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Stochastic Geometry-based Uplink Analysis of

Massive MIMO Systems with Fractional Pilot Reuse
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Abstract—In this work, we analyze the performance of the
uplink (UL) of a massive MIMO network considering an asymp-
totically large number of antennas at base stations (BSs). We
model the locations of BSs as a homogeneous Poisson point
process (PPP) and assume that their service regions are limited to
their respective Poisson-Voronoi cells (PVCs). Further, for each
PVC, based on a threshold radius, we model the cell center (CC)
region as the Johnson-Mehl (JM) cell of its BS while rest of the
PVC is deemed as the cell edge (CE) region. The CC and CE users
are located uniformly at random independently of each other in
the JM cell and CE region, respectively. In addition, we consider
a fractional pilot reuse (FPR) scheme where two different sets
of pilot sequences are used for CC and CE users with the
objective of reducing the interference due to pilot contamination
for CE users. Based on the above system model, we derive
analytical expressions for the UL signal-to-interference-and-noise
ratio (SINR) coverage probability and average spectral efficiency
(SE) for randomly selected CC and CE users. In addition, we
present an approximate expression for the average cell SE. One
of the key intermediate results in our analysis is the approximate
but accurate characterization of the distributions of the CC and
CE areas of a typical cell. Another key intermediate step is the
accurate characterization of the pair correlation functions of the
point processes formed by the interfering CC and CE users that
subsequently enables the coverage probability analysis. From our
system analysis, we present a partitioning rule for the number
of pilot sequences to be used for CC and CE users as a function
of threshold radius that improves the average CE user SE while
achieving similar CC user SE with respect to unity pilot reuse.

Index Terms—Stochastic geometry, Massive MIMO, uplink,
fractional pilot reuse, cellular network, coverage probability,
cell spectral efficiency, Poisson point process, pair correlation
function.

I. INTRODUCTION

Owing to its ability to improve both spectral and en-

ergy efficiency of wireless networks, massive multiple-input

multiple-output (mMIMO) is considered a key enabler of

the fifth-generation (5G) communication systems and beyond.

Fundamentally, mMIMO is a multi-user MIMO system where

a large number of antennas at the base stations (BSs) are used

to simultaneously serve a fewer number of users (compared

to the number of antennas at the BSs). Although a simple

extension of conventional multi-user MIMO technique, it is

set to revolutionalize wireless communication networks as it

has been proven that under ideal conditions it eliminates the

deleterious effect of channel fading and additive noise while
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negating the effect of network interference [2]–[4]. In order

to decode the simultaneously transmitted data from different

users, each BS requires the channel knowledge of the users

attached to it that is estimated through a set of orthogonal

pilot sequences. Due to limited channel coherence interval,

the number of orthogonal pilot sequences is also limited.

As a result, the pilot sequences need to be reused across

different cells. In his seminal work [2], Marzetta showed

that under the assumption of independent and identically

distributed (i.i.d.) Rayleigh fading across BS antennas and sub-

optimal low-complexity processing schemes such as maximal

ratio combining (MRC), the reuse of pilot sequences gives

rise to an inherent interference known as pilot contamination

(PC), which fundamentally limits the performance of mMIMO

networks. As discussed next in detail, a significant amount

of research effort has been focused on overcoming the effect

of PC. Amongst all the solutions, a relatively simple scheme,

namely fractional pilot reuse (FPR), stands out in reducing the

effect of PC for the cell edge (CE) users. Hence, the objective

of this article is to analyze the performance of a mMIMO

network that uses the FPR scheme.

A. Motivation and related works

In the literature, PC suppression or mitigation methods

can be broadly categorized into protocol based methods [5],

BS coordination based methods [6], [7], and pilot reuse or

hopping based methods [8], [9]. Please refer to [10] for a

comprehensive survey on this subject. While protocol and

coordination based methods are effective in removing the PC,

they are usually complex. Further, these techniques require

some degree of coordination among BSs. On the other hand,

the gains obtained by pilot hopping based methods is primarily

due to interference randomization and is hence limited to sce-

narios with larger channel coherence times. In contrast, a low

complexity and distributed scheme to counter the effect of PC

is to forbid reusing the same pilots in every cell, which requires

no coordination among BSs [11], [12]. The concept of pilot

reuse is similar to the frequency reuse in cellular networks.

In [11], the optimal pilot reuse factor is obtained for a network

with linear topology. From the numerical simulations, authors

show that higher than unity pilot reuse factor is beneficial

for average cell throughput. In [12], for a hexagonal cellular

network model, authors show that reuse-1 may not be optimal

in all scenarios. These works considered the use of completely

orthogonal sets of pilots in neighboring cells. However, the

spectral efficiency (SE) can be further improved by using a

more aggressive pilot reuse scheme, namely FPR, instead of
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completely orthogonal reuse across cells. Conceptually, FPR is

similar to that of fractional frequency reuse (FFR) used in LTE

systems to mitigate the effect of inter-cell interference. To the

best of the knowledge of the authors, the concept of FPR was

first introduced in [13]. In FPR, similar to FFR, depending on

the channel condition, users in a cell are classified into two

categories, namely cell center (CC) and CE users. While the

set of pilots reserved for CC users are reused in every cell, the

set of pilots for CE users are reused in specific cells depending

upon the reuse factor.

For the performance analysis of mMIMO systems with FPR,

it is imperative to consider a large-scale multi-cell setup so

that the effect of interference on the performance can be

accurately modeled. For such problems, stochastic geometry

provides a rigorous set of tools for the spatial modeling and

performance analysis, as discussed in detail in [14], [15].

For a pedagogical treatment of the subject with emphasis

on the application to cellular network, interested readers are

advised to refer to [14]. Although stochastic geometry has

been used for the performance analysis of mMIMO systems

in [16]–[25], the analyses presented in these works cannot

be trivially extended to analyze the FPR scheme. To begin

with, in contrast to our network topology, in [25] a cooperative

mMIMO network is considered. In [16]–[22], where a cellular

topology is considered, the UL interference field generated

by the users from unity pilot reuse scheme is different from

the FPR scheme. Further, the analyses [17]–[22] are limited

to the consideration of a fixed number of users in each BS

which does not take into account the varying load (number of

users) in each cell. In this work, we propose a new approach

to analyze the performance of a cellular mMIMO network

considering FPR scheme that results in the following key

contributions.

B. Contributions of the work

1) Analytical model for UL analysis of a mMIMO system

with FPR: A new generative model is proposed to analyze the

performance of the UL of a mMIMO system in the asymptotic

antenna regime under the consideration of FPR scheme. We

model the BS locations as a Poisson point process (PPP).

Based on a threshold distance Rc, we characterize the CC

regions as the Johnson-Mehl (JM) cells associated with the

BSs. The complementary region in each cell is modeled as

the CE region. One important result in our analyses is the

approximate but accurate distribution functions for the CC

and CE areas of a typical Poisson-Voronoi Cell (PVC). These

results are subsequently used to model the load (number

of CC and CE users) distribution of each cell. Using these

distributions, we provide key intermediate results, such as the

pilot assignment probability to a randomly selected CC (CE)

user and utilization probability of a pilot. These results are

later used in the coverage probability and SE analyses.
2) Signal-to-interference-plus-noise ratio (SINR) coverage,

average user and cell SEs analysis: We present SINR coverage

probability of a user assigned to a given CC (CE) pilot. The

derivation of exact probability is difficult as the exact statistical

characterization of the interference field is extremely challeng-

ing. In fact, derivation of this result for a relatively simpler

scenario of the classical UL system, where the segregation

between CC and CE users is not present, is also intractable.

Hence, to lend tractability to this problem, we resort to a

careful approximation of the interference statistics in the UL.

Motivated by [26], first, we derive the pair correlation function

(PCF) of the interfering user locations with respect to (w.r.t.)

the BS of interest. Using this PCF, we approximate the point

process formed by the CC (CE) interfering users as a non-

homogeneous PPP. Next, based on the dominant interferer

based approach, we provide useful theoretical expressions for

the coverage probability of a user assigned to a CC (CE) pilot.

This result is extended to obtain analytical expressions for the

average SEs of a randomly selected CC (CE) user and average

SE of a typical cell.

3) System design guidelines: Our analysis leads to fol-

lowing system design guidelines. First, our analyses show

that for a certain range of threshold radius by allocating

1− exp(−c2πλ0R
2
c), where λ0 is the BS density and c2 is a

constant, fraction of pilots for the CC users, FPR scheme im-

proves the average SE of a CE user with marginal reduction in

the average SE of a CC user compared to unity reuse. Second,

for a given threshold radius, it is possible to achieve higher

average cell SE using FPR scheme compared to unity reuse

by a suitable partitioning (different from the aforementioned

rule) of the set of the pilots. Third, the coverage probability

of a user on a CE pilot decreases with increasing Rc in the

higher SINR regime, however, the reverse trend is observed

for the lower SINR regime.

II. SYSTEM MODEL

A. Network model

1) BS and user locations: In this work, we analyze the UL

performance of a cellular network where each BS is equipped

with M → ∞ antennas. The locations of the BSs belong to

the set Ψb = Φb ∪ {o}, where o represents the origin, and

Φb is a realization of homogeneous PPP of density λ0. In this

work, we present our analysis condition on the location of the

BS at o. By virtue of Slivnyak’s theorem, the reduced palm

measure of Ψb is equal to the original measure of Φb [27].

The location of the j-th BS is denoted by bj ∈ Ψb, where the

index j does not represent any ordering and b0 = o. In a cell,

the region that is within a distance Rc from its BS is defined

as the CC region. For the typical cell at the origin (referred

to as 0-th cell hereafter), the CC region is given as

XC(o, Rc,Ψb) = {x ∈ VΨb
(o) : ‖x‖ ≤ Rc}

= VΨb
(o) ∩ BRc

(o), (1)

where VΨb
(o) = {x ∈ R

2 : ‖x‖ ≤ ‖x−bj‖, ∀bj ∈ Ψb} is the

PVC associated with b0 and BRc
(o) denotes a ball of radius

Rc centered at o. Note that the CC regions are equivalent to

the JM cells associated with the BSs [28]. These JM cells are

usually defined from the perspective of random nucleation and

growth process. However, we follow (1) for simpler exposition.

