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Abstract—In this work, we analyze the performance of the
uplink (UL) of a massive MIMO network considering an asymp-
totically large number of antennas at base stations (BSs). We
model the locations of BSs as a homogeneous Poisson point
process (PPP) and assume that their service regions are limited to
their respective Poisson-Voronoi cells (PVCs). Further, for each
PVC, based on a threshold radius, we model the cell center (CC)
region as the Johnson-Mehl (JM) cell of its BS while rest of the
PVC is deemed as the cell edge (CE) region. The CC and CE users
are located uniformly at random independently of each other in
the JM cell and CE region, respectively. In addition, we consider
a fractional pilot reuse (FPR) scheme where two different sets
of pilot sequences are used for CC and CE users with the
objective of reducing the interference due to pilot contamination
for CE users. Based on the above system model, we derive
analytical expressions for the UL signal-to-interference-and-noise
ratio (SINR) coverage probability and average spectral efficiency
(SE) for randomly selected CC and CE users. In addition, we
present an approximate expression for the average cell SE. One
of the key intermediate results in our analysis is the approximate
but accurate characterization of the distributions of the CC and
CE areas of a typical cell. Another key intermediate step is the
accurate characterization of the pair correlation functions of the
point processes formed by the interfering CC and CE users that
subsequently enables the coverage probability analysis. From our
system analysis, we present a partitioning rule for the number
of pilot sequences to be used for CC and CE users as a function
of threshold radius that improves the average CE user SE while
achieving similar CC user SE with respect to unity pilot reuse.

Index Terms—Stochastic geometry, Massive MIMO, uplink,
fractional pilot reuse, cellular network, coverage probability,
cell spectral efficiency, Poisson point process, pair correlation
function.

I. INTRODUCTION

Owing to its ability to improve both spectral and en-
ergy efficiency of wireless networks, massive multiple-input
multiple-output (mMIMO) is considered a key enabler of
the fifth-generation (5G) communication systems and beyond.
Fundamentally, mMIMO is a multi-user MIMO system where
a large number of antennas at the base stations (BSs) are used
to simultaneously serve a fewer number of users (compared
to the number of antennas at the BSs). Although a simple
extension of conventional multi-user MIMO technique, it is
set to revolutionalize wireless communication networks as it
has been proven that under ideal conditions it eliminates the
deleterious effect of channel fading and additive noise while
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negating the effect of network interference [2]-[4]. In order
to decode the simultaneously transmitted data from different
users, each BS requires the channel knowledge of the users
attached to it that is estimated through a set of orthogonal
pilot sequences. Due to limited channel coherence interval,
the number of orthogonal pilot sequences is also limited.
As a result, the pilot sequences need to be reused across
different cells. In his seminal work [2], Marzetta showed
that under the assumption of independent and identically
distributed (i.i.d.) Rayleigh fading across BS antennas and sub-
optimal low-complexity processing schemes such as maximal
ratio combining (MRC), the reuse of pilot sequences gives
rise to an inherent interference known as pilot contamination
(PC), which fundamentally limits the performance of mMIMO
networks. As discussed next in detail, a significant amount
of research effort has been focused on overcoming the effect
of PC. Amongst all the solutions, a relatively simple scheme,
namely fractional pilot reuse (FPR), stands out in reducing the
effect of PC for the cell edge (CE) users. Hence, the objective
of this article is to analyze the performance of a mMIMO
network that uses the FPR scheme.

A. Motivation and related works

In the literature, PC suppression or mitigation methods
can be broadly categorized into protocol based methods [5],
BS coordination based methods [6], [7], and pilot reuse or
hopping based methods [8], [9]. Please refer to [10] for a
comprehensive survey on this subject. While protocol and
coordination based methods are effective in removing the PC,
they are usually complex. Further, these techniques require
some degree of coordination among BSs. On the other hand,
the gains obtained by pilot hopping based methods is primarily
due to interference randomization and is hence limited to sce-
narios with larger channel coherence times. In contrast, a low
complexity and distributed scheme to counter the effect of PC
is to forbid reusing the same pilots in every cell, which requires
no coordination among BSs [11], [12]. The concept of pilot
reuse is similar to the frequency reuse in cellular networks.
In [11], the optimal pilot reuse factor is obtained for a network
with linear topology. From the numerical simulations, authors
show that higher than unity pilot reuse factor is beneficial
for average cell throughput. In [12], for a hexagonal cellular
network model, authors show that reuse-1 may not be optimal
in all scenarios. These works considered the use of completely
orthogonal sets of pilots in neighboring cells. However, the
spectral efficiency (SE) can be further improved by using a
more aggressive pilot reuse scheme, namely FPR, instead of



completely orthogonal reuse across cells. Conceptually, FPR is
similar to that of fractional frequency reuse (FFR) used in LTE
systems to mitigate the effect of inter-cell interference. To the
best of the knowledge of the authors, the concept of FPR was
first introduced in [13]. In FPR, similar to FFR, depending on
the channel condition, users in a cell are classified into two
categories, namely cell center (CC) and CE users. While the
set of pilots reserved for CC users are reused in every cell, the
set of pilots for CE users are reused in specific cells depending
upon the reuse factor.

For the performance analysis of mMIMO systems with FPR,
it is imperative to consider a large-scale multi-cell setup so
that the effect of interference on the performance can be
accurately modeled. For such problems, stochastic geometry
provides a rigorous set of tools for the spatial modeling and
performance analysis, as discussed in detail in [14], [15].
For a pedagogical treatment of the subject with emphasis
on the application to cellular network, interested readers are
advised to refer to [14]. Although stochastic geometry has
been used for the performance analysis of mMIMO systems
n [16]-[25], the analyses presented in these works cannot
be trivially extended to analyze the FPR scheme. To begin
with, in contrast to our network topology, in [25] a cooperative
mMIMO network is considered. In [16]-[22], where a cellular
topology is considered, the UL interference field generated
by the users from unity pilot reuse scheme is different from
the FPR scheme. Further, the analyses [17]-[22] are limited
to the consideration of a fixed number of users in each BS
which does not take into account the varying load (number of
users) in each cell. In this work, we propose a new approach
to analyze the performance of a cellular mMIMO network
considering FPR scheme that results in the following key
contributions.

B. Contributions of the work

1) Analytical model for UL analysis of a mMIMO system
with FPR: A new generative model is proposed to analyze the
performance of the UL of a mMIMO system in the asymptotic
antenna regime under the consideration of FPR scheme. We
model the BS locations as a Poisson point process (PPP).
Based on a threshold distance R., we characterize the CC
regions as the Johnson-Mehl (JM) cells associated with the
BSs. The complementary region in each cell is modeled as
the CE region. One important result in our analyses is the
approximate but accurate distribution functions for the CC
and CE areas of a typical Poisson-Voronoi Cell (PVC). These
results are subsequently used to model the load (number
of CC and CE users) distribution of each cell. Using these
distributions, we provide key intermediate results, such as the
pilot assignment probability to a randomly selected CC (CE)
user and utilization probability of a pilot. These results are
later used in the coverage probability and SE analyses.

2) Signal-to-interference-plus-noise ratio (SINR) coverage,
average user and cell SEs analysis: We present SINR coverage
probability of a user assigned to a given CC (CE) pilot. The
derivation of exact probability is difficult as the exact statistical
characterization of the interference field is extremely challeng-
ing. In fact, derivation of this result for a relatively simpler

scenario of the classical UL system, where the segregation
between CC and CE users is not present, is also intractable.
Hence, to lend tractability to this problem, we resort to a
careful approximation of the interference statistics in the UL.
Motivated by [26], first, we derive the pair correlation function
(PCF) of the interfering user locations with respect to (w.r.t.)
the BS of interest. Using this PCF, we approximate the point
process formed by the CC (CE) interfering users as a non-
homogeneous PPP. Next, based on the dominant interferer
based approach, we provide useful theoretical expressions for
the coverage probability of a user assigned to a CC (CE) pilot.
This result is extended to obtain analytical expressions for the
average SEs of a randomly selected CC (CE) user and average
SE of a typical cell.

3) System design guidelines: Our analysis leads to fol-
lowing system design guidelines. First, our analyses show
that for a certain range of threshold radius by allocating
1 — exp(—camAgR2), where )\ is the BS density and ¢y is a
constant, fraction of pilots for the CC users, FPR scheme im-
proves the average SE of a CE user with marginal reduction in
the average SE of a CC user compared to unity reuse. Second,
for a given threshold radius, it is possible to achieve higher
average cell SE using FPR scheme compared to unity reuse
by a suitable partitioning (different from the aforementioned
rule) of the set of the pilots. Third, the coverage probability
of a user on a CE pilot decreases with increasing R, in the
higher SINR regime, however, the reverse trend is observed
for the lower SINR regime.

