
An Accelerated Communication-Efficient Primal-Dual Optimization
Framework for Structured Machine Learning

Chenxin Maa, Martin Jaggib, Frank E. Curtisa, Nathan Srebroc, and Martin Takáča

aDepartment of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, USA;
bSchool of Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland;
cToyota Technological Institute at Chicago, Chicago, IL

ARTICLE HISTORY
Compiled July 27, 2019

ABSTRACT
Distributed optimization algorithms are essential for training machine learning mod-
els on very large-scale datasets. However, they often suffer from communication
bottlenecks. Confronting this issue, a communication-efficient primal-dual coordi-
nate ascent framework (CoCoA) and its improved variant CoCoA+ have been
proposed, achieving a convergence rate of O(1/t) for solving empirical risk min-
imization problems with Lipschitz continuous losses. In this paper, an accelerated
variant of CoCoA+ is proposed and shown to possess a convergence rate of O(1/t2)
in terms of reducing suboptimality. The analysis of this rate is also notable in that
the convergence rate bounds involve constants that, except in extreme cases, are
significantly reduced compared to those previously provided for CoCoA+. The re-
sults of numerical experiments are provided to show that acceleration can lead to
significant performance gains.

KEYWORDS
nonlinear optimization, nonsmooth optimization, distributed optimization,
machine learning, accelerated methods

1. Introduction

The use of distributed optimization has become essential for training machine learning
models on very large datasets. For example, distribution is a key ingredient when the
dataset does not fit into the memory of a single machine, and rather must be stored in
a distributed manner over many machines or computational agents, each having direct
access only to their own (local) segment of the training data.

Efficiently training a machine learning model in such a network setting is challenging
due to the cost of communicating information between machines, as compared to the
relatively cheap cost of local computation on a single machine. Therefore, designing
efficient distributed optimization algorithms, which are able to balance the amount of
local computation with the amount of necessary communication between machines, is
of crucial importance. This is especially the case since communication bottlenecks and
the heterogeneity of large-scale computing systems have been increasing.

CONTACT: Martin Takáč. Email: Takac.MT@gmail.com



In this paper, we improve the existing CoCoA+ framework for communication-
efficient distributed optimization [6, 10, 18] by equipping it with acceleration [12]. We
do not simply apply a generic acceleration scheme, e.g., using the Universal Catalyst [7]
(see §1.2 for more discussion), but rather develop a technique specific for our setting.
We prove that our accelerated scheme possesses an improved convergence rate involving
reduced constants compared to that of CoCoA+. Our theory holds for arbitrary
local solvers used on the worker machines. We also provide the results of extensive
numerical experiments, where we demonstrate that the new accelerated scheme leads
to significantly improved performance in real application settings.

In the remainder of this introduction, we formally state our optimization problems
of interest, provide further motivation for the design of sophisticated distributed
optimization algorithms, discuss relevant work that has appeared in the literature,
summarize our contributions, and outline the remainder of the paper.

1.1. Problem Statements

We present our algorithmic framework in the context of solving the following pair of
optimization problems, which are dual to each other:

min
α∈Rn

[
OA(α) := f(Aα) +

∑
i∈I gi(αi)

]
and (A)

min
w∈Rd

[
OB(w) := f∗(w) +

∑
i∈I g

∗
i (−A>i w)

]
. (B)

Here, h∗ denotes the convex conjugate of a function h. The two problems are defined by
the functions f : Rd → R, the functions gi : R→ R for all i ∈ I, and the data matrix
A ∈ Rd×n, about which we make the following assumption.

Assumption 1. The functions f and gi for all i ∈ I are closed and convex. In
addition, the gradient function ∇f is Lipschitz continuous with constant λ and the
function g∗i for each i ∈ I is Lipschitz continuous with constant L. Finally, without
loss of generality, the columns of the data matrix satisfy ‖Ai‖ ≤ 1.