The region of the cell that is beyond Rc from the BS is the

CE region and is given as

XE(o, Rc,Ψb) = {x ∈ VΨb
(o) : ‖x‖ > Rc}
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= VΨb
(o) ∩ BC

Rc
(o). (2)

The locations of the CC and CE users attached to the

j-th BS are uniformly and randomly distributed within

XC(bj , Rc,Ψb) and XE(bj , Rc,Ψb), respectively. We de-

note the CC area of the j-th cell as XCj(λ0, Rc) =
|XC(bj , Rc,Ψb)| and the CE area as XEj(λ0, Rc) =
|XE(bj , Rc,Ψb)|. If the typical cell does not have a CE

region, then XE(bj , Rc,Ψb) = ∅ and XEj(λ0, Rc) = 0. Let

NCj and NEj be the numbers of CC and CE users present

in the j-th cell. We assume that both the random variables

NCj and NEj follow zero-truncated Poisson distribution with

parameters λuXCj(λ0, Rc) and λuXEj(λ0, Rc), respectively.

Accordingly, conditioned on the CC (CE) area of the j-th cell,

the PMFs of NCj and NEj for n > 0 are given as

P [NCj = n|xcj ] =
e−λuxcj (λuxcj)

n

n!(1− e−λuxcj )
,

P
[

NEj = n|xej , EC
3

]

=
e−λuxej (λuxej)

n

n!(1− e−λuxej )
, (3)

where EC
3 is the event that the j-th cell has a CE region and is

defined in Section III, xcj and xej are the realizations of the

CC and CE areas 1. The main motivation behind consideration

of the truncated Poisson distribution for users is to ensure

that each BS in the network has at least one CC and CE

user within its Voronoi cell. Since mMIMO will be primarily

used for macro cells, from the system perspective, this is a

reasonable assumption. Further, this allows us to model the

user point process (to be defined shortly) as a Type-I process

introduced in [26] facilitating a rigorous system analysis from

the perspective of a typical cell. Note that λu is used to vary

the load (number of users) in a cell.

Let us define a point process Ψu,CC that is constructed by

randomly and uniformly distributing one point in the CC

region of each cell. Mathematically, this can be expressed as

Ψu,CC = {U(XC(bj , Rc,Ψb)) : ∀bj ∈ Ψb},
where U(B) denotes a uniformly distributed point in B ⊂ R

2.

On the other hand, let ΨbE denote the set of BSs having

a CE region that is defined as ΨbE = {bj : ∀bj ∈
Ψb,XE(bj , Rc,Ψb) 6= ∅}. Now, for the CE case we define the

point process Ψu,CE = {U(XE(bj , Rc,Ψb)) : ∀bj ∈ ΨbE}.
Except the users attached to the BS at o, rest of the users in

the network belong to the interfering cells. Let the CC and CE

point processes formed by the points in the interfering cells

be

Φu,CC = {U(XC(bj , Rc,Ψb)) : ∀bj ∈ Φb},
Φu,CE = {U(XE(bj , Rc,Ψb)) : ∀bj ∈ {ΨbE \ b0}}.

2) Pilot sequences: We restrict our analysis to a nar-

rowband single-carrier system. Extension to a multi-carrier

system is straightforward and hence is skipped in favour of

simpler exposition. In order to get the CSI at the BS, in

the j-th cell, each user is assigned a pilot (sequence) that

is selected from a set of orthogonal pilots Pj ⊂ P , where

1Throughout this manuscript, we have represented a random variable in
capital letter and its realization in small letter.

P = {p1,p2, · · · ,pB} and pi ∈ C
B×1 for i = 1, 2, . . . , B,

where B is the number of orthogonal pilots. Hence, the

duration of each pilot sequence is B symbol duration. For

convenience, we denote the pilots by their indices. Therefore,

the set of indicies of the pilots used in the j-th cell is denoted

as Kj ⊂ K, where K = {1, 2, 3, . . . , B}. Owing to the

limited channel coherence time of Tc symbol duration, the

cardinality of this set |K| = B ≤ Tc. While the pilots remain

orthogonal in each cell, due to the consideration of FPR,

orthogonality among cells is not guaranteed. In each cell, the

pilots are partitioned into two different sets, i.e. for the j-

th BS Kj = C ∪ Ej where C = {1, 2, . . . , BC} contains the

indices of the CC pilots that are reused in each cell. Moreover,

|C| = BC ≤ B. On the other hand, Ej contains the indices of

the CE pilots used in the j-th cell, which are reused in other

cells depending on the reuse factor βf . Further, |Ej | = BE

and (B − BC)/βf = BE for all bj ∈ Ψb. The choice for

BC , BE , and βf is made such that all three are integers.

These pilots are assigned randomly to the user in a particular

cell. For the k-th CC pilot sequence in the j-th cell, where

k ∈ C, we define a binary random variable ICC(j, k) as follows

ICC(j, k) =
{

1, if k-th CC pilot is used in the j-th cell,

0, if k-th CC pilot is not used in the j-th cell.
(4)

On the similar lines, for the l-th CE pilot in the j-th cell, we

define the binary random variable ICE(j, l). Let ΦCC
u,k and ΦCE

u,l

be the point processes formed by the interfering CC and CE

users that use the k-th CC and l-th CE pilots, respectively.

Since the user locations in ΦCC
u,k are uniformly distributed

points in the CC region of their respective cells, ΦCC
u,k can

be defined to inherit the user locations from Φu,CC when

ICC(j, k) = 1. Similar argument is true for ΦCE
u,l and Φu,CE.

Hence,

ΦCC
u,k = {u : u ∈ Φu,CC, ICC(j, k) = 1}, and

ΦCE
u,l = {u : u ∈ Φu,CE, ICE(j, l) = 1}. (5)

We defer the discussion on the statistical properties of these

point processes to Section V. Note that the point process

formed by the users using other pilot sequences in the network

can be defined on the similar lines as that of ΦCC
u,k(Φ

CE
u,l), where

the points will be inherited from a point process that has the

same definition as Φu,CC(Φu,CE). In the illustrative network

diagram (Fig. 1), one CC pilot that is reused in each cell and

one CE pilot that is reused in a few of the cells.

3) Distance distributions: Let the location of the user that

uses the k-th sequence in the j-th cell be denoted as ujk .

The random distance between a user at ujk and a BS at bi

is denoted by the random variable Dijk = ‖ujk − bi‖ and

dijk is its realization. To obtain the coverage probability of a

randomly selected user CC (CE) user, we need the distribution

of the serving distance D00k (D00l ) between b0 and the

CC (CE) user using the k-th (l-th) pilot in the 0-th cell.

For a typical PVC, the distance distribution between the BS

and a randomly located point in the PVC is approximated

as Rayleigh distribution with scale parameter (
√
2πλ0c2)

−1,

where c2 = 5/4 is an empirically obtained correction fac-
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TABLE I: Summary of Notations

Notation Description

Ψb and λ0 Homogeneous PPP modeling the locations BSs and density of Ψb

bj and ujk Locations of the j-th BS and a user in the j-th cell using k-th pilot

Rc and κ = Rc

√
πc2λ0 Threshold radius and normalized threshold radius

VΨb
(bj) Voronoi cell associated with the j-th BS

XC(bj , Rc,Ψb) and XE(bj , Rc,Ψb) CC and CE region of the j-th cell
XCj(λ0, Rc) and XEj(λ0, Rc) CC and CE areas of a typical cell in a network of BS density λ0

ΦCC
u,k and λCC

u,k(r, κ) Point processes of users using k-th CC pilot and its density function
ICC(j, k), ICE(j, l) Indicator variable that is 1 when k-th CC pilot, l-th CE pilot is used in j-th cell
A0,CC (A0,CE) Indicator variable for pilot assignment to CC (CE) user of interest
A0n,CC (A0m,CE) Indicator variable for n-th (m-th) pilot assignment to CC (CE) user

Dijk Random distance between the BS at bj and user at ujk

gijk ∼ CN (0M , d−α
ijk

IM ) Channel vector between i-th BS and the user at ujk

SINR0k SINR of the user using the k-th pilot in the 0-th cell

P
CC
c,k and P

CE
c,l Coverage probability of a user using k-th CC and l-th CE pilots

B,BC , and BE Total number of pilots, number of CC, and number of CE pilots
Tc, B Length of coherence time and pilot sequence (in symbol durations)

tor [29]. Since the user at u0k can not lie beyond BRc
(o), it

is reasonable to approximate the distribution of D00k to follow

truncated Rayleigh distribution as given below

FD00k
(d00k |Rc) =

1− exp(−πc2λ0d
2
00k

)

1− exp(−πc2λ0R2
c)

, d00k ≤ Rc.

(6)

On the other hand, the distribution of distance D00l can also

be approximated as

FD00l
(d00l |Rc) = 1− exp(−πc2λ0(d

2
00l

−R2
c)), d00l > Rc.

(7)

At this point, in order to make Rc invariant to the BS density

λ0, we define a normalized radius κ as Rc = κ√
πc2λ0

, κ ∈
[0,∞). In Sec. V, κ will be used in the statistical charac-

terization of ΦCC
u,k(Φ

CE
u,l). Further, κ also provides perspective

regarding the size of the CC region without the knowledge

of λ0. Next, we define the system parameters from the

perspective of the CC user using the k-th pilot sequence. The

extension of these definitions for CE case is straightforward.

B. Channel model and channel estimation

1) Channel model: We consider a system where each link

suffers from two multiplicative wireless channel impairments,

namely distance-dependent pathloss and multi-path fading.

Consideration of the effect of shadowing is left as a promising

future work. The channel vector between the user located at

ujk and the M antenna elements of the BS located at bi is

given as gijk = d
−α/2
ijk

hijk(∈ C
M×1), where α is the pathloss

exponent, hijk ∼ CN (0M , IM ) is a M × 1 complex Gaussian

vector. We assume that these channel vectors exhibit quasi-

orthogonality, i.e.

lim
M→∞

1

M
hH
ijmhijn = 1(jm = jn). (8)

Further, we consider user transmit power ρu to be fixed for

both pilot and data symbols.