II. SYSTEM MODEL
A. Network model

1) BS and user locations: In this work, we analyze the UL
performance of a cellular network where each BS is equipped
with M — oo antennas. The locations of the BSs belong to
the set ¥, = ®;, U {0}, where o represents the origin, and
®,, is a realization of homogeneous PPP of density ). In this
work, we present our analysis condition on the location of the
BS at o. By virtue of Slivnyak’s theorem, the reduced palm
measure of U; is equal to the original measure of &, [27].
The location of the j-th BS is denoted by b; € U3, where the
index j does not represent any ordering and by = o. In a cell,
the region that is within a distance R, from its BS is defined
as the CC region. For the typical cell at the origin (referred
to as O-th cell hereafter), the CC region is given as

Xo(o, R, Up) = {x € Vg, (0) : Ix|| < R.}
= Vy,(0) N Bg,(0), (1)

where Vy, (0) = {x € R? : ||x|| < |[x—b;]|, Vb; € ¥,} is the
PVC associated with by and Bg,_(0) denotes a ball of radius
R, centered at o. Note that the CC regions are equivalent to
the JM cells associated with the BSs [28]. These JM cells are
usually defined from the perspective of random nucleation and
growth process. However, we follow (1) for simpler exposition.
The region of the cell that is beyond R. from the BS is the
CE region and is given as

Ap(0, R, Up) = {x € Vy, (0) : [[x[| > R}



= Vg, (0) N Bgc (0). )

The locations of the CC and CE users attached to the
j-th BS are uniformly and randomly distributed within
Xc(bj, Re, Uy) and Xg(bj, R, U;), respectively. We de-
note the CC area of the j-th cell as X (Ao, Re) =
|Xc(bj, Re, Uy)| and the CE area as Xg;(Ao,R.) =
|XE(bj, Re, Up)|. If the typical cell does not have a CE
region, then X (b;, R, ¥;) = @ and Xg;(Ao, Rc) = 0. Let
N¢j and Ng; be the numbers of CC and CE users present
in the j-th cell. We assume that both the random variables
N¢;j and Ng; follow zero-truncated Poisson distribution with
parameters A, Xc; (Ao, Re) and A\, X (Ao, R.), respectively.
Accordingly, conditioned on the CC (CE) area of the j-th cell,
the PMFs of N¢; and Ng; for n > 0 are given as

e—)\uwcj ()\uxcj)n
nl(1 — e Auei)’
e uTei (\yZes )™
nl(1 — e Muei)’

P[Ncj = nlze] =

P [Np; = nlae;, &] = (3)
where £ is the event that the j-th cell has a CE region and is
defined in Section III, x.; and z.; are the realizations of the
CC and CE areas '. The main motivation behind consideration
of the truncated Poisson distribution for users is to ensure
that each BS in the network has at least one CC and CE
user within its Voronoi cell. Since mMIMO will be primarily
used for macro cells, from the system perspective, this is a
reasonable assumption. Further, this allows us to model the
user point process (to be defined shortly) as a Type-I process
introduced in [26] facilitating a rigorous system analysis from
the perspective of a typical cell. Note that ), is used to vary
the load (number of users) in a cell.

Let us define a point process W, ¢c that is constructed by
randomly and uniformly distributing one point in the CC
region of each cell. Mathematically, this can be expressed as

\I’u,CC = {U(Xc(bj,Rc, \I/b)) ZVb]‘ S \I/b}7

where U(B) denotes a uniformly distributed point in B C R2.
On the other hand, let U,r denote the set of BSs having
a CE region that is defined as ¥yr = {b; Vb; €
Uy, Xg(bj,, Re, V) # @}. Now, for the CE case we define the
point process Wy g = {U(Xg(bj, R:, ¥p)) : Vb; € Uy}
Except the users attached to the BS at o, rest of the users in
the network belong to the interfering cells. Let the CC and CE
point processes formed by the points in the interfering cells
be

(I)u,CC = {U(Xc(bj7Rc7 \I/b)) ZVbj S (I)b},
q)u,CE - {U(XE(ij RCv \Ijb)) : Vb] € {\I]bE \ bO}}

2) Pilot sequences: We restrict our analysis to a nar-
rowband single-carrier system. Extension to a multi-carrier
system is straightforward and hence is skipped in favour of
simpler exposition. In order to get the CSI at the BS, in
the j-th cell, each user is assigned a pilot (sequence) that
is selected from a set of orthogonal pilots P; C P, where

'Throughout this manuscript, we have represented a random variable in
capital letter and its realization in small letter.

P = {p1,P2, -+ ,pn} and p; € CB*! fori =1,2,...,B,
where B is the number of orthogonal pilots. Hence, the
duration of each pilot sequence is B symbol duration. For
convenience, we denote the pilots by their indices. Therefore,
the set of indicies of the pilots used in the j-th cell is denoted
as K; € K, where K = {1,2,3,...,B}. Owing to the
limited channel coherence time of 7. symbol duration, the
cardinality of this set |KC| = B < T.. While the pilots remain
orthogonal in each cell, due to the consideration of FPR,
orthogonality among cells is not guaranteed. In each cell, the
pilots are partitioned into two different sets, i.e. for the j-
th BS £; = CUE; where C = {1,2,..., B¢} contains the
indices of the CC pilots that are reused in each cell. Moreover,
|C| = Bc < B. On the other hand, &; contains the indices of
the CE pilots used in the j-th cell, which are reused in other
cells depending on the reuse factor 8;. Further, |£;| = Bg
and (B — B¢)/ff = Bg for all b; € U;,. The choice for
B¢, Bg, and B¢ is made such that all three are integers.

These pilots are assigned randomly to the user in a particular
cell. For the k-th CC pilot sequence in the j-th cell, where
k € C, we define a binary random variable Zec (7, k) as follows

1, if k-th CC pilot is used in the j-th cell,

0, if k-th CC pilot is not used in the j-th cell.

“)
On the similar lines, for the [-th CE pilot in the j-th cell, we
define the binary random variable Zcg(j,1). Let @55 and &5
be the point processes formed by the interfering CC and CE
users that use the k-th CC and [-th CE pilots, respectively.
Since the user locations in ® are uniformly distributed
points in the CC region of their respective cells, @ﬁ?k can
be defined to inherit the user locations from &, when
Tec(j, k) = 1. Similar argument is true for ®F and @, c.
Hence,

ICC(.jak) = {

q)ﬁ?k = {u u € (I)u,CC7ICC(j7k) = 1}7and
(I)E].,zl ={u:u € dycp, Lee(f, 1) = 1}. &)

We defer the discussion on the statistical properties of these
point processes to Section V. Note that the point process
formed by the users using other pilot sequences in the network
can be defined on the similar lines as that of ®$5, (®55 ), where
the points will be inherited from a point process that has the
same definition as @, cc(Pyce). In the illustrative network
diagram (Fig. 1), one CC pilot that is reused in each cell and
one CE pilot that is reused in a few of the cells.

3) Distance distributions: Let the location of the user that
uses the k-th sequence in the j-th cell be denoted as u;,.
The random distance between a user at u;, and a BS at b;
is denoted by the random variable D;;, = [ju;, — b;|| and
d;;,. is its realization. To obtain the coverage probability of a
randomly selected user CC (CE) user, we need the distribution
of the serving distance Dgg, (Dgo,) between by and the
CC (CE) user using the k-th (I-th) pilot in the O-th cell.
For a typical PVC, the distance distribution between the BS
and a randomly located point in the PVC is approximated
as Rayleigh distribution with scale parameter (v/27\gc2) ™2,
where ¢, = 5/4 is an empirically obtained correction fac-



TABLE I: Summary of Notations

Notation Description
W, and Ao Homogeneous PPP modeling the locations BSs and density of Wy
b; and uy, Locations of the j-th BS and a user in the j-th cell using k-th pilot
R. and Kk = Rc.v/meado Threshold radius and normalized threshold radius
Vg, (bj) Voronoi cell associated with the j-th BS

XC(bj7 R(:7 \I}b) and XE (bj7 Rm \Ilb)
ch ()\07 Rc) and XE]' ()\07 RC)
O and A (r, k)

ICC (]a k)’ ICE(j? l)

Ao,cc (Ao,ce)

Aon,cc (Aom,ce)

Dy,
8ijx ~ CN (O, d;; 7 Inr)
SINRg,

Pg(fk and Pg?l
B, B¢, and Bg
T.,B

CC and CE region of the j-th cell

CC and CE areas of a typical cell in a network of BS density Ao
Point processes of users using k-th CC pilot and its density function
Indicator variable that is 1 when k-th CC pilot, [-th CE pilot is used in j-th cell
Indicator variable for pilot assignment to CC (CE) user of interest
Indicator variable for n-th (m-th) pilot assignment to CC (CE) user
Random distance between the BS at b; and user at u;,

Channel vector between ¢-th BS and the user at u;,

SINR of the user using the k-th pilot in the O-th cell

Coverage probability of a user using k-th CC and [-th CE pilots
Total number of pilots, number of CC, and number of CE pilots
Length of coherence time and pilot sequence (in symbol durations)

tor [29]. Since the user at ug, can not lie beyond Bg_ (o), it
is reasonable to approximate the distribution of Dy, to follow
truncated Rayleigh distribution as given below

1-— exp(—wcz)\odgok)
1 —exp(—mcaAgR2)

doo,, < Re.
(6)

On the other hand, the distribution of distance Dgg, can also
be approximated as

FDOO,C (doo, |Re) =

Fpyo, (doo,|Re) = 1 — exp(—meaXo(dgy, — R2)),  doo, > Re.

