤:,XA

c(A))

= sgn(sgn([ c(XA)]D )P⊤
c [Y]

⊤
:,XA

c(A))

= sgn([Y]⊤:,X c
B
c(XB)).

(52)

Hence, b′ belongs to B(XB) and (30) holds true.
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