2) Channel estimation: In a cell, using the orthogonal

pilots, corresponding BS obtains the least square channel

estimate of the users attached to them. Hence, for the CC user

using the k-th pilot, the channel estimate at the 0-th BS is given

as g̃00k =
√
ρug00k +

∑

ujk
∈Φu,k

√
ρug0jk + v0 ∈ C

M×1,

where v0 ∼ CN (0M , IM ) is a complex Gaussian noise vector.

C. Asymptotic UL SINR of a CC (CE) user assigned to k-th

(l-th) pilot sequence

The received signal vector at the 0-th BS is given as

r0 = h00kx0kd
−α/2
00k

+
B
∑

i=1,i 6=k

ICC(0, i)h00ix0id
−α/2
00i

+
B
∑

i=1

∑

uji
∈ΦCC

u,i

h0jixjid
−α/2
0ji

+ n0, (9)

where xji is the data symbol transmitted by the user using the

i-th pilot in the j-th cell, n0 ∼ CN (0M , IM ) is a complex

Gaussian noise vector. We assume that E [xji] = 0 and

E
[

‖xji‖2
]

= ρu. In order to estimate the symbol transmitted

by the CC user of interest, the 0-th BS uses MRC detection

scheme, where the filter coefficients are given as w0k =
1
M g̃H

00k
. As demonstrated in various works in the literature

(cf. [30]), the asymptotic SINR of a user is independent of the

detection scheme. Now, the detected symbol for the CC user

using the k-th pilot in the 0-th BS is given as x̂0k = w0kr0. As

the number of antennas M → ∞, due to quasi-orthogonality

of the channel, it can be shown that the detected symbol is

only affected by the interference from the users using the k-

th pilot in other cells (a.k.a. pilot contamination). Hence, the

SINR of the CC and CE users that are assigned the k-th and

l-th pilots, respectively, are given as

SINR0k = d−2α
00k

(

∑

ujk
∈ΦCC

u,k

d−2α
0jk

)−1

, and

SINR0l = d−2α
00l

(

∑

ujl
∈ΦCE

u,l

d−2α
0jl

)−1

. (10)

The proof of the above SINR expression is readily available in

the literature (cf. [2], [18]). Since the above expressions are

independent of ρu, we assume ρu ≡ 1.
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Fig. 1: A representative network diagram (left) and a network realization illustrating the users using the k-th CC and l-th CE pilot (right). In a few of the
cells the CE pilot is not in use.

D. Performance metrics

In this work, the following metrics are considered for the

network performance analysis.

1) SINR coverage probability: The SINR coverage probabil-

ities of a CC and CE user using the k-th and l-th pilots for a

target SINR threshold T are

P
CC
c,k(T ) = P [SINR0k ≥ T |ICC(0, k) = 1] , and

P
CE
c,l(T ) = P

[

SINR0l ≥ T |ICE(0, l) = 1, EC
3

]

.

2) Average user SE: The average user SEs of the CC and

CE users of interest are given as

SEu,CC = ωE [A0,CC log2(1 + SINR0,CC)] , and

SEu,CE = ωE

[

A0,CE log2(1 + SINR0,CE)

∣

∣

∣

∣

EC
3

]

, (11)

where ω = (1−B/Tc) accounts for the fact that out of the total

coherence time of Tc symbol duration, B symbol duration is

dedicated for channel estimation leaving only Tc−B duration

for data transmission. Note that while the coverage probability

is defined for a user conditioned on a pilot, the average user

SE is defined for a randomly selected CC (CE) user that can

be assigned any one of the CC (CE) pilots. Hence, SINR0,CC
and SINR0,CE is the SINR of a randomly selected CC (CE) user

that we term as CC (CE) user of interest. Further, the indicator

variable A0,CC = 1, if the CC user of interest is assigned a pilot

sequence, and A0,CC = 0, otherwise. Similarly, we define the

indicator variable A0,CE for a random CE user of interest.

3) Average cell SE: The cell SE of the 0-th cell is given as

CSE = ω

[ BC
∑

n=1

ICC(0, n) log2(1 + SINR0n)

+

BE
∑

m=1

ICE(0,m) log2(1 + SINR0m)

]

, (12)

where ω = (1 − B/Tc). Our metric of interest is E [CSE]. In

the following sections, we derive theoretical expressions for

the aforementioned quantities.

III. DISTRIBUTIONS OF THE CC AND CE AREAS OF A

TYPICAL CELL

As discussed in the previous section, the distribution of the

number of CC (CE) users and subsequently the pilot utilization

in an interfering cell depends on its CC (CE) area. Since

exact characterization of CE area is challenging (it is an open

problem), we provide an approximate area distribution for the

CE area using the well-known Weibull distribution. In our

approach, we first derive the exact expressions for the first

two moments of the CE area of a typical cell. In the second

step, using moment matching method, we approximate this

area as Weibull distribution. We use the similar method to

approximate the CC area distributions as a truncated beta

distribution. While the exact characterization of the distribu-

tion of a typical JM cell area, hence the CC area, is given

in [31], the expression of the probability density function

(PDF) involves an infinite summation over multi-dimensional

integrations. Further, the order of integration (hence the com-

plexity of the expression) increases with the increasing value

of Rc. Hence, our approximate truncated beta distribution

lends tractability to the analysis. We validate the accuracy of

the proposed distributions through Monte Carlo simulations

using statistical metrics such as Kulback-Leibler divergence

(KLD) and Kolmogorov-Smirnov distance (KSD). It is worth

mentioning that the area of a typical PVC is approximated

to follow gamma distribution, whose properties are used to

provide load-based analysis of cellular networks [32], [33].

A. Distribution of CE area of a typical cell

To begin with, in the following lemma, we present the first

two moments of the CE area.

Lemma 1. For a given Rc and λ0, the mean CE area of a

typical Voronoi cell is

m1,XE0
(λ0, Rc) = E [XE0(λ0, Rc)] =

exp(−πλ0R
2
c)

λ0
, (13)

and the second moment of the area is m2,XE0
(λ0, Rc) =

E
[

XE0(λ0, Rc)
2
]
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=2π

∞
∫

r1=Rc

∞
∫

r2=Rc

2π
∫

u=0

exp (−λ0V (r1, r2, u)) dur2dr2r1dr1,

(14)

where V (r1, r2, u) is the area of union of two circles. The radii

of these circles are r1 and r2, and the angular separation

between their centers with respect to origin is u. Further,

V (r1, r2, u) =

r21

(

π − v(r1, r2, u) +
sin(2v(r1, r2, u))

2

)

+ r22

(

π − w(r1, r2, u) +
sin(2w(r1, r2, u))

2

)

, (15)

where v(r1, r2, u) = cos−1

(

r1−r2 cos(u)√
r2
1
+r2

2
−2r1r2 cos(u)

)

, and

w(r1, r2, u) = cos−1

(

r2−r1 cos(u)√
r2
1
+r2

2
−2r1r2 cos(u)

)

.

Proof: Please refer to Appendix A.

Before proceeding further, some intuition on the type of

distribution that provides an accurate approximation is nec-

essary. Note that a Voronoi cell has two characteristic radii

Rm and RM [34]. While Rm corresponds to the radius of the

largest circle that completely lies inside a Voronoi cell, RM

is the radius of the smallest circle that encircles a Voronoi

cell. Using Rm and RM , we define following three disjoint

events: (i) E1 = {Rc < Rm}, i.e. the CC region completely

lies inside the Voronoi cell, (ii) E2 = {Rm ≤ Rc < RM}, i.e.

the circle BRc
(o) and the Voronoi cell VΨb

(o) intersects, and

(iii) E3 = {RM ≤ Rc}, i.e. there is no CE region. So, the CE

area PDF can be expressed as the sum of two components:

fXE0
(x) = fXE0

(x|E3)P [E3] + fXE0
(x|EC

3 )(1− P [E3] ),
(16)

Further, note that fXE0
(x|E3) is given as

fXE0
(x|E3) = δ(0), (17)

where δ(x) is the Dirac-delta function. Next we ob-

tain P [E3] and fXE0
(x|E3). Since E3 = {RM ≤ Rc},

P [E3] = P [RM ≤ Rc] , where the distribution of RM is [34,

Theorem 1]

P [RM ≤ r]

=1− e−4πλ0r
2



1−
∑

k≥1

(−4πλ0r
2)k

k!
ξk



 , r > 0. (18)

In the above expression,

ξk =

∫

k
∑

i=1

ui=1,ui∈[0,1]

[

k
∏

i=1

F (ui)

]

e4πλ0r
2
∑k

i=1

∫ ui
0

F (t)dtdu,

where F (t) = sin2(πt)1(0 ≤ t ≤ 1
2 )+1(t > 1

2 ), where 1(·) is

the indicator function. Based on moment matching method, we

approximate fXE0
(x|EC

3 ) as Weibull PDF. Intuitively, the CE

area is likely to exhibit similar properties of the Voronoi cell

area, especially when Rc is small. Hence, the gamma distri-

bution, which is used to approximate the Voronoi cell area, is

the first preference. However, for larger Rc, gamma PDF fails

to capture the decay of the PDF of CE area. Hence, Weibull

distribution, which has similar Kernel as gamma distribution2

along with the flexibility to control the decay factor of the

PDF, is used for the aforementioned approximation. Now, we

present the mean and variance of XE0 conditioned on EC
3 .

Lemma 2. The mean and variance of the CE area conditioned

on EC
3 are

E
[

XE0|EC
3

]

= E [XE0] (P
[

EC
3

]

)−1 and

Var

[

XE0|EC
3

]

=
Var

[

XE0

]

P
[

EC
3

] − P [E3] (E
[

XE0|EC
3

]

)2.

Proof: The proof of this Lemma follows from law of

total expectation and law of total variance that are given as

E [XE0] = E [XE0|E3]P [E3] + E
[

XE0|EC
3

]

P
[

EC
3

]

, and

Var

[

XE0

]

=Var
[

XE0|E3
]

P [E3]
+ P [E3] (1− P [E3])(E [XE0|E3])2

+ Var

[

XE0|EC
3

]

P
[

EC
3

]

+ P
[

EC
3

]

P [E3] (E
[

XE0|EC
3

]

)2

− 2E [XE0|E3]P [E3]E
[

XE0|EC
3

]

P
[

EC
3

]

.