)

At this point, in order to make R, invariant to the BS density
Ao, we define a normalized radius x as R, = \/ﬂ;ﬁ,ﬁ S
[0,00). In Sec. V, k will be used in the statistical charac-
terization of ®G (®ZF ). Further, s also provides perspective
regarding the size of the CC region without the knowledge
of Ag. Next, we define the system parameters from the
perspective of the CC user using the k-th pilot sequence. The

extension of these definitions for CE case is straightforward.

B. Channel model and channel estimation

1) Channel model: We consider a system where each link
suffers from two multiplicative wireless channel impairments,
namely distance-dependent pathloss and multi-path fading.
Consideration of the effect of shadowing is left as a promising
future work. The channel vector between the user located at
u;, and the M antenna elements of the BS located at b; is
given as g;;, = di_j‘:/thjk (e CMx1) where « is the pathloss
exponent, h;;, ~ CN(0ar,Inr) is a M x 1 complex Gaussian
vector. We assume that these channel vectors exhibit quasi-
orthogonality, i.e.

1
Jim b b = 1(jm = jn)- ®)
Further, we consider user transmit power p, to be fixed for
both pilot and data symbols.

2) Channel estimation: In a cell, using the orthogonal
pilots, corresponding BS obtains the least square channel
estimate of the users attached to them. Hence, for the CC user

using the k-th pilot, the channel estimate at the 0-th BS is given

5 Mx1
as 8oo, = /PuBoox T 2, ca,, VPuBoj + Vo € TV,
where vg ~ CN' (0,7, 15) is a complex Gaussian noise vector.

C. Asymptotic UL SINR of a CC (CE) user assigned to k-th
(I-th) pilot sequence

The received signal vector at the O-th BS is given as

B
rg = hOkaOkd[T()o;/2 + Z Icc(o,’é.)ho()i{l?()idaoo;/2
i=1,i#k

B
+ Z Z hOjiSUjidO_j(;/Q + no, )

=1 uj, e(‘pg?i

where x;; is the data symbol transmitted by the user using the
i-th pilot in the j-th cell, ng ~ CN(0p7,1I57) is a complex
Gaussian noise vector. We assume that E [z;;] = 0 and
E [||2;i]|?] = pu- In order to estimate the symbol transmitted
by the CC user of interest, the 0-th BS uses MRC detection
scheme, where the filter coefficients are given as wg, =
ﬁgé{)k. As demonstrated in various works in the literature
(cf. [30]), the asymptotic SINR of a user is independent of the
detection scheme. Now, the detected symbol for the CC user
using the k-th pilot in the 0-th BS is given as £, = wq, Tro. As
the number of antennas M — oo, due to quasi-orthogonality
of the channel, it can be shown that the detected symbol is
only affected by the interference from the users using the k-
th pilot in other cells (a.k.a. pilot contamination). Hence, the
SINR of the CC and CE users that are assigned the k-th and
I-th pilots, respectively, are given as

—1
—2a
E dojk> ,and
ujke‘i’\cx?k
—1
—2a

uj, E(I)E],zl
The proof of the above SINR expression is readily available in
the literature (cf. [2], [18]). Since the above expressions are
independent of p,, we assume p,, = 1.

SINRg, = dg&_“(

SINRg, = d0‘021a< (10)



Fig. 1: A representative network diagram (left) and a network realization illustrating the users using the k-th CC and I-th CE pilot (right). In a few of the

cells the CE pilot is not in use.

D. Performance metrics

In this work, the following metrics are considered for the
network performance analysis.

1) SINR coverage probability: The SINR coverage probabil-
ities of a CC and CE user using the k-th and [-th pilots for a
target SINR threshold 7" are

PSS (T) = P[SINRg, > T'|Zcc(0,k) = 1], and
P (T) = P [SINRy, > T'|Zce(0,1) = 1,E5] .

2) Average user SE: The average user SEs of the CC and
CE users of interest are given as

STu,CC = wEk [AO,CC 10g2(1 + SINRo’cc)} ,and
530} ,

where w = (1—B/T.) accounts for the fact that out of the total
coherence time of 7. symbol duration, B symbol duration is
dedicated for channel estimation leaving only 7, — B duration
for data transmission. Note that while the coverage probability
is defined for a user conditioned on a pilot, the average user
SE is defined for a randomly selected CC (CE) user that can
be assigned any one of the CC (CE) pilots. Hence, SINRg cc
and SINR cg is the SINR of a randomly selected CC (CE) user
that we term as CC (CE) user of interest. Further, the indicator
variable Ao cc = 1, if the CC user of interest is assigned a pilot
sequence, and Ag ¢ = 0, otherwise. Similarly, we define the
indicator variable Ag g for a random CE user of interest.

3) Average cell SE: The cell SE of the 0-th cell is given as

Beo
CSE = w { > Zec(0,n) log, (1 + SINRy,,)

n=1

ﬁu,CE = (.AJIE AO,CE 10g2(1 —+ SINR07CE) (11)

Bg
+ ) Zee(0,m) log, (1 + SINRy,, ) |,
m=1
where w = (1 — B/T.). Our metric of interest is E [CSE]. In
the following sections, we derive theoretical expressions for
the aforementioned quantities.

(12)

III. DISTRIBUTIONS OF THE CC AND CE AREAS OF A
TYPICAL CELL

As discussed in the previous section, the distribution of the
number of CC (CE) users and subsequently the pilot utilization
in an interfering cell depends on its CC (CE) area. Since
exact characterization of CE area is challenging (it is an open
problem), we provide an approximate area distribution for the
CE area using the well-known Weibull distribution. In our
approach, we first derive the exact expressions for the first
two moments of the CE area of a typical cell. In the second
step, using moment matching method, we approximate this
area as Weibull distribution. We use the similar method to
approximate the CC area distributions as a truncated beta
distribution. While the exact characterization of the distribu-
tion of a typical JM cell area, hence the CC area, is given
in [31], the expression of the probability density function
(PDF) involves an infinite summation over multi-dimensional
integrations. Further, the order of integration (hence the com-
plexity of the expression) increases with the increasing value
of R.. Hence, our approximate truncated beta distribution
lends tractability to the analysis. We validate the accuracy of
the proposed distributions through Monte Carlo simulations
using statistical metrics such as Kulback-Leibler divergence
(KLD) and Kolmogorov-Smirnov distance (KSD). It is worth
mentioning that the area of a typical PVC is approximated
to follow gamma distribution, whose properties are used to
provide load-based analysis of cellular networks [32], [33].

A. Distribution of CE area of a typical cell
To begin with, in the following lemma, we present the first
two moments of the CE area.

Lemma 1. For a given R, and )y, the mean CE area of a
typical Voronoi cell is

exp(—mAgR?
1y s ) = E [Xpo(ho, Re)) = ZRETA00)

and the second moment of the area is ma x (Ao, Re) =

E [XEo(Xo, Re)?]

,» (13)



27

0
[ [ e
=R

e U=

=27 / =XV (r1,72,u)) duradraridry,

r1=Rc T2

(e}

(14)

where V (11,72, u) is the area of union of two circles. The radii
of these circles are r1 and 7o, and the angular separation
between their centers with respect to origin is u. Further,
V(r,re,u) =

2
sin(2w(r1, 7, u>)> (15)

r2 <7r —o(ry,ra,u) +

+ 73 (ﬂ—w(rl,rg,u)—i- 5

r1—7ro cos(u) . and
\/rf +7r3—2r17r2 cos(u)

ro—r1 cos(u)
\/rfqtr%f%“lrg cos(u)

where v(r1,re,u) = Cosl(

w(ry,re,u) = cos™ (

Proof: Please refer to Appendix A. [ ]

Before proceeding further, some intuition on the type of
distribution that provides an accurate approximation is nec-
essary. Note that a Voronoi cell has two characteristic radii
R,, and Ry [34]. While R,,, corresponds to the radius of the
largest circle that completely lies inside a Voronoi cell, Ry,
is the radius of the smallest circle that encircles a Voronoi
cell. Using R,, and R;;, we define following three disjoint
events: (i) & = {R. < Ry}, i.e. the CC region completely
lies inside the Voronoi cell, (ii) &2 = {R,, < R. < Ry}, i.e.
the circle Bg, (o) and the Voronoi cell Vy, (o) intersects, and
(iii) &3 = {Ry < R.}, i.e. there is no CE region. So, the CE
area PDF can be expressed as the sum of two components:

fXEO (SL’) = fXEU ($|€3)P [53} + fXEO <x|gdc)(1 -P [53} )7
(16)
Further, note that fx,,(x|€3) is given as
[xwo(%|E3) = 6(0), a7

where d(x) is the Dirac-delta function. Next we ob-
tain P[&] and fx,,(x|E). Since &3 ={Ry < R.},
P[&3] =P[Ry < R.], where the distribution of Ry is [34,
Theorem 1]

P[RJW ST]

— A o2 k
-1 — 67471')\0r2 1 — Z ( ﬂ—k|0r ) gk

k>1

, r>0. (18)

In the above expression,

k
G = / Fluy)
zf: ’U,L:l,U/ze[O,l] E

where F(t) = sin®(t)1(0 < t < 3)+1(¢t > 1), where 1(-) is
the indicator function. Based on moment matchlng method, we
approximate fx ., (z|€S) as Weibull PDF. Intuitively, the CE
area is likely to exhibit similar properties of the Voronoi cell
area, especially when R, is small. Hence, the gamma distri-
bution, which is used to approximate the Voronoi cell area, is

e47r)\0r2 Sk F(t)dtdu,

the first preference. However, for larger R., gamma PDF fails
to capture the decay of the PDF of CE area. Hence, Weibull
distribution, which has similar Kernel as gamma distribution?
along with the flexibility to control the decay factor of the
PDF, is used for the aforementioned approximation. Now, we
present the mean and variance of X g conditioned on 530 .