Rearranging the terms and replacing E [XE0|E3] = 0 and

Var

[

XE0|E3
]

= 0, we obtain the expressions presented in

the lemma.

The conditional PDF of XE0 is given as

fXE0
(x|EC

3 ) =
η

ζ

(

x

ζ

)η−1

exp

(

−xη

ζη

)

, (19)

where η and ζ are shape and scale parameters. These pa-

rameters are obtained by matching the first two moments and

solving the following system of equations:

ηΓ(1 + 1/ζ) = E
[

XEj |EC
3

]

,

η2(Γ(1 + 2/ζ)− Γ(1 + 1/ζ)2) = Var

[

XEj |EC
3

]

. (20)

Now, (19), (18), (17), and (16) together provide us the approx-

imate PDF for CE area.

B. Distribution of CC area of a typical cell

Similar to the CE case, in the next lemma, we derive the

first two moments of the CC area.

Lemma 3. For a given λ0 and Rc, the mean of the CC area

a typical Voronoi cell is given by

m1,XC0
(λ0, Rc) = E [XC0(λ0, Rc)] =

1− exp(−πλ0R
2
c)

λ0
,

(21)

and the second moment of the area is given by

m2,XE0
(λ0, Rc) =

E
[

XC0(λ0, Rc)
2
]

=2π

∫ Rc

r1=0

∫ Rc

r2=0

∫ 2π

u=0

e−λ0V (r1,r2,u)dur2dr2r1dr1, (22)

2The kernel of gamma PDF is fG(x) ∝ xξ−1 exp(−x/θ), and Weibull
PDF is fW (x) ∝ xξ−1 exp(−(x/θ)ξ).
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where V (r1, r2, u) is the area of union of two circles given in

(15).

Proof: On the similar lines of the proof of Lemma 1, the

mean CC area of the 0-th cell is

E [|XC(o, Rc,Ψb)|] = 2π

∫ Rc

r=0

exp(−πλ0r
2)rdr.

Similarly, the second moment of the j-th CC area is given as

E
[

|XC(o, Rc,Ψb)|2
]

= E
[

∫

x∈R2

1(x∈VΨb
(o)∩BRc (o))

dx

∫

y∈R2

1(y∈VΨb
(o)∩BRc (o))

dy
]

,

On the similar lines as in Appendix A, after a few steps (22)

follows from the above expression.

Now, the PDF of the CC area can be expressed as

fXC0
(x) = fXC0

(x|E1)P [E1] + fXC0
(x|EC

1 )(1− P [E1] ),
(23)

where P [E1] = P [Rm > RC ] . Note that Rm is half of the

nearest neighbor distance of a PPP, which follows Rayleigh

distribution with parameter (
√
8πλ0)

−1 and CDF FRm
(rm) =

1− exp(−4πλ0r
2
m). Hence, the probability of E1 is given as

P [E1] = P [Rm > Rc] = exp(−4πλ0R
2
c) = 1− P

[

EC
1

]

.
(24)

Observe that, the PDF of XC0 conditioned on E1 is

fXC0
(x|E1) = δ(πR2

c). (25)

Now, to approximate fXC0
(x|EC

1 ), we have used generalized

truncated beta distribution, i.e.

fXC0
(x|EC

1 ) ≈g(x; v, w, y, z, γ, β)

=
(x− y)γ−1(z − x)β−1

B(v, w, y, z; γ, β)
, 0 ≤ x < πR2

c ,

(26)

where γ and β are shape parameters; the support of the

untruncted beta distribution is [y, z] (since beta distribution has

finite support); the support of the truncated beta distribution

is [v, w]; and the normalization factor B(v, w, y, z; γ, β) =
∫

w

v
(x− y)γ−1(z− x)β−1dx, where v = v−y

y−z and w = w−y
z−y .

The choice of beta distribution is motivated by the fact that

the distribution function of XC0 has a finite support [0, πR2
c ].

Based on this support set, we set v = 0 and w = πR2
c for the

PDF presented in (26). Another motivation behind selection of

beta is the presence of an additional shape parameter compared

to conventional distributions such as Gamma or Weibull, which

are parametrized by a single shape parameter. Further, we

are introducing truncation to the above distribution that gives

us an additional degree of freedom to closely match any

arbitrary shape of the actual PDF. Here, we set y = 0 and

z = 3/2πR2
c . To obtain the shape parameters γ and β using

moment matching method, we need the mean and variance of

XC0 conditioned on EC
1 , which is presented next.

Lemma 4. The mean and variance of the area XC0 condi-

tioned on EC
1 is given as

E
[

XC0|EC
1

]

=
(1− e−πλ0R

2

c )λ−1
0 − πR2

ce
−4πλ0R

2

c

1− e−4πλ0R2
c

,

Var

[

XC0|EC
1

]

=
Var

[

XC0

]

P
[

EC
1

] − P [E1]
(

E [XC0|E1]− E
[

XC0|EC
1

])2
. (27)

Proof: The proof is done on the similar lines as that of

Lemma 2. Using the law of total expectation, we write

E
[

XC0|EC
1

]

=(E [XC0]− E [XC0|E1]P [E1] ) /(1− P [E1]).
The mean of the conditional area in the Lemma is obtained by

substituting E [XC0|E1] = πR2
c ,P [E1] = e−4πλ0R

2

c , and using

the value of E [XC0] from Lemma 3. Further, the conditional

variance is obtained from the law of total variance and using

the fact that Var
[

XC0|E1
]

= 0 .

The parameters γ, β in (26) are obtained by solving the

following simultaneous equations

B(v, w, y, z; γ + 1, β)

B(v, w, y, z; γ, β)
=E

[

XC0|EC
1

]

,

B(v, w, y, z; γ + 2, β)

B(v, w, y, z; γ, β)
− E

[

XC0|EC
1

]2
=Var

[

XC0|EC
1

]

.

Substituting (24) and (25) in (23), the approximate CC area

PDF is given as

fXC0
(x) = δ(πR2

c)e
−4πλ0R

2

c + fXC0
(x|EC

1 )(1− e−4πλ0R
2

c ),
(28)

where fXC0
(x|EC

1 ) is given in (26).

Remark 1. It is possible to approximate the PDF of the area

of a typical Voronoi cell using the expressions for fXC0
(x) in

(16) or fXC0
(x) in (28). While in the former case, the typical

Voronoi cell area PDF is obtained by setting Rc = 0, in the

latter case it is obtained by setting a sufficiently large value

of Rc such that P [E1] = exp(−πλ0R
2
c) ≈ 0.

C. Accuracy of the approximate distributions

The approximate theoretical results are validated through

Monte Carlo simulations. We use KLD (KSD) to compare

the approximate and the true PDFs (CDFs) obtained through

simulations. In Table II these two metrics are presented for

different values of Rc for both CC and CE areas. The low

values of KSD and KLD for different Rc verifies the accuracy

of the distributions. For visual verification, in Fig. 2, we

compare the true and approximate PDFs of CC and CE areas.

IV. PILOT ASSIGNMENT AND PILOT UTILIZATION

PROBABILITY

In this section, we present theoretical expressions for the

probability of assigning a pilot to the CC (CE) user of interest

(Lemma 5) and the probability that the k-th CC (l-th CE)

pilot is being used in the j-th cell (Lemma 6). As we will

see in the following section, the former quantity is useful in

obtaining the average SE of the CC (CE) user of interest, and

the latter quantity is useful in determining the average cell
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Rc|κ 100|0.4 200|0.8 250|1 300|1.2 500|2
KS Distance (CC) 0.0230 0.0238 0.0123 0.0104 0.002

KL Divergence (CC) 0.0125 0.0095 0.0055 0.0032 0.0007

KS Distance (CE) 0.0164 0.0107 0.0233 0.0347

KL Divergence (CE) 0.0098 0.0087 0.0160 0.0208

TABLE II: Comparison between simulation and approximate PDFs and CDFs for different Rc. λ0 = 4× 10−6.

Cell Center Area (XC) ×10
5

0 0.5 1 1.5 2 2.5 3

P
D
F

×10
-5

0

0.5

1

1.5

2

2.5

3
Beta Fit
Simulation

Rc = 200

Rc = 300

Cell Edge Area (XE(λ0, Rc)) ×10
5

0 2 4 6 8

P
D
F

×10
-5

0

0.2

0.4

0.6

0.8

1
Weibull Fit

Simulation

Rc = 300

Rc = 200

Fig. 2: The PDFs (top) of the CC area and CE area (bottom) of a
typical cell. λ0 = 4× 10−6.

SE as well as the density function of interfering CC (CE)

user point process. Before proceeding further, let us define

the binary variable A0n,CC = 1, if the CC user of interest is

assigned the n-th pilot sequence, and A0n,CC = 0, otherwise.

Similarly, the indicator variable A0m,CE can be defined for CE

user of interest and the m-th CE pilot. Next, we present the

probability of pilot assignment to the CC (CE) user of interest.

Lemma 5. The probability that CC user of interest is assigned

the k-th pilot is

E [A0k,CC] = P [A0k,CC = 1] = B−1
C P [A0,CC = 1]

=B−1
C

πR2

c
∫

0

P [A0,CC = 1|xc0] fXC0
(xc0)dxc0,

where

P [A0,CC = 1|xc0] =

BC
∑

n=1

P [NC0 = n|xc0]

+
∑

n>BC

BC

n
P [NC0 = n|xc0] (29)

is the probability that CC user of interest is assigned a pilot

in the 0-th cell. Further, conditioned on the event that the 0-th

cell has a CE region, the probability of CE user of interest is

assigned the l-th pilot is given as

E
[

A0l,CE|EC
3

]

= P
[

A0l,CE = 1|EC
3

]

=
P
[

A0,CE = 1|EC
3

]

BE

= B−1
E

∞
∫

0

P
[

A0,CE = 1|EC
3 , xe0

]

fXE0
(xe0|EC

3 )dxe0,

where

P
[

A0,CE = 1|EC
3 , xe0

]

=

BE
∑

n=1

P
[

NE0 = n|EC
3 , xe0

]

+
∑

n>BE

BE

n
P
[

NE0 = n|EC
3 , xe0

]

.

Proof: The probability of assigning a pilot to the CC user

of interest is given as

P [A0,CC = 1] = P

[

∪BC

n=1{A0n,CC = 1}
]

=

BC
∑

n=1

P [A0n,CC = 1] = BCP [A0k,CC = 1] ,

where the last step follows from the fact that the events

{{A0n,CC = 1}, n = 1, . . . , BC} are equi-probable. Condi-

tioned on the CC area of the 0-th cell, the distribution of the

number of users in this region is given by (3). Hence, the

probability that the CC user of interest is assigned a pilot is

given by (29). The final result is obtained by de-conditioning

w.r.t. CC area of the 0-th cell. The pilot assignment probability

for the CE user follows from the similar argument.

As discussed in Sec. II, since our analysis is performed for

the k-th CC (l-th CE) pilot, the aggregate network interference

perceived at the 0-th BS depends on the utilization of the k-th

CC (l-th CE) pilot in the interfering cells. In the following

Lemma, we present the probability of the usage of the k-th

CC (l-th CE) pilot in an interfering cell.

Lemma 6. The probability that the k-th pilot is used in an

interfering cell (say j-th cell) is

E [ICC(j, k)] = P [ICC(j, k) = 1]

=

∫ πR2

c

0

P [ICC(j, k) = 1|xcj ] fXCj
(xcj)dxcj , (30)
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where

P [ICC(j, k) = 1|xcj ] =

BC
∑

n=1

n

BC
P [NCj = n|xcj ]

+
∑

n>BC

P [NCj = n|xcj ] . (31)

Similarly, conditioned on the event that the j-th cell has a CE

region, the probability that the l-th CE pilot is used in the j-th

cell is given as E
[

ICE(j, l)|EC
3

]

=

P
[

ICE(j, l) = 1|EC
3

]

=

∫ ∞

xej=0

P
[

ICE(j, l) = 1|EC
3 , xej

]

fXEj
(xej |EC

3 )dxej ,

(32)

where

P
[

ICE(j, l) = 1
∣

∣EC
3 , xej

]

=

BE
∑

n=1

n

BE
P
[

NEj = n
∣

∣xej , EC
3

]

+
∑

n>BE

P
[

NEj = n
∣

∣xej , EC
3

]

.

Proof: For the CC case, first we condition on area of the

j-th cell. Now, the probability that the k-th pilot is used on the

j-th cell is given by (31). The expression in (30) follows from

de-conditioning w.r.t. XCj . On the similar lines, (32) can be

derived.

V. SINR COVERAGE AND SE ANALYSIS

In this section, we characterize the statistical properties

of the point processes ΦCC
u,k(Φ

CE
u,l) to obtain the coverage

probability and SE of a randomly selected CC (CE) user.

A. SINR coverage analysis of a user assigned to the k-th CC

pilot

As discussed in Sec. II, ΦCC
u,k is obtained from Φu,CC.

Therefore, the first step is to understand the properties to Φu,CC,

which is discussed next.

1) Density function of Φu,CC: Conditioned on the 0-th

BS location, Φu,CC is isotropic. In addition, since Φu,CC is

defined excluding the point in Xc(o, Rc,Ψb) from Ψu,CC, it

is non-homogeneous. Now, our objective is to characterize

Φu,CC conditioned on the 0-th BS location o. To achieve this

objective, we first determine the PCF g(r) of the points in

Φu,CC w.r.t. o. Next, using this PCF, we approximate the point

process as a non-homogeneous PPP. The approach that we

have followed for the statistical characterization of Φu,CC is

inspred by the work presented in [26], where the interfering

users are uniformly distributed within the Voronoi cell of

each BS. In contrast, in our case the users are uniformly

distributed within the CC region of each cell. Hence, our

result is slightly more general, i.e. for a sufficiently large

value of κ we arrive at the result presented in [26]. Further,

as we will see shortly, the derivation of the PCF is also

not straightforward as the geometry of the region that we

encounter is a little more complex compared to the Voronoi

cells considered in [26]. Note that in this case, the PCF

gλ(r, κ) is also a function of κ. By definition, gλ(r, κ) presents

the likelihood of finding a point of Φu,CC at a distance r
from the 0-th BS in a network with λ0 = λ and threshold

radius Rc = κ/
√
πc2λ. Further, in this case, the PCF is

scale-invariant, i.e. gλ(r, κ) = g1(r
√
λ, κ). Using the scale

invariance property, next, we present the PCF of Φu,CC w.r.t.

origin for λ0 = 1.

Lemma 7. The PCF of Φu,CC w.r.t. the 0-th BS location is

gCC
1 (r, κ) ≈ 1− e−2πr2E[XC0(1,κ/

√
πc2)

−1], (33)

where XC0(1, κ/
√
πc2) is the CC area of a typical cell of a

PV tessellation with unity BS density.

Proof: Please refer to Appendix B.

r
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Fig. 3: PCFs of Φu,CC (top) and Φu,CE (bottom) for different κ.
The approximation and curve-fitting are based on (38) and (39),
respectively.

In Fig. 3, we present the PCF gCC
1 (r, κ) for different values

of κ. The approximate theoretical expression presented in (33)

is compared with the simulation results. Further, following

prototype function is also used to approximate the PCF for

comparison purpose

ĝCC
1 (r, κ) = 1− exp(−ar2) + br2 exp(−cr2), (34)

where the values of the parameters a, b, c are obtained through

curve fitting with simulated PCF. Based on the figure, we make

the following remark on the PCF in (33).

Remark 2. For smaller values of κ, the PCF obtained from

simulation indicates that Φu,CC exhibits clustering behaviour.

However, by approximating the PCF using the exponential

function presented in (33), it is not possible to capture this
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clustering nature. More complicated functions such as (34)

can be used for this purpose. However, determining the values

of the parameters a, b, and c analytically is not tractable.

Hence, we resort to the exponential PCF for the rest of the

analysis, which is accurate for smaller values of r, i.e. in the

neighborhood of the BS at o.

Using the PCF in (33), we approximate Φu,CC as a non-

homogeneous PPP such that for all f : R
2 7→ R

+,

E

[

∑

x∈Φu,CC
f(x)

]

≡ E

[

∑

x∈ΦPPP
u,CC

f(x)

]

=⇒

λ0

∫

x∈R2

f(x)gCC
1 (‖x‖

√

λ0, κ)dx

=

∫

x∈R2

f(x)λPPP
u,CC (‖x‖, κ)dx,

where the second step follows from the application of Camp-

bell’s theorem and replacing the intensity measure by the

reduced second factorial moment measure [27, Chapter 8].

Hence, the density function of Φu,CC, if approximated as a

non-homogeneous PPP, is given as

λPPP
u,CC (r, κ) = λ0

(

1− e−2πλ0r
2
E[XC0(1,κ/

√
πc2)

−1]
)

. (35)

2) Density function of ΦCC
u,k: Since ΦCC

u,k ⊆ Φu,CC, one can

obtain ΦCC
u,k by independently thinning the points in Φu,CC with

probability 1− E [ICC(j, k)]. Note that due to correlation in

CC areas of neighbouring cells, the number of users in each

cell, as well as the pilot utilization probability among neigh-

bouring cells are correlated. Hence, the independent thinning

is an approximation. However, to maintain tractability, this

approximation is necessary. Approximating ΦCC
u,k as a PPP, in

the following Lemma, we present its density function.

Lemma 8. The density function of ΦCC
u,k is

λCCu,k(r, κ) = λ0E [ICC(j, k)]
(

1 − e
−2πλ0r

2
E

[

XC0(1,
κ√
πc2

)−1

]

)

,
where E [ICC(j, k)] is given in Lemma 6. The intensity

measure is ΛCC
u,k(r, κ) = 2π

∫ r

0
λCCu,k(t, κ)tdt.

Proof: By independently thinning ΦPPP
u,CC with probability

1 − E [ICC(j, k)], we arrive at the expression for the density

function.

Remark 3. In the above expression, for κ → ∞,

E
[

XC0(1, κ/
√
πc2)

−1
]

≈ 7/5. This corresponds to the inter-

fering user density λPPP
u,CC (r, κ) ≈ λ0

(

1− exp
(

− 14
5 πλ0r

2
))

,

which is the density function for interfering users in case of

pilot reuse-1 [26].

Moreover, since limκ→∞ E

[

XC0(1,
κ√
πc2

)−1
]

≤
E

[

XC0(1,
κ√
πc2

)−1
]

, the intensity measure of the user

point process of pilot reuse-1 is less than ΛCC
u,k(r, κ). As a

consequence, the distance of the nearest interfering user in

case of FPR is stochastically dominated by pilot reuse-1 for

a randomly selected CC user.

3) Coverage probability of the CC user of interest: In

stochastic geometry-based works, for coverage analysis, one

key intermediate step is to characterize the interference by

the Laplace transform (LT) of its distribution [14]. The main

advantage of this approach is that in the presence of expo-

nential fading gain, the coverage probability can be readily

expressed in terms of this LT [14]. However, in the SINR

expression given in (10), the small scale fading term is absent

due to spatial averaging. Hence, the conventional LT based

approach is not applicable in this scenario. Although classical

approaches such as Gil-Palaez inversion theorem [35], [36] can

be used to obtain coverage probability, it is computationally

inefficient, hence, usually avoided wherever possible. A more

useful solution to this problem can be obtained by observing

the fact that due to pathloss the total interference is likely to be

dominated by interference contributions from a few dominant

users [37]. Based on this intuition, we approximate the total

interference power as the sum of the interference power from

the most dominant interferer and the mean of the rest of the

terms conditioned on the dominant term.

Dominant interferer approximation: Let D̂01k be the dis-

tance between the 0-th BS and its nearest interferer. Then, the

CDF and the PDF of D̂01k are given as

FD̂01k

(d̂01k |κ) = 1− e−ΛCC
u,k(d̂01k

,κ),

fD̂01k

(d̂01k |κ) = 2πd̂01kλ
CC
u,k(d̂01k , κ)e

−ΛCC
u,k(d̂01k

,κ), (36)

which are obtained using void probability of the PPP [14].