Lemma 2. The mean and variance of the CE area conditioned
on 530 are

E [XE0|5§] =E

Var [XEO‘S?’C] =

[Xpo) (P [£5])" and
Var [X EO]
P [&f]
Proof: The proof of this Lemma follows from law of
total expectation and law of total variance that are given as

P (&) (E [Xpol&S])?.

E [Xpo) = E [Xgo|&] P (€] +E [Xpol&S| P [E5] . and
Var [XEO] =Var [XE0|53}IP’ [€5]
+ P &) (1 - P[E])(E [XmolEs])°

+Var[XE0|530]P [53?]

+P [530] P& (E [XEo\gsc])Z
— 2B [Xpo|&5] P 5] E [Xrol€5] P [£57] -
Rearranging the terms and replacing E [Xgo|E5] = 0 and
Var [X E0|€3] = 0, we obtain the expressions presented in
the lemma. [ ]
The conditional PDF of X g is given as
n—1 "
n(x
fx xec:<) ep( ) (19)
EO( ‘ 3) C C C»,]

where 17 and ¢ are shape and scale parameters. These pa-
rameters are obtained by matching the first two moments and
solving the following system of equations:

nD(1+1/¢) =E [Xg;|5],
*(T(1+2/¢) —T(1+1/¢)?) = Var [ X;|€5].

Now, (19), (18), (17), and (16) together provide us the approx-
imate PDF for CE area.

(20)

B. Distribution of CC area of a typical cell
Similar to the CE case, in the next lemma, we derive the
first two moments of the CC area.

Lemma 3. For a given \y and R, the mean of the CC area
a typical Voronoi cell is given by
1 — exp(—mAoR?)
b)] = )\ )
0
2D

m1,Xco ()‘0’ RC) =K [XC'O(/\Oy R

and the second moment
m2, X g (/\07 R, ) =

E [Xco(Ao, R

—277/ / / _AOV(“’Tz’“)durgdrgrldrl, (22)
r1=0 Jro=0 Ju=

>The kernel of gamma PDF is fg(z) oc 28~ exp(—x/6), and Weibull
PDF is fy () oc 251 exp(—(x/0)%).

of the area is given by



where V (r1,r9,u) is the area of union of two circles given in
(15).

Proof: On the similar lines of the proof of Lemma 1, the
mean CC area of the O-th cell is
R

E[|Xc(o, Re, Up)|] = 27r/ exp(—7mAgr?)rdr.

r=0
Similarly, the second moment of the j-th CC area is given as

E [|Xc(o, Re, ¥y)[?]

=E| / L(xevu, (0)nBn, (0)dX / Liyevy, (0)nBr, (0))d¥];
x€R? yER?

On the similar lines as in Appendix A, after a few steps (22)
follows from the above expression. [ |

Now, the PDF of the CC area can be expressed as

FXoo(®) = fxeo (2|EDPE] + fxe, (z|EF) (1~ P[E1]),
(23)
where P [£;] = P[R,, > R¢]|. Note that R, is half of the
nearest neighbor distance of a PPP, which follows Rayleigh
distribution with parameter (v/87\g)~* and CDF Fg, (r;,) =
1 — exp(—4mAor?,). Hence, the probability of & is given as

m
P[&1] =P[Ry > R.] = exp(—4n\oR2) =1 - P[]
(24)
Observe that, the PDF of Xg conditioned on &7 is
Fxco(@|E1) = 6(nR2).

Now, to approximate fx,,(z|EC), we have used generalized
truncated beta distribution, i.e.

(25)

cho(x‘glc) %g(x;v,w,y,z,%ﬂ)
)V — p)B-1
=y () C 0<z<nR
B(v,w,y,z7, )
(26)

where v and (3 are shape parameters; the support of the
untruncted beta distribution is [y, z] (since beta distribution has
finite support); the support of the truncated beta distribution
is [v,w]; and the normalization factor B(v,w,y,z;7,3) =
[ (@ —y) " (z — x)P~'dz, where b = =2 and w ==Y
The choice of beta distribution is motivated by the fact that
the distribution function of X has a finite support [0, 7R2].
Based on this support set, we set v = 0 and w = wR? for the
PDF presented in (26). Another motivation behind selection of
beta is the presence of an additional shape parameter compared
to conventional distributions such as Gamma or Weibull, which
are parametrized by a single shape parameter. Further, we
are introducing truncation to the above distribution that gives
us an additional degree of freedom to closely match any
arbitrary shape of the actual PDF. Here, we set y =0 and
z = 3/2mR2. To obtain the shape parameters « and /3 using
moment matching method, we need the mean and variance of
Xco conditioned on Elc , which is presented next.

Lemma 4. The mean and variance of the area Xcq condi-

tioned on EC is given as

—mAoR2\y—1 2 —4m o R?
o1 (I—e ™o)X\ — mRZe 0fte
E [XC’O|51 } - 1 — 6747T)‘0Rg = )

Var [ Xco|&f |
Var [Xco]
~ P[Ef]
Proof: The proof is done on the similar lines as that of
Lemma 2. Using the law of total expectation, we write

E [Xcol€f] = (E [Xco] — E [Xcol&1]P[€1]) /(1 — P[&1]).

—P[&] (E[Xcol&1] - E [Xco|51c])2- (27)

The mean of the conditional area in the Lemma is obtained by
substituting E [X¢o|€1] = mR2, P [&] = e~k and using
the value of E [X o] from Lemma 3. Further, the conditional
variance is obtained from the law of total variance and using
the fact that Var [X¢o|&] = 0. [}

The parameters v, 8 in (26) are obtained by solving the

following simultaneous equations

B(v,w,y,2;7 + 1, 8)
B(v, w,y, 2,7, B)
B(uw,y,z;y—i—Q,B) c12 c
—E | XcolE =Var | XcolE7 |.
B(v,w,y,2;7,3) [Xeolér] [Xeolér]
Substituting (24) and (25) in (23), the approximate CC area
PDF is given as

Ixco (l‘) = 6(71—]%3)6_47»\01]%Z + fxco (-73|€lc)(1 — 6_470‘01%3)7
(28

=E [Xco|510] ,

where fx,,(z|EC) is given in (26).

Remark 1. Ir is possible to approximate the PDF of the area
of a typical Voronoi cell using the expressions for fx.,(z) in
(16) or fx, () in (28). While in the former case, the typical
Voronoi cell area PDF is obtained by setting R. = 0, in the
latter case it is obtained by setting a sufficiently large value

of R. such that P [£;] = exp(—mA\oR2) =~ 0.

C. Accuracy of the approximate distributions

The approximate theoretical results are validated through
Monte Carlo simulations. We use KLD (KSD) to compare
the approximate and the true PDFs (CDFs) obtained through
simulations. In Table II these two metrics are presented for
different values of R. for both CC and CE areas. The low
values of KSD and KLD for different R, verifies the accuracy
of the distributions. For visual verification, in Fig. 2, we
compare the true and approximate PDFs of CC and CE areas.

IV. PILOT ASSIGNMENT AND PILOT UTILIZATION
PROBABILITY

In this section, we present theoretical expressions for the
probability of assigning a pilot to the CC (CE) user of interest
(Lemma 5) and the probability that the k-th CC (I-th CE)
pilot is being used in the j-th cell (Lemma 6). As we will
see in the following section, the former quantity is useful in
obtaining the average SE of the CC (CE) user of interest, and
the latter quantity is useful in determining the average cell



Rk 100]0.4 | 200]0.8 | 2501 | 300]1.2 | 500]2
KS Distance (CC) 0.0230 0.0238 0.0123 | 0.0104 0.002
KL Divergence (CC) | 0.0125 0.0095 0.0055 | 0.0032 | 0.0007
KS Distance (CE) 0.0164 0.0107 0.0233 | 0.0347
KL Divergence (CE) | 0.0098 0.0087 0.0160 | 0.0208

TABLE II: Comparison between simulation and approximate PDFs and CDFs for different R.. Ao = 4 x 107°.
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Fig. 2: The PDFs (top) of the CC area and CE area (bottom) of a
typical cell. Ao = 4 x 107°.