Now, the total interference is approximated as the sum of in-

terference from the most dominant interferer and the expected

interference from rest of the interferers in the network. Hence,

we write Iagg,k = D̂−2α
01k

+ E

[

∑

ûjk
∈ΦCC

u,k\û1k

D̂−2α
0jk

∣

∣

∣

∣

D̂01k

]

=

D̂−2α
01k

+ E

[

Irem,k|D̂01k

]

, where û1k is the location of the

dominant interferer in ΦCC
u,k. In the following Lemma, we

present an expression for E
[

Irem,k|D̂01k

]

.

Lemma 9. Conditioned on the distance to the domi-

nant interferer D̂01k , the expected interference from the

rest of the interfering users is E

[

Irem,k|D̂01k = d̂01k

]

=

2π
∫∞
d̂01k

r−2αλCCu,k(r, κ)rdr.

Proof: Above expression follows from the application of

Campbell’s theorem.

With the knowledge of the expected interference and the

distribution of D̂01k , in the following proposition, we present

the coverage probability for a CC user assigned to the k-th

pilot.

Proposition 1. Conditioned on the event that the k-th pilot is

used in the 0-th cell, the coverage probability of the user that

is assigned this sequence is given as P
CC
c,k(T ) =

ED00k
,D̂01k

[

1

(

d̂−2α
01k

+E

[

Irem,k|d̂01k
]

<
d−2α
00k

T

)∣

∣

∣

∣

ICC(0, k) = 1

]

,

(37)

where fD̂01k

(d̂01k) is given in (36), and the CDF of D00k is

given in (6).

Proof: Conditioned on ICC(0, k) = 1, the cover-

age probability of the user assigned the k-th sequence is
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P [SINR0k > T |ICC(0, k) = 1] =

P

[

D−2α
00k

T
> Iagg,k

∣

∣

∣

∣

ICC(0, k) = 1

]

=E

[

1

(

d̂−2α
01k

+ E

[

Irem,k|d̂01k
]

<
d−2α
00k

T

)∣

∣

∣

∣

ICC(0, k) = 1

]

,

where the expectation is taken over D00k , D̂01k . This com-

pletes the proof of the above proposition.

B. SINR coverage analysis of a CE user assigned to the l-th
CE pilot

Most of the intermediate steps necessary for the coverage

probability result in this case can be derived on the similar

lines as that of the previous section. Hence, we omit a few of

the proofs to avoid repetition.

1) Density function of ΦCE
u,l: To begin with, we present the

density function of the point process Φu,CE. Similar to the CC

case, we first present the PCF gCE
λ (r, κ) for Φu,CE w.r.t. the

0-th BS. Due to scale invariance, we consider a network with

unit BS density and threshold radius κ/
√
πc2. In the following

Lemma, we present the expression for gCE
1 (r, κ).

Lemma 10. The PCF of Φu,CE w.r.t. the 0-th BS is given as

gCE
1 (r, κ) ≈ 1− e

−π
(

r2− κ2

πc2

)

14

5
P[EC

3 ] exp(κ
2/c2), r ≥ κ√

πc2
.

(38)

Proof: Please refer to Appendix D.

Similar to the CC case, in Fig. 3, we present the PCF for

different values of κ for Φu,CE. The approximate theoretical

expression presented in (38) is compared with the simulation

results. We use the following prototype function to approxi-

mate the PCF for comparison purpose

ĝCE
1 (r, κ) = 1− e−a1(r

2−R2

c) + b1(r
2 −R2

c)e
−c1(r

2−R2

c),
(39)

where the values of the parameters a1, b1, c1 are obtained

through curve fitting with simulated PCF. Based on the figure,

we make the following remark for the PCF in (38).

Remark 4. As κ increases, the PCF obtained from simulation

indicates that Φu,CE exhibits clustering behaviour beyond Rc.

By approximating the PCF using the exponential function

presented in (38), it is not possible to capture this clustering

nature. However, note that from the network deployment

perspective higher values of Rc may not be desirable, because

it would result in a higher fraction of cells without CE regions.

Hence, the benefit of FPR will be reduced due to unutilized

CE pilots in the cells without the CE regions. Therefore, the

range of κ for which the approximation of PCF using (38) is

poor is of lesser practical importance.

Now, we approximate Φu,CE as a non-homogeneous PPP

with density function λPPP
u,CE (r, κ) =

λ0P
[

EC
3

]

(

1− e−πλ0(r
2−R2

c)P[EC
3 ] 145 exp(κ2/c2)

)

, r ≥ Rc.

(40)

Recall that ΦCE
u,l ⊆ Φu,CE contains the locations of the interfer-

ing CE users that use the l-th pilot. Similar to the CC case, we

approximate ΦCE
u,l as a non-homogeneous PPP whose density

function is presented in the following lemma.

Lemma 11. For r ≥ Rc, the density function of the ΦCE
u,l

containing the locations of the active CE interfering users

is approximated as λCEu,l(r, κ) ≈ λ0E [ICE(j, l)]P
[

EC
3

] (

1 −
e−π 14

5
exp(κ2/c2)P[EC

3 ]λ0(r
2−R2

c)
)

, and corresponding intensity

measure is given as ΛCE
u,l(r, κ) = 2π

∫ r

t=0
λCEu,l(t, κ)tdt.

Proof: The density function is obtained on the similar

arguments as that of Lemma 8.

2) Coverage probability of the CE user of interest: Using

the intensity measure and density function of ΦCE
u,l, the CDF and

PDF of the distance to the dominant CE interferer are given as

FD̂01l

(d̂01l |κ) = 1− e−ΛCE
u,l(d̂01l

,κ), (41)

fD̂01l

(d̂01l |κ) = 2πd̂01lλ
CE
u,l(d̂01l , κ)e

−ΛCE
u,l(d̂01l

,κ). (42)

Now, conditioned on the distance to the dominant interferer

D̂01l , the aggregate interference at the 0-th BS from the CE

users is approximated as

Iagg,l =d̂−2α
01l

+ E

[

∑

ûjl
∈ΦCE

u,l\û1l

d̂−2α
0jl

∣

∣

∣

∣

d̂01l

]

=d̂−2α
01l

+ E

[

Irem,l

∣

∣

∣

∣

d̂01l

]

(a)
= d̂−2α

01l
+ 2π

∫ ∞

d̂01l

r−2αλCEu,l(r, κ)rdr,

where (a) follows from the application of Campbell’s theorem.

Using the above expression for aggregate interference, the

coverage probability of the CE user of interest is presented

next.

Proposition 2. Conditioned on the event that ICE(0, l) = 1,

the coverage probability of a user assigned to l-th pilot is

given as P
CE
c,l(T ) = P

[

SINR0,l > T |EC
3 , ICE(0, l) = 1

]

=

ED00l
,D̂01l

[

1

(

Iagg,l <
d−2α
00l

T

)∣

∣

∣

∣

EC
3 , ICE(0, l) = 1

]

.

Proof: The proof can be done on the similar lines as that

of Proposition 1.

C. Average user SE and cell SE

Using the coverage probability results, in the following

Proposition, we present the approximate expressions for av-

erage SE of the CC and CE users of interest, and average cell

SE. It is worthwhile mentioning that alternate methods such as

the one presented in [38], [39] can also be used to characterize

the SE.

Proposition 3. The average SE of a randomly selected CC

user is given as

SEu,CC ≈ωBCE [A0k,CC]

∫ ∞

t=0

P
CC
c,k(2

t − 1)dt, (43)
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where ω = (1−B/TC), P
CC
c,k(·) is presented in Proposition 1

and E [A0k,CC] is presented in Lemma 5. Similarly, the average

SE of a randomly selected CE user is given as

SEu,CE ≈ωBEE
[

A0l,CE|EC
3

]

∫ ∞

t=0

P
CE
c,l(2

t − 1)dt. (44)

Proof: From (11), the average SE of the CC user of

interest can be approximated as

SEu,CC =ωE [A0,CC log2(1 + SINR0,CC)]

=ωE

[

BC
∑

n=1

A0n,CC log2(1 + SINR0n)

]

(a)
=BCE [A0k,CC log2(1 + SINR0k)]

(b)≈BCE [A0k,CC]E [log2(1 + SINR0k)] ,

where SINR0n is the SINR of the CC user of interest if it

is assigned the n-th CC pilot, (a) follows from the identi-

cal distributions of {A0n,CC log2(1 + SINR0n)}BC

n=1, (b) fol-

lows from the independence assumption between A0k,CC and

SINR0k . The expression in the proposition follows from the

last step using the fact that for a positive random variable

X , E [X] =
∫∞
0

P [X > t] dt. Similarly, the average CE user

SE is derived.

Proposition 4. The average cell SE of a typical cell is given

as

CSE =ωBCE [ICC(0, k)]
∫ ∞

t=0

P
CC
c,k(2

t − 1)dt

+ ωP
[

EC
3

]

BEE
[

ICE(0, l)|EC
3

]

∫ ∞

t=0

P
CE
c,l(2

t − 1)dt.

Proof: From (12), we write

E [CSE]
(a)
=ωE

[

BC
∑

n=1

ICC(0, n) log2(1 + SINR0n)

]

+

ωP
[

EC
3

]

E

[

BE
∑

m=1

ICE(0,m) log2(1 + SINR0m)

∣

∣

∣

∣

EC
3

]

(b)≈ωBCE [log2(1 + SINR0k)|ICC(0, k) = 1]×
E [ICC(0, k)] + ωBEP

[

EC
3

]

E
[

ICE(0, l)|EC
3

]

×
E
[

log2(1 + SINR0l)|ICE(0, l) = 1, EC
3

]

,

where (a) follows from the law of total probability and (b)
follows from the fact that {SINR0n}BC

n=1 ({SINR0m}BE

m=1) are

identical, and for the final expression we assume independence

between the event {ICC(0, k) = 1} and SINR0k and use the

identity E [X] =
∫∞
0

P [X > t] dt.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, we validate the approximate theoretical

results using Monte Carlo simulations. Further, we study the

effect of different system parameters on the SINR coverage

probability, average user and cell SEs. In our simulation

framework, we consider the BS density λ0 = 4 × 10−6,

pathloss exponent α = 3.7, the coherence time interval

Tc = 200 symbol duration, and the pilot length B = 100

symbol duration. For comparison purpose, we also provide SE

results corresponding to pilot reuse-1 at necessary places. Note

that the system model for reuse-1 is the same as described in

Sec. II. The key difference is that there is no segregation in

terms of CC (CE) pilots and the entire set of B pilots can

be assigned to any user attached to a BS. This complicates

the pilot utilization analysis. To be specific, to obtain the

probability of the event that a CC (CE) user is assigned a given

pilot requires the consideration of the joint distribution of the

number of CC and CE users. This result does not directly

follow from Lemma 5 and requires additional analysis, which

does not appear tractable as deriving joint distribution for the

CC and CE areas of a typical cell is challenging. The similar

remark holds for the probability of pilot utilization in case

of reuse-1. Hence, to validate the efficacy of FPR scheme

with respect to reuse-1, we rely on simulation-based results

for reuse-1.

A. SINR coverage probability of a user assigned to a given

pilot

In this subsection, we study the effect of different system

parameters on the coverage probability of a CC (CE) user that

is assigned the k-th (l-th) pilot. The effect of λu on coverage

probability for CC and CE cases can be observed from Fig. 4

(left and right, respectively). From the figures, we infer that

with the increasing density, the coverage probability reduces

in both the scenarios. This is intuitive as with increasing λu,

the pilot usage probability in the interfering cells increases,

thereby increasing the aggregate interference. The effect of

normalized threshold radius κ on coverage probability is pre-

sented in Fig. 5 for CC (left) and CE (right) cases. As observed

from Fig. 5 (left), with decreasing κ (equivalently Rc), the

coverage probability improves. This behavior is justified by

the fact that with decreasing Rc the serving distance also

decreases. In addition, the pilot usage probability in interfering

cells also reduces. Combination of both the effects results in

SINR coverage probability improvement. For a randomly se-

lected CE user assigned a given CE pilot sequence, above trend

is observed for higher SINR thresholds. On the other hand,

for lower SINR thresholds, reverse trend is observed. One

possible explanation behind this behaviour is that although

with increasing Rc serving distance increases, the number

of interfering users reduces. This results in improvement of

coverage probability. In Fig. 6, we have presented coverage

probability for different path loss exponent α. As expected

with increasing path loss exponent, the coverage probability

improves due to less interference.

B. Average CC (CE) user SE and cell SE

SE as a function of BC/B: In Fig. 7, the average SEs

of CC and CE users of interest as well as a typical cell are

presented for different values of BC/B, where B = 100. For

reference, we have also presented the average CC and CE user

SEs for unity pilot reuse. From Fig. 7 (left), we observe that

FPR scheme performs better compared to unity reuse beyond

a certain BC/B. For both the curves (corresponding to κ =
0.8, 1), this value of BC/B lies in the neighbourhood of 1−
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Fig. 4: Coverage probability of a CC user on a given CC pilot (left) and CE user on a given CE pilot (right) for different λu. Markers and solid lines
represent the simulation and theoretical results, respectively. κ = 0.6, BC = 58, BE = 14, βf = 3.
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Fig. 6: Coverage probability of a CC user on a given CC pilot (left) and CE user on a given CE pilot (right) for different path loss exponent α. Markers
and solid lines represent the simulation and theoretical results, respectively. κ = 0.8, BC = 49, BE = 17, βf = 3.

exp(−κ2). Intuitively, in case of unity reuse, the probability

of assigning a pilot sequence to a CC user is approximately

1− exp(−πλ0c2R
2
c) = 1− exp(−κ2). Hence, on an average

1− exp(−κ2) fraction of pilot sequences are assigned to CC

users. Therefore, by choosing BC/B ≈ 1− exp(−κ2) in FPR

case, the average SE for CC user of interest becomes close

to the SE of a CC user in unity reuse. On the other hand,

from Fig. 7 (middle), we observe that for a wide-range of

BC/B the average SE of CE user of interest in FPR is higher

compared to average CE user SE in case of unity reuse. This

result justifies the use of FPR scheme as its main purpose is

to improve the performance of CE users. Finally, the average

cell SE for FPR scheme is presented in Fig. 7 (right) for two

different values of κ. For comparison purpose, the cell SEs

corresponding to reuse-1 is also presented. Depending on the

value of κ, for certain values of BC/B, sum-cell SE gains

over reuse-1 is possible.

SE as a function of κ: The average SEs for the three

cases of interest (CC user of interest, CE user of interest,

and sum-cell) are presented in Fig. 8 for different values of

κ. Based on the insights from the previous result, in order

to achieve the same CC user SE as reuse-1, we partition the

pilot sequences into two sets such that BC/B ≈ 1−exp(−κ2).
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Fig. 7: The average CC user SE (left), CE user SE (center), and sum-cell SE (right) as functions of BC/B. The solid lines and marked dotted lines represent
the theoretical and simulation results, respectively. The dashed lines represent the simulated SEs corresponding to reuse-1. B = 100, λu = 150λ0, λ0 =
4× 10−6, βf = 3.

From Fig. 8 (left), we observe that aforementioned partitioning

rule results in marginal reduction in CC user SE compared

to reuse-1 scheme. On the other hand, in Fig. 8 (middle),

we observe that the CE user spectral efficiency of reuse-1

is better compared to the FPR scheme for lower values of κ.

This is because of the fact that when κ is low, more number of

users lie in the CE region. Since FPR employs reuse-3 scheme,

the pilot assignment probability to a randomly selected user

reduces, which results in the reduction of user SE compared

to the reuse-1 scheme. However, for higher values of κ, FPR

performs better compared to the reuse-1 scheme, which is

the desired outcome. From Fig. 8 (right), we observe that the

average sum-cell SE in case of FPR scheme is close to reuse-

1 scheme for higher values of κ with the above partitioning

rule. System operation at this point is desirable as it improves

the CE user SE while providing comparable CC user SE.

SE as a function of B/Tc: From Fig. 9, we observe that

average SEs are concave functions of B/Tc. Note that with

increasing B/Tc, the pilot assignment probability increases

and the SINR improves due to reduced pilot utilization in

the interfering cells. On the other hand, the pre-log factor

(1−B/Tc) reduces with increasing B/Tc. Hence, the concave

behavior of the functions is justified. Further, we observe that

using the proposed pilot partitioning rule, there is a significant

improvement in the CE user SE at the cost of marginal

reductions in average CC user SE and average sum-cell SE.

In Fig. 10, we show he effect of user density on SE. As

expected, with increasing user density, the average user SEs

reduces while the sum-cell SE saturates.

VII. CONCLUDING REMARKS

In this work, we have analyzed the UL performance of a

mMIMO system with fractional pilot reuse. Using tools from

stochastic geometry, we have presented approximate expres-

sions for the SINR coverage probability and average SE of a

randomly CC (CE) user in a typical cell. Our analysis begins

with the accurate approximations of the area distributions

of CC and CE regions of a typical cell. These distributions

are used to analyze the pilot assignment probability for the

user of interest and utilization probability of a given pilot

sequence in a typical cell. While the former quantity is directly

used in average user SE evaluation, the latter quantity is

helpful in obtaining the average sum-cell SE and statistical

characterization of interfering user point processes for both

CC and CE cases. All the theoretical results are validated

through extensive Monte Carlo simulations. From our system

analysis, we arrive at the conclusion that with proper selection

of system parameters it is possible to improve the CE user

SE with negligible performance degradation in the CC user

SE and cell SE compared to the unity pilot reuse. There are

several possible extensions of this work. In this work, we have

considered an asymptotically large number of antennas at the

BSs. Hence, a natural extension of this work is to consider a

system with finite number of antennas and evaluate the efficacy

of FPR. From stochastic geometry perspective, our analysis

of interfering user point process formed by CE users can be

improved further by modeling this point process as a cluster

process or a Poisson hole process [40].

APPENDIX

A. Proof of Lemma 1

The mean area of the CE region can be expresses as

E [|XE(o, Rc,Ψb)|] =

E





∫

x∈R2

1(x∈VΨb
(o)∩BC

Rc
(o))dx





(a)
=

∫

x∈R2∩BC
Rc

(o)

exp(−πλ0‖x‖2)dx

=2π

∫ ∞

r=Rc

exp(−πλ0r
2)rdr,

where (a) follows from that fact that a point located at a

distance ‖x‖ from the origin belongs to VΨb
(o), if there are

no other BSs in B‖x‖(x). Solving the final integral gives us the

expression for the mean in (21). Similarly, the second moment

of the CE area can be expressed as E
[

|XE(o, Rc,Ψb)|2
]

=

E







∫

x∈R2

1(x∈VΨb
(o)∩BC

Rc
(o))dx

∫

y∈R2

1(y∈VΨb
(o)∩BC

Rc
(o))dy







=

∫

x∈R2

∫

y∈R2

E

[

1(x∈VΨb
(o)∩BC

Rc
(o),y∈VΨb

(o)∩BC
Rc

(o))

]

dxdy
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Fig. 8: The average CC user SE (left), CE user SE (center), and sum-cell SE (right) as functions of normalized radius κ. λ0 = 4 × 10−6, λu =
150λ0, BC/B ≈

(

1− exp(−κ2)
)

, βf = 3. The solid lines and marked dotted lines represent the theoretical and simulation results, respectively.
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Fig. 9: The average CC user SE (left), CE user SE (center), and sum-cell SE (right) as functions of B/Tc. The solid lines and marked dotted lines represent
the theoretical and simulation results, respectively. κ = 0.8, βf = 3, BC/B ≈

(

1− exp(−κ2)
)
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and marked dotted lines represent the theoretical and simulation results, respectively. B = 100, BC = 31, κ = 0.6, βf = 3.

(b)
=

∫

(x,y)∈R
2∩BC

Rc
(o)×R

2∩BC
Rc

(o)

e−λ0|B‖x‖(x)∪B‖y‖(y)|dxdy

=2π

∞
∫

r1=Rc

∞
∫

r2=Rc

2π
∫

u=0

e−λ0V (r1,r2,u)dur2dr2r1dr1,

where (b) follows from the fact that if points x and y

belong to VΨb
(o), then there are no other BSs in the region

B‖x‖(x) ∪ B‖y‖(y), and the last step follows from changing

the integration limits from Cartesian to polar coordinates.