SE as well as the density function of interfering CC (CE)
user point process. Before proceeding further, let us define
the binary variable Ao, cc = 1, if the CC user of interest is
assigned the n-th pilot sequence, and Aq, cc = 0, otherwise.
Similarly, the indicator variable Aoy cg can be defined for CE
user of interest and the m-th CE pilot. Next, we present the
probability of pilot assignment to the CC (CE) user of interest.

Lemma 5. The probability that CC user of interest is assigned
the k-th pilot is

E [Aox,cc] = PlAokcc = 1] = BEIP [Ao,cc = 1]
mR2
—p5! / P [Ao e = 1[7e0] fxoo (o) deo,
0
where
B¢
PlAocc = 1|zeo] = P[Neo = nlwe]

B
+ ) TCIP’[NCO = n|z.0]

n>Bco

(29)

is the probability that CC user of interest is assigned a pilot
in the 0-th cell. Further, conditioned on the event that the 0-th
cell has a CE region, the probability of CE user of interest is
assigned the l-th pilot is given as

P [Aoyc]g = 1‘530]

E [A01,CE‘530] =P [.AoLCE = 1|530] =

Bg
oo
_B;! / P [Aoce = 1S, 2e0] o (@e0lES)dzeo,
0

where
Bg

P [Aoce = 15, zeo] = ZP Ngo = n|é5 , weo)

+ Z 7@ NE()—TL|€3 ,xeo]

n>Bg

Proof: The probability of assigning a pilot to the CC user
of interest is given as

PlAgcc=1]=P [Ufgl{AOn,cc =1}

Beo
= Z P [Aoncc = 1]
n=1

where the last step follows from the fact that the events
{{Aoncc = 1},n = 1,..., B¢} are equi-probable. Condi-
tioned on the CC area of the 0-th cell, the distribution of the
number of users in this region is given by (3). Hence, the
probability that the CC user of interest is assigned a pilot is
given by (29). The final result is obtained by de-conditioning
w.r.t. CC area of the O-th cell. The pilot assignment probability
for the CE user follows from the similar argument. [ ]

= BcP [Aokcc = 1],

As discussed in Sec. II, since our analysis is performed for
the k-th CC (I-th CE) pilot, the aggregate network interference
perceived at the O-th BS depends on the utilization of the k-th
CC (I-th CE) pilot in the interfering cells. In the following
Lemma, we present the probability of the usage of the k-th
CC (I-th CE) pilot in an interfering cell.

Lemma 6. The probability that the k-th pilot is used in an
interfering cell (say j-th cell) is

E [Icg(ik)] = P[Icc(j7k) = 1]

wRi
=/ P[Zec(d, k) = Uzes] fxo; (Tej)daey, (30)
0



where
Be n
P (Tec(j, k) = ae;] = D BicIED [Nej = nlae]
n=1
+ 3 P[Ngj =nlzg]. (D)
n>Bc

Similarly, conditioned on the event that the j-th cell has a CE
region, the probability that the I-th CE pilot is used in the j-th
cell is given as E [Zcg(j,1)|€5' ] =

P [ICE(jvl) - 1I5§J}

- / B [Tl ) = UEF 1) i, (s |65 s
ej 32)

where
P [ICE(jvl) = 1‘530#7@'] = Z ?EP [NEj = n|$ej,5§]
=1

+ Z P [NEj = n|xej,é'3c] .
n>Bg
Proof: For the CC case, first we condition on area of the
j-th cell. Now, the probability that the k-th pilot is used on the
j-th cell is given by (31). The expression in (30) follows from
de-conditioning w.r.t. X¢c;. On the similar lines, (32) can be
derived. [ |

V. SINR COVERAGE AND SE ANALYSIS

In this section, we characterize the statistical properties
of the point processes @55 (PS5 ) to obtain the coverage
probability and SE of a randomly selected CC (CE) user.

A. SINR coverage analysis of a user assigned to the k-th CC
pilot

As discussed in Sec. II, @ is obtained from ®,cc.
Therefore, the first step is to understand the properties to ®y cc,
which is discussed next.

1) Density function of ®,cc: Conditioned on the 0-th
BS location, ®, ¢ is isotropic. In addition, since ®,¢c is
defined excluding the point in X.(o, R., ¥}) from ¥, c, it
is non-homogeneous. Now, our objective is to characterize
®,,cc conditioned on the 0-th BS location o. To achieve this
objective, we first determine the PCF g(r) of the points in
@y cc wr.t. o. Next, using this PCF, we approximate the point
process as a non-homogeneous PPP. The approach that we
have followed for the statistical characterization of ®, ¢c is
inspred by the work presented in [26], where the interfering
users are uniformly distributed within the Voronoi cell of
each BS. In contrast, in our case the users are uniformly
distributed within the CC region of each cell. Hence, our
result is slightly more general, i.e. for a sufficiently large
value of k we arrive at the result presented in [26]. Further,
as we will see shortly, the derivation of the PCF is also
not straightforward as the geometry of the region that we
encounter is a little more complex compared to the Voronoi
cells considered in [26]. Note that in this case, the PCF

ga(r, k) is also a function of k. By definition, g, (r, k) presents
the likelihood of finding a point of ®,¢c at a distance r
from the 0-th BS in a network with Ay = X\ and threshold
radius R. = k/v/mco). Further, in this case, the PCF is
scale-invariant, i.e. gx(r,k) = g1(rv' A, k). Using the scale
invariance property, next, we present the PCF of ®, ¢c w.r.t.
origin for \g = 1.
Lemma 7. The PCF of ®,cc w.r.t. the O-th BS location is

g C(r k) ~ 1 — 6727””2E[XC°(1’H/\/E)71], (33)

where Xco(1,k/\/Tca) is the CC area of a typical cell of a
PV tessellation with unity BS density.

Proof: Please refer to Appendix B. [ ]
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Fig. 3: PCFs of ®,cc (top) and @y ce (bottom) for different k.
The approximation and curve-fitting are based on (38) and (39),
respectively.

In Fig. 3, we present the PCF g “(r, x) for different values
of . The approximate theoretical expression presented in (33)
is compared with the simulation results. Further, following
prototype function is also used to approximate the PCF for
comparison purpose

~CC

g7 (rk)=1— exp(—ar2) + br? exp(—crz), (34)

where the values of the parameters a, b, ¢ are obtained through
curve fitting with simulated PCF. Based on the figure, we make
the following remark on the PCF in (33).

Remark 2. For smaller values of k, the PCF obtained from
simulation indicates that ®, cc exhibits clustering behaviour.
However, by approximating the PCF using the exponential
function presented in (33), it is not possible to capture this



clustering nature. More complicated functions such as (34)
can be used for this purpose. However, determining the values
of the parameters a,b, and c analytically is not tractable.
Hence, we resort to the exponential PCF for the rest of the
analysis, which is accurate for smaller values of r, i.e. in the
neighborhood of the BS at o.

Using the PCF in (33), we approximate ®,cc as a non-
homogeneous PPP such that for all f R?2 — RT,

E|:Er€q>u,cc f(x)} = E|:Eze<1>}:§cp f(x)]
Mo / _ 0o, ) dx
_ / o TOPTEE (I,

where the second step follows from the application of Camp-
bell’s theorem and replacing the intensity measure by the
reduced second factorial moment measure [27, Chapter 8].
Hence, the density function of @, ¢c, if approximated as a
non-homogeneous PPP, is given as

Avee (r K) = Ao (1 e*2”A0T2E[X00(1”‘/\/@>_1]) . (35)

K)dx,

2) Density function of ®: Since ®L5 C Py cc, one can
obtain ®$6 by independently thinning the points in @, o with
probability 1 — E [Zec(j, k)]. Note that due to correlation in
CC areas of neighbouring cells, the number of users in each
cell, as well as the pilot utilization probability among neigh-
bouring cells are correlated. Hence, the independent thinning
is an approximation. However, to maintain tractability, this
approximation is necessary. Approximating ®34 as a PPP, in
the following Lemma, we present its density function.

Lemma 8. The density function of @5 is

-1
X, (1) = ME [ec(G, )] (1 — 2 B [Feo i) ]
where E [Zec(j, k)] is given in Lemma 6. The intensity
measure is A5 (r, k) = 27 N MG (t, k)tdt.

Proof: By independently thinning QJPCC with probability
— E [Zee(4, k)], we arrive at the expression for the density
function. ]

Remark 3. In the above expression, for v — 09,
E [Xco(1,5//mc2)™ ll ~ 7/5. This corresponds to the inter-
fering user density ASEE (r, k) &~ Ao (1 — exp (—EmAor?)),
which is the density funcnon for interfering users in case of
pilot reuse-1 [26].

Moreover,  since lim,_ .. E [Xco(l

AT <
E [Xco(l, \/%)_1}, the intensity measure of the user
point process of pilot reuse-1 is less than Aﬁfk(r, K). As a
consequence, the distance of the nearest interfering user in
case of FPR is stochastically dominated by pilot reuse-1 for
a randomly selected CC user.

3) Coverage probability of the CC user of interest: In
stochastic geometry-based works, for coverage analysis, one
key intermediate step is to characterize the interference by
the Laplace transform (LT) of its distribution [14]. The main

advantage of this approach is that in the presence of expo-
nential fading gain, the coverage probability can be readily
expressed in terms of this LT [14]. However, in the SINR
expression given in (10), the small scale fading term is absent
due to spatial averaging. Hence, the conventional LT based
approach is not applicable in this scenario. Although classical
approaches such as Gil-Palaez inversion theorem [35], [36] can
be used to obtain coverage probability, it is computationally
inefficient, hence, usually avoided wherever possible. A more
useful solution to this problem can be obtained by observing
the fact that due to pathloss the total interference is likely to be
dominated by interference contributions from a few dominant
users [37]. Based on this intuition, we approximate the total
interference power as the sum of the interference power from
the most dominant interferer and the mean of the rest of the
terms conditioned on the dominant term.

Dominant interferer approximation: Let bmk be the dis-
tance between the O-th BS and its nearest interferer. Then, the
CDF and the PDF of Dy, are given as

(do1, )

fﬁolk (Czohc |H) - 27TJOlkA?1?k(6201k ) H)eiA“'k(dmk ’N)a

R 1 _ *Aﬁck(dmkﬁ)
FDmk =1—e " R

(36)

which are obtained using void probability of the PPP [14].
Now, the total interference is approximated as the sum of in-
terference from the most dominant interferer and the expected
interference from rest of the interferers in the network. Hence,

. A—2 A—2a|
we write logg ) = Dop,* +E [Zﬁjkeq)cc a’Dmk] =

u,k\ﬁlk DO])C
ﬁgfk’l +E |:Irem,k|D01k} , where 0, is the location of the
dominant interferer in ®G. In the following Lemma, we

present an expression for E Irem7k|D01k}.

Lemma 9. Conditioned on the distance to the domi-
nant interferer Dmk, the expected interference from the

rest of the interfering users is E Iremk|D01k fd(nk =
P20 )\CC
271' ftiolk )\ (

Proof: Above expression follows from the application of
Campbell’s theorem. [ ]

T, K)rdr.

With the knowledge of the expected interference and the
distribution of Dy;,, in the following proposition, we present
the coverage probability for a CC user assigned to the k-th
pilot.

Proposition 1. Conditioned on the event that the k-th pilot is
used in the 0-th cell, the coverage probability of the user that

is assigned this sequence is given as PS5 (T) =
-2 i1 doo
E oo, B, {1 <d01j+E [Iremyk|d01k} o ) Tec(0,k) = 1},
(37

where flf’mk (chk) is given in (36), and the CDF of Dyp, is
given in (6).

Proof: Conditioned on Zgc(0,k) = 1, the cover-
age probability of the user assigned the k-th sequence is



]P)[SINROk > T|Icc(0,k) = 1} =
p | Do’
T

R . d72a
) [1 (do—ﬁ?‘ +E {Irem7k|d01k} < OJOJC )

> lagg x

ICC(Oa k) = 1‘|

Tec(0,k) = 1},

where the expectation is taken over Dook,f)mk. This com-
pletes the proof of the above proposition. ]

B. SINR coverage analysis of a CE user assigned to the l-th
CE pilot

Most of the intermediate steps necessary for the coverage
probability result in this case can be derived on the similar
lines as that of the previous section. Hence, we omit a few of
the proofs to avoid repetition.

1) Density function of ®ZF: To begin with, we present the
density function of the point process ®., cg. Similar to the CC
case, we first present the PCF gf\JE(r, k) for @, ce w.rt. the
0-th BS. Due to scale invariance, we consider a network with
unit BS density and threshold radius x/,/7c>. In the following
Lemma, we present the expression for g% (7, k).

Lemma 10. The PCF of ®, cg w.r:t. the 0-th BS is given as

w2
B k)~ 1 — (P ) REE Jewtet/ e B

3

38

~
~

Proof: Please refer to Appendix D.
Similar to the CC case, in Fig. 3, we present the PCF for
different values of « for ®, cg. The approximate theoretical
expression presented in (38) is compared with the simulation
results. We use the following prototype function to approxi-
mate the PCF for comparison purpose

G (k) = 1 — MO =R 4 (2 _ R2)emer(®—R?),
(39)

where the values of the parameters ai,b;,c; are obtained
through curve fitting with simulated PCF. Based on the figure,
we make the following remark for the PCF in (38).

Remark 4. As k increases, the PCF obtained from simulation
indicates that ®, cg exhibits clustering behaviour beyond R..
By approximating the PCF using the exponential function
presented in (38), it is not possible to capture this clustering
nature. However, note that from the network deployment
perspective higher values of R. may not be desirable, because
it would result in a higher fraction of cells without CE regions.
Hence, the benefit of FPR will be reduced due to unutilized
CE pilots in the cells without the CE regions. Therefore, the
range of k for which the approximation of PCF using (38) is
poor is of lesser practical importance.

Now, we approximate ®,cg as a non-homogeneous PPP

with density function )\E PP (r k) =
AoP [530] (1 _ e—m\o(r"‘—Ri)P[sﬂ%exp(ﬁ/@)) "> R,

(40)

%
Q
V)

Recall that @S:El C &, g contains the locations of the interfer-
ing CE users that use the [-th pilot. Similar to the CC case, we
approximate @ﬁﬁ as a non-homogeneous PPP whose density

function is presented in the following lemma.

Lemma 11. For r > R, the density function of the <I>1CJ7E1
containing the locations of the active CE interfering users
is approximated as N5 (r,x) ~ ME [Zce(j, )] P [£5'] (1 —

14 2 c 2 p2 . . .
e~ % exp(r?/e2)P[EF o (r Rﬂ)), and corresponding intensity

measure is given as AS (r, k) = 2 [,” A (¢, k)tdt.

Proof: The density function is obtained on the similar
arguments as that of Lemma 8. [ ]
2) Coverage probability of the CE user of interest: Using
the intensity measure and density function of be,El, the CDF and
PDF of the distance to the dominant CE interferer are given as

Ff) (jOh |I<E) =1— efA?,zl(Ciml,/{)’ @1

01,
CE
u,1

ff)oll (dAOll ‘KZ) = 271'&011 /\?1?1 (3011 5 I{)eiA (dml ’H) . (42)

Now, conditioned on the distance to the dominant interferer
Dy;,, the aggregate interference at the O-th BS from the CE
users is approximated as

_ 2« —2a
Laggnr =doi," +E Z do;,
ﬁ.u G‘Pﬁﬁ\ﬁll

d]

riQD‘Ag’El(r, K)rdr,

dAOll:|
_—Ci 2a + E |:I
01, rem,l

Wi om |

do1,

oo

where (a) follows from the application of Campbell’s theorem.
Using the above expression for aggregate interference, the
coverage probability of the CE user of interest is presented
next.

Proposition 2. Conditioned on the event that Zcg(0,1) = 1,

the coverage probability of a user assigned to l-th pilot is
given as P (T) = P [SINRoy > T|ES, Iee(0,1) = 1] =

d—QOz
E,p 5 |1 faggr < —2
Doo, ,Dox, agg,l T

Proof: The proof can be done on the similar lines as that
of Proposition 1. [ ]

&S Tee(0,1) = 1}

C. Average user SE and cell SE

Using the coverage probability results, in the following
Proposition, we present the approximate expressions for av-
erage SE of the CC and CE users of interest, and average cell
SE. It is worthwhile mentioning that alternate methods such as
the one presented in [38], [39] can also be used to characterize
the SE.