B. Proof of Lemma 7

One approach to deriving gCC
1 (r, κ) is to first determine

the Ripley’s K-function KCC
1 (r, κ) and then use the following

relationship: gCC
1 (r, κ) =

dKCC

1
(r,κ)/dr
2πr . Note that points in

Φu,CC are likely to exhibit repulsion w.r.t. o as these points do

not lie in VΨb
(o). Since the total interference is likely to be

dominated by the nearby users, our main interest lies in charac-

terizing gCC
1 (r, κ) for small r. Note that gCC

1 (r, κ) → 1 as r ≫
0. Recall that for a point process Φ of density λ the Ripley’s

K-function is defined as Kλ(r) = E [NΦ(Br(o))] /λ [27],

where NΦ(Br(o)) denotes the number of points of Φ that lie

in Br(o). In this case, the K-function is given as KCC
1 (r, κ) =
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E
[

NΦu,CC

(

∪x∈Φb
(Br(o) ∩ XC(x, κ/

√
πc2,Ψb))

)]

. Now,

KCC
1 (r, κ)

≃E
[

NΦu,CC
(Br(o) ∩ XC(y, κ/

√
πc2,Ψb))

]

, r → 0, (45)

where ≃ denotes approximation that becomes better asymp-

totically, y is the nearest BS to the typical BS at o. Without

loss of generality, we assume that y = (‖y‖, 0). As per

our construction of Φu,CC, we are concerned with only one

uniformly distributed point in XC(y, κ/
√
πc2,Ψb) lying in the

region Br(o) ∩ XC(y, κ/
√
πc2,Ψb). Hence, we write (45) as

KCC
1 (r, κ) ≃

E

[ |Br(o) ∩ XC(y,
κ√
πc2

,Ψb)|
|XC(y,

κ√
πc2

,Ψb)|

]

= E

[

SC(rm, r, κ)

XC0(1,
κ√
πc2

)

]

≈ERm
[SC(rm, r, κ)]E

[

XC0(1,
κ√
πc2

)−1

]

,

where SC(rm, r, κ) denotes the area of the region Br(o) ∩
BRc

(y) ∩ ((R− rm)+ × R), and the last approximation fol-

lows from independence assumption between SC(rm, r, κ)
and XC0(1, κ/

√
πc2)

−1. Now, using the result presented in

Appendix C, we write

ERm
[SC(rm, r, κ)]

≃1(Rc > r)
π2r4

2
+ 1(Rc ≤ r)π2R2

cr
2 − π2R4

c

2
, r → 0,

(46)

where Rc = κ/
√
πc2. The first inverse moment of

XC0(1, κ/
√
πc2) can be evaluated numerically using the ap-

proximated distribution presented in Sec. III. Now, the K-

function is given as KCC
1 (r, κ) ≃















π2r4

2
E

[

XC0(1,
κ√
πc2

)−1

]

Rc > r, r → 0

(π2R2
cr

2 − π2R4
c

2
)E

[

XC0(1,
κ√
πc2

)−1

]

Rc ≤ r, r → 0,

and the PCF is given as gCC
1 (r, κ) =

dKCC
1 (r, κ)

2πrdr
≃















πr2E

[

XC0(1,
κ√
πc2

)−1

]

Rc > r, r → 0

πR2
cE

[

XC0(1,
κ√
πc2

)−1

]

Rc ≤ r, r → 0.

Note that as Rc → 0, the 0-th BSs observes user locations that

are almost identical to BS locations, which is a homogeneous

PPP. In this case, when Rc → 0, E
[

XC0(1, κ/
√
πc2)

−1
]

≃
1

πR2
c

. Hence, gCC
1 (r, κ) → 1 as expected for a homogeneous

PPP.

Using the asymptotic result that 1−exp(−u) ≃ u as u → 0,

we write

gCC
1 (r, κ) ≃

(

1− e
−πr2E

[

XC0

(

1, κ√
πc2

)−1
]

)

1(r < Rc)

+ 1(r ≥ Rc),

as r → 0. Accordinng to the simulation based observation

mentioned in [26], due to the condition r → 0, the Voronoi

cell VΨb
(y) is skewed whose area is likely to be half of the

area of a typical Voronoi cell. Similar argument can be made

for the area of the CC region as well. Hence, a factor of 2

needs to be introduced for the first condition. Using this fact,

for any value of r, a reasonable approximation for the PCF is

gCC
1 (r, κ) ≈ 1− exp(−2πr2E

[

XC0(1, κ/
√
πc2)

−1
]

).

C. Proof of (46)

Depending on the value of Rc and r we have the following

two cases of interest:

Case 1: r < Rc: The result for this case is obtained from [26,

Lemma 2], and is given as

ERm
[SC(rm, r, κ)] ≃ π2r4

2
, r → 0.

Case 2: r ≥ Rc: In this case, the area of the region

Br(o) ∩ XC(y, κ/
√
πc2,Ψb) is given as SC(rm, r, κ) =



























r2
(

u− sin 2u

2

)

+R2
c

(

v − sin 2v

2

)

−(wR2
c − rm

√

R2
c − r2m), Rc ≥ rm

r2u− r2

2
sin 2u+R2

cv −
R2

c

2
sin 2v, Rc < rm,

where Rc = κ/
√
πc2, u = cos−1

(

r2+4r2m−R2

c

4rrm

)

, v =

cos−1
(

R2

c+4r2m−r2

4Rcrm

)

, and w = cos−1
(

rm
Rc

)

. Averaging over

the random variable Rm, we get

E [SC(rm, r, κ)] =πR2
c

(r−Rc)/2
∫

0

fRm
(rm)drm

+

(r+Rc)/2
∫

(r−Rc)/2

SC(rm, r, κ)fRm
(rm)drm,

where we have used the fact that for r > 2rm +Rc,

SC(rm, r, κ) = πR2
c . Further, note that for 2rm > r + Rc,

SC(rm, r, κ) = 0. Hence, the upper limit is introduced to

consider the values of Rm for which SC(rm, r, κ) 6= 0. In

addition, we use the asymptotic approximation fRm
(rm) =

8πrm exp(−4πr2m) ≃ 8πrm(1 − 4πr2m), as rm → 0. After

performing the integration, we obtain E [SC(rm, r, κ)] ≃
π2R2

cr
4

2
− π2R4

cr
2

2
+ π2R2

cr
2 −

(

π3R2
cr

4

2
+

π2R4
c

2
+

π3R6
c

2

)

≃ π2R2
cr

2 − π2R4
c

2
, r → 0.

This completes the proof of (46).

D. Derivation of Lemma 10

The proof can be done on the similar lines as that of

Appendices B and C. In this case, the Ripley’s K-function

is given as

KCE
1 (r, κ) ≈ERm

[

SE(rm, r, κ)|EC
3

]

E

[

XE0

(

1,
κ√
πc2

)−1 ∣
∣

∣

∣

EC
3

]

, r → 0, r > Rc.
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Asymptotically, conditioned on EC
3 , the distribution of Rm is

given as

FRm
(rm|RM > Rc) =

P [Rm ≤ rm, RM > Rc]

P [RM > Rc]

≃P [Rm ≤ rm] , Rc → 0.

The condition Rc → 0 is of interest to us as our goal is to

find the PCF for r → 0, and r > Rc. Now, the following

expectation

ERm

[

SE(rm, r, Rc)|EC
3

]

≃
r

∫

0

A1(r, rm, Rc)dFRm
(rm)−

(r−Rc)/2
∫

0

A2(r, rm, Rc)dFRm
(rm)

−
(r+Rc)/2
∫

(r−Rc)/2

A2(r, rm, Rc)dFRm
(rm)−

Rc
∫

0

A3(r, rm, Rc)dFRm
(rm)

=
π2r4

2
+

π3r6

2
− π2R2

cr
4

2
+

π2R4
cr

2

2

− π2R2
cr

2 +
π3R2

cr
4

2
+

π2R4
c

2
+

π3R6
c

2

≃π2(r4 +R4 − 2R2
cr

2)

2
,

where the last step follows from neglecting the 6-th order

terms. In the previous expression

A1(r, rm, Rc) =r2 arccos
rm
r

− rm
√

r2 − r2m,

A2(r, rm, Rc) =

(

r2u− r2 sin(2u)

2
+R2

cv −
R2

c sin(2v)

2

)

1
(

|2rm − r| ≤ Rc

)

+ πR2
c1

(

rm <
r −Rc

2

)

,

A3(r, rm, Rc) =

(

R2
c arccos

(

rm
Rc

)

− rm
√

R2
c − r2m

)

×

1 (rm ≤ Rc) .

Using the above result, the Ripley’s K-function is given as

KCE
1 (r, κ) ≃

π2
(

r2 −R2
c

)2

2
E

[

XE0(1,
κ√
πc2

)−1

∣

∣

∣

∣

EC
3

]

, r > Rc, r → 0.

(47)

Hence, the PCF is given as

gCE
1 (r, κ) =

dKCE
1 (r, κ)

2πr dr

≃π
(

r2 −R2
c

)

E

[

XE0

(

1,
κ√
πc2

)

)−1 ∣
∣

∣

∣

EC
3

]

≈14π
(

r2 −R2
c

)

P
[

EC
3

]

5 exp(−πR2
c)

,

where the intuition for the approximation in the last step

follows from Jensen’s inequality

E

[

XE0

(

1,
κ√
πc2

)−1 ∣
∣

∣

∣

EC
3

]

≥ 1

E

[

XE0

(

1, κ√
πc2

)

∣

∣

∣

∣

EC
3

]

=exp(πR2
c)P

[

EC
3

]

.

From [26], when Rc = 0,E
[

XE0(1,
κ√
πc2

)−1
]

≈ 14/5.

Hence, for Rc → 0, we approximate

E

[

XE0(1,
κ√
πc2

)−1|EC
3

]

≈14/5 exp(πR2
c)P

[

EC
3

]

=14/5 exp(κ2/c2)P
[

EC
3

]

.

This completes the proof of the Lemma.
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