Proposition 3. The average SE of a randomly selected CC
user is given as
o0

PSS (2" — 1)dt,

STu,CC ~RwBcE [-AOk,CC] / (43)

t=0



where w = (1 — B/T¢), PS.(+) is presented in Proposition 1
and E [Aox cc) is presented in Lemma 5. Similarly, the average
SE of a randomly selected CE user is given as

o
ﬁu,CE %UJBEE [AOI,CE|530:| / Pgl’al(2t — 1)dt (44)
t=0

Proof: From (11), the average SE of the CC user of
interest can be approximated as

ﬁu’cc :UJE [AO,CC 10g2(1 + SINRoycc)}

=wE

Bco
> Aoncelogy(1 + SINROH)]

n=1

(é)BC]E [AOk,CC IOgQ(l + SINROk)}

(b)

’&“BC]E [AOk,CC} E
where SINRq is the SINR of the CC user of interest if it
is assigned the n-th CC pilot, (a) follows from the identi-
cal distributions of {Aoycclogy(1 + SINRg, )}2C,, (b) fol-
lows from the independence assumption between Ao cc and
SINRg,. The expression in the proposition follows from the
last step using the fact that for a positive random variable

fo [X > t] dt. Similarly, the average CE user
SE is derlved u

[logy (1 + SINRy, )],

Proposition 4. The average cell SE of a typical cell is given
as

o0
CSE —wBCE [Zoo(0, k)] / P, (2 — 1)dt
t=0

oo

1 WP [€5] BEE [Zes(0, 1) €S] / P (2 — 1)dt.

t=0
Proof: From (12), we write

E [csE] Yw 4

Z Tec(0,n) logy (1 4 SINRg )

n=1

Bg
Z Zee(0,m) logy(1 4+ SINRg, )

m=1

b

L wBOE [log, (1 + SINRo, )|Zeo(0, k) = 1]
E [Zec(0, k)] + wBgpP [E5] E [Zee(0,1)[ES] x
E [logy(1 + SINR,)|Ze(0,1) = 1,E5]

wP [ E

53?’1

where (a) follows from the law of total probability and (b)
follows from the fact that {SINRy }2¢, ({SINRo, }2~ ) are
identical, and for the final expression we assume independence
between the event {ICC(O k) = 1} and SINRg, and use the
identity E [X] = [[FP[X > ¢]dt. ]

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, we validate the approximate theoretical
results using Monte Carlo simulations. Further, we study the
effect of different system parameters on the SINR coverage
probability, average user and cell SEs. In our simulation
framework, we consider the BS density Ao = 4 x 107,
pathloss exponent o« = 3.7, the coherence time interval
T. = 200 symbol duration, and the pilot length B = 100

symbol duration. For comparison purpose, we also provide SE
results corresponding to pilot reuse-1 at necessary places. Note
that the system model for reuse-1 is the same as described in
Sec. II. The key difference is that there is no segregation in
terms of CC (CE) pilots and the entire set of B pilots can
be assigned to any user attached to a BS. This complicates
the pilot utilization analysis. To be specific, to obtain the
probability of the event that a CC (CE) user is assigned a given
pilot requires the consideration of the joint distribution of the
number of CC and CE users. This result does not directly
follow from Lemma 5 and requires additional analysis, which
does not appear tractable as deriving joint distribution for the
CC and CE areas of a typical cell is challenging. The similar
remark holds for the probability of pilot utilization in case
of reuse-1. Hence, to validate the efficacy of FPR scheme
with respect to reuse-1, we rely on simulation-based results
for reuse-1.

A. SINR coverage probability of a user assigned to a given
pilot

In this subsection, we study the effect of different system
parameters on the coverage probability of a CC (CE) user that
is assigned the k-th (I-th) pilot. The effect of A\, on coverage
probability for CC and CE cases can be observed from Fig. 4
(left and right, respectively). From the figures, we infer that
with the increasing density, the coverage probability reduces
in both the scenarios. This is intuitive as with increasing A,
the pilot usage probability in the interfering cells increases,
thereby increasing the aggregate interference. The effect of
normalized threshold radius s on coverage probability is pre-
sented in Fig. 5 for CC (left) and CE (right) cases. As observed
from Fig. 5 (left), with decreasing x (equivalently R.), the
coverage probability improves. This behavior is justified by
the fact that with decreasing R. the serving distance also
decreases. In addition, the pilot usage probability in interfering
cells also reduces. Combination of both the effects results in
SINR coverage probability improvement. For a randomly se-
lected CE user assigned a given CE pilot sequence, above trend
is observed for higher SINR thresholds. On the other hand,
for lower SINR thresholds, reverse trend is observed. One
possible explanation behind this behaviour is that although
with increasing R. serving distance increases, the number
of interfering users reduces. This results in improvement of
coverage probability. In Fig. 6, we have presented coverage
probability for different path loss exponent a. As expected
with increasing path loss exponent, the coverage probability
improves due to less interference.

B. Average CC (CE) user SE and cell SE

SE as a function of B-/B: In Fig. 7, the average SEs
of CC and CE users of interest as well as a typical cell are
presented for different values of B¢ /B, where B = 100. For
reference, we have also presented the average CC and CE user
SEs for unity pilot reuse. From Fig. 7 (left), we observe that
FPR scheme performs better compared to unity reuse beyond
a certain B¢ /B. For both the curves (corresponding to k =
0.8, 1), this value of Bx /B lies in the neighbourhood of 1 —
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exp(—~?). Intuitively, in case of unity reuse, the probability
of assigning a pilot sequence to a CC user is approximately
1 — exp(—mAgcaR?) = 1 — exp(—~k?). Hence, on an average
1 — exp(—~?) fraction of pilot sequences are assigned to CC
users. Therefore, by choosing B /B ~ 1 —exp(—+k?) in FPR
case, the average SE for CC user of interest becomes close
to the SE of a CC user in unity reuse. On the other hand,
from Fig. 7 (middle), we observe that for a wide-range of
B¢/ B the average SE of CE user of interest in FPR is higher
compared to average CE user SE in case of unity reuse. This
result justifies the use of FPR scheme as its main purpose is

to improve the performance of CE users. Finally, the average
cell SE for FPR scheme is presented in Fig. 7 (right) for two
different values of k. For comparison purpose, the cell SEs
corresponding to reuse-1 is also presented. Depending on the
value of «, for certain values of B¢ /B, sum-cell SE gains
over reuse-1 is possible.

SE as a function of ~: The average SEs for the three
cases of interest (CC user of interest, CE user of interest,
and sum-cell) are presented in Fig. 8 for different values of
k. Based on the insights from the previous result, in order
to achieve the same CC user SE as reuse-1, we partition the
pilot sequences into two sets such that Bo /B ~ 1—exp(—x?).
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From Fig. 8 (left), we observe that aforementioned partitioning
rule results in marginal reduction in CC user SE compared
to reuse-1 scheme. On the other hand, in Fig. 8 (middle),
we observe that the CE user spectral efficiency of reuse-1
is better compared to the FPR scheme for lower values of «.
This is because of the fact that when & is low, more number of
users lie in the CE region. Since FPR employs reuse-3 scheme,
the pilot assignment probability to a randomly selected user
reduces, which results in the reduction of user SE compared
to the reuse-1 scheme. However, for higher values of «, FPR
performs better compared to the reuse-1 scheme, which is
the desired outcome. From Fig. 8 (right), we observe that the
average sum-cell SE in case of FPR scheme is close to reuse-
1 scheme for higher values of x with the above partitioning
rule. System operation at this point is desirable as it improves
the CE user SE while providing comparable CC user SE.

SE as a function of B/T.: From Fig. 9, we observe that
average SEs are concave functions of B/T.. Note that with
increasing B/T., the pilot assignment probability increases
and the SINR improves due to reduced pilot utilization in
the interfering cells. On the other hand, the pre-log factor
(1—B/T.) reduces with increasing B/T.. Hence, the concave
behavior of the functions is justified. Further, we observe that
using the proposed pilot partitioning rule, there is a significant
improvement in the CE user SE at the cost of marginal
reductions in average CC user SE and average sum-cell SE.

In Fig. 10, we show he effect of user density on SE. As
expected, with increasing user density, the average user SEs
reduces while the sum-cell SE saturates.

VII. CONCLUDING REMARKS

In this work, we have analyzed the UL performance of a
mMIMO system with fractional pilot reuse. Using tools from
stochastic geometry, we have presented approximate expres-
sions for the SINR coverage probability and average SE of a
randomly CC (CE) user in a typical cell. Our analysis begins
with the accurate approximations of the area distributions
of CC and CE regions of a typical cell. These distributions
are used to analyze the pilot assignment probability for the
user of interest and utilization probability of a given pilot
sequence in a typical cell. While the former quantity is directly
used in average user SE evaluation, the latter quantity is

helpful in obtaining the average sum-cell SE and statistical
characterization of interfering user point processes for both
CC and CE cases. All the theoretical results are validated
through extensive Monte Carlo simulations. From our system
analysis, we arrive at the conclusion that with proper selection
of system parameters it is possible to improve the CE user
SE with negligible performance degradation in the CC user
SE and cell SE compared to the unity pilot reuse. There are
several possible extensions of this work. In this work, we have
considered an asymptotically large number of antennas at the
BSs. Hence, a natural extension of this work is to consider a
system with finite number of antennas and evaluate the efficacy
of FPR. From stochastic geometry perspective, our analysis
of interfering user point process formed by CE users can be
improved further by modeling this point process as a cluster
process or a Poisson hole process [40].

APPENDIX

A. Proof of Lemma 1

The mean area of the CE region can be expresses as
E[|Xe(0, Re, ¥y)|] =

</

€R?

@ exp(—mAol[x|2)dx
XGRzﬁBgC (o)

=27 / exp(—mAor?)rdr,
r=R.

L(xeva, (0)nBE, (0)dX

where (a) follows from that fact that a point located at a
distance ||x|| from the origin belongs to Vy, (0), if there are
no other BSs in B (x). Solving the final integral gives us the
expression for the mean in (21). Similarly, the second moment
of the CE area can be expressed as E [| X5 (o, R., ¥,)[%] =

E /1(xevq,b(o)m5gc(o))dx / Lyeve, (0nBg, (o)dy
x€R2 y€ER?

Z/XGR2 /YGW]E |:1(x€Vq,b(o)ﬂBgc(0),y6V\yb(o)ﬁBgc(o)):| dxdy
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¢ / e 2oIBix ()UB)y ()] x dy B. Proof of Lemma 7
(x,y)ER*NBY (o) xR*NB, (o)
oo e One approach to deriving g%“(r, k) is to first determine
=27 / / / e MoV ) qugg drgr dry, the Ripley’s K-function KUC(r, k) and then use the following
r1=Re ra=R. u=0 relationship: g€ (r, k) = w. Note that points in

®, cc are likely to exhibit repulsion w.r.t. o as these points do
not lie in Vg, (0). Since the total interference is likely to be
dominated by the nearby users, our main interest lies in charac-
terizing g’ (r, k) for small 7. Note that gFC(r, k) — 1 as r >
0. Recall that for a point process ® of density A the Ripley’s
K-function is defined as K»(r) = E [No(B,-(0))] /X [27],
where Ng (B, (0)) denotes the number of points of ® that lie
in B,.(0). In this case, the K-function is given as K'C(r, k) =

where (b) follows from the fact that if points x and y
belong to Vg, (0), then there are no other BSs in the region
Bjjx(x) U Bjy| (¥). and the last step follows from changing
the integration limits from Cartesian to polar coordinates. M



E [Na, o, (Uxea, (Br(0) N Xc(x, k//Tez, ¥1)))] . Now,
K{(r, k)
~E [Na, . (B(0) N Xo(y, #/v/Tes, ¥y))]

where ~ denotes approximation that becomes better asymp-
totically, y is the nearest BS to the typical BS at o. Without
loss of generality, we assume that y (lly]l,0). As per
our construction of ®, ¢, we are concerned with only one
uniformly distributed point in X¢(y, x/\/7cz, ¥) lying in the
region B,.(o) N Xc(y, k/\/Tc2, ¥y). Hence, we write (45) as
KCC(r k) ~

1Br(0) N Xey, =, Vsl
|XC(y7 \/%7 \Ijb)|

r— 0, (45)

Sc(rm,ry k)
)

Xeo(l, 7

~Ep,, [Sc(rm,r k) E {Xco(l, \/:72)1} :

where Sc(rm,r, k) denotes the area of the region B,(o) N
Br.(y) N (R —=r,)" x R), and the last approximation fol-
lows from independence assumption between S (7,7, K)
and Xco(1, K/ /mc2) " . Now, using the result presented in
Appendix C, we write

ERm [SC (T'ma T, H)]

2,4 2R4
+1(R. < 7‘)7T2R37’2 - %,7‘ — 0,
(46)

where R, K/ \/mca. The first inverse moment of
Xco(1,k/y/Tc2) can be evaluated numerically using the ap-
proximated distribution presented in Sec. III. Now, the K-
function is given as K€ (r, k) ~

~1(R. > 7‘)7T

7T27‘4 K
—F [X¢co(1l, —=)! R.>r,r—0
B [ col ’\/WTQ) ] >
2 4
(ﬂ'zRgTQ—LRC)]E [XCO(L “C )1} R.<rr—0,
TCo

and the PCF is given as ¢¥C(r, k) =

2B [ Xoo(1, ——)"1| R, =0
dKFC(r, k) N o co(l, 702) Znr
2mrdr K
R’E | Xco(1 N OR.<rr—0.
T, |: CO( 5 m) :| =nr

Note that as R. — 0, the 0-th BSs observes user locations that
are almost identical to BS locations, which is a homogeneous
PPP. In this case, when R. — 0, E [X¢o(1, k/\/Tc2) 7] =~
%23 . Hence, g¥C(r,x) — 1 as expected for a homogeneous
PPP.

Using the asymptotic result that 1 —exp(—u) ~ u as u — 0,
we write

—) {Xco (1,

g?C(r,ﬁ) 2(1—6 :62)_1])1(T<Rc)

+1(r > R.),

as r — 0. Accordinng to the simulation based observation
mentioned in [26], due to the condition » — 0, the Voronoi
cell Vy, (y) is skewed whose area is likely to be half of the
area of a typical Voronoi cell. Similar argument can be made

for the area of the CC region as well. Hence, a factor of 2
needs to be introduced for the first condition. Using this fact,
for any value of r, a reasonable approximation for the PCF is

g7 (r, k) & 1 — exp(=27r°E [Xco (1, K/y/me2) ") "

C. Proof of (46)

Depending on the value of R. and r we have the following
two cases of interest:
Case 1: r < R.: The result for this case is obtained from [26,
Lemma 2], and is given as

7T2’I“4

2

Case 2: r > R.: In this case, the area of the region
B,.(0) N Xc(y, k/\/Tca, ¥p) is given as S (rm,r, k) =

9 sin 2u 9 sin 2v
— R _
o) ()

Egr,, [Sc(rm,r, K)] =~ , r—0.

2
—(’U)Rc —Tm }%(2 — 7"7271), Rc Z T'm
2 2
r? RZ
r2u_?sm2u+R§U—7csm2Ua R. <1,

_ 2402 _R2
where R, = k/\/TC3, u = cos 1(% , U

4rr,
1 R? +4r2

2
X nerar, —r — —1 [ rm 1
cos Py o ), and w = cos ( Rc)‘ Averaging over

the random variable R,,, we get

(7'_Rc)/2

E [SC(rma T, ﬂ)] :WRE me (rm)drm
0
(r+Rc)/2
+ Sc(Pmsm, K) fR,, (Tm)drm,
(T_Rc)/Q

where we have used the fact that for » > 2r,, + R,
Sc(rm,r, k) = wR2. Further, note that for 2r,, > r + R,
Sc(rm,r, k) = 0. Hence, the upper limit is introduced to
consider the values of R,, for which Sc(r,,,r, ) # 0. In
addition, we use the asymptotic approximation fg, (rm) =
871 m exp(—4nr2)) =~ 8, (1 — 4mr2)), as r,, — 0. After
performing the integration, we obtain E [S¢ (7, 1, K)] ~

7r2R§T4 772R‘61r2 2719 2 7r3R§r4 7'(’2ch1 7T3Rg
— + m*R.r" —
2 2 2 2 2
2R4
~ 12 R%*r? — %, r— 0.
This completes the proof of (46). ]

D. Derivation of Lemma 10

The proof can be done on the similar lines as that of
Appendices B and C. In this case, the Ripley’s K-function
is given as

chE(r, k) ~Eg,, [SE(’I‘m,T, /1)|530]

E

Xro (1,

p —
- Eg , r—=0,r>R,.
1/7‘(‘02) ]

)



Asymptotically, conditioned on £, the distribution of R,, is
given as
PRy < 7, Rar > Re)
P [RM > Rc]
~P Ry, <rm], Rc—0.

FRm(rmlRM > Rc) =

The condition R, — 0 is
find the PCF for r — 0,
expectation

ERW [SE(TmaTa Rc)‘g??]

of interest to us as our goal is to
and r > R.. Now, the following

r (r—Re¢)/2
:/Al(r, Ty Re)dFR,, (1) —/Ag(r, Ty Re)AFR,, (rim)
0 0
(r+R.)/2 R,
~ [ Aatrr ROAFR, () = [ Aa(ry 1, Re)FR, ()
(r—Rc)/2 0
w2rt e p2RZp4 p2RA2
T2 2 2 2
7T3R2T‘4 7T2R4 7T3R6
_ 7T2R37‘2 4 20 4 5 c 5 c
N7T2(r4 + R* — 2R%*r?)

2 ?
where the last step follows from neglecting the 6-th order
terms. In the previous expression

T'm
Ay (ryrm, Re) =r? arccos - TmA/ T2 — 12,

AQ(T7 Ir’l’anc) :<T2u — % + Rgv — }%28121(21})>
2 r— Rc
L(|2rm =7 < Re) + 7R (rm < —5—),
Az(r,rm, Re) :(Rz arccos (2”) —rm\/R2 — 7"72n> «

1(rm <R.).

Using the above result, the Ripley’s K-function is given as
KT (r k) ~

w2 (r? —Rg 2 Kk _
%E {XEO(L m) ! 530} , 7> R, 7 — 0.
47)
Hence, the PCF is given as
dKCE(r, k)
CE _ 1 )
gr-(r k) = 2 dr

>~ (7“2 —R?)E XEO (1, 530

. -1
=)
_l4r (r? = R2) P [£F]
T Sexp(—mR2) ’
where the intuition for the approximation in the last step
follows from Jensen’s inequality

1

E {XEO (1. %)

& >

1
K
E|X 1, ——
EO(’\/WTJ

530]

From [26], when R, = O,F {XEO(I,

=exp(rR2)P [£5] .

ﬁ)—l} ~ 14/5.

Hence, for R, — 0, we approximate

This completes the proof of the Lemma.
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