Observe that problem formulation (A) includes many important problems with
nonsmooth regularizers, such as Lasso with `1-norm regularization, i.e.,

min
α∈Rn

1
2 ‖Aα− b‖22︸ ︷︷ ︸

f(Aα)

+ λ1‖α‖1︸ ︷︷ ︸∑
i∈I gi(αi)

. (1)

(It is important to note this regularization term ‖ · ‖1 does not satisfy the requirements
in Assumption 1; however, we address how this can be handled in the next paragraph.)
More generally, many other smooth data-fitting functions can be used in place of f
in our context of problem (A). Problem formulation (B) includes many regularized
empirical loss minimization problems with strongly convex regularizers of the form

min
w∈Rd

n∑
i=1

1
n`i(A

>
i w)︸ ︷︷ ︸

g∗i (−ATi w)

+ λ2

2 ‖w‖
2︸ ︷︷ ︸

f∗(w)

, (2)

2



such as support vector machines (SVMs) or logistic regression. Here, the i-th column
Ai ∈ Rd of A represents the i-th data sample and λ2 > 0 is a regularization parameter.

The condition on g∗ in Assumption 1 is not very restrictive for many problems of
interest. In Section 5 of [4], the authors introduce a Lipschitzing trick, which amounts
to the idea of modifying a given function g(α) to

g̃(α) :=

{
g(α), if α ∈ B,
+∞, otherwise,

where B is some compact convex set. If one considers, e.g., problem (1), then one can
easily express a bound on the norm of the optimal solution α∗ as

λ1‖α∗‖1 ≤ min
α∈Rn

1
2 ‖Aα− b‖22 + λ1‖α‖1.

This means that, in order to satisfy our assumptions, one only needs to modify g(α)
such that both the optimal solution and the initial point lies in the set B. It is reasonable
to expect that this can be done with appropriately large B.

For our analysis later in the paper, we state the following lemma.

Lemma 1.1 (Corollary 13.3.3 in [14]). Given proper convex g∗, it holds that g∗ is
L-Lipschitz (w.r.t. the `2-norm) if and only if g has L-bounded support (w.r.t. the `2-
norm).

This lemma provides the following bound, of which we make ample use:

∀i : max
a,b∈dom(gi)

|a− b| ≤ 2L. (3)

1.2. Motivation and Literature Review

The increased size of optimization problems of interest in machine learning, as well as
the availability of parallel and distributed architectures, has led to various directions
of research on the design of parallel algorithms for either solving (1) directly (e.g.,
see [2, 3, 13]) or indirectly by solving its dual (2) (e.g., see [8, 19, 20]). For example,
some previous work has focused on shared memory systems in which the amount of
parallelism possible is dependent upon the number of processing units (CPUs) on a
single node, which is usually in the range of 16–64 cores per node in a contemporary high
performance cluster. To avoid locking and, hence, improve speed, some asynchronous
algorithms have been proposed and analyzed [8, 13]. However, despite the fact that such
methods are efficient with shared memory, naïve extensions of these ideas to distributed
environments can be terribly inefficient. This is due to the fact that such extensions
require continual communication between nodes, causing large overhead.

This type of observation has led many to conclude that, in a distributed computing
environment, one must focus not only on the number of data accesses, but also on the
number of communication steps, which is usually tied to the number of iterations of
the overall optimization algorithm [9]. For this reason, researchers have proposed the
use of batch (i.e., full gradient) methods, potentially using (partial or approximate)
second-order information as in Newton’s method [17, 22] or a quasi-Newton method
such as L-BFGS [23]. An important benefit of such methods is that they typically
require fewer iterations to achieve high accuracy of the solution. On the other hand,

3



a Newton-type method requires that a linear system be solved (approximately) in
every iteration. A popular approach for this procedure is the linear conjugate gradient
(CG) algorithm, such as proposed in Disco [22]. Unfortunately, however, in many
applications one might need a substantial number of CG steps in each Newton iteration.
Since each CG step requires one pass over the data and one round of communication,
this can also lead to substantial communication overhead.

To overcome these issues, the algorithms CoCoA [6], DisDCA [21] and CoCoA+
[10, 18] have been proposed to efficiently balance computation and communication in
distributed optimization environments. The main idea of these methods, with the data
partitioned across any number of nodes in a cluster, is to define meaningful auxiliary
subproblems to be solved in each node using only locally stored data. These subproblems
involve some inherited (partial) second-order information, which aids in yielding overall
fast convergence for solving the original problems (A) and (B).

As is the case for many other optimization methods for solving problems arising in
machine learning, the existing CoCoA+ framework only yields a sublinear convergence
rate of O(1/t) for the general convex case. That said, we are motivated by the fact that
several single machine solvers can be improved by incorporating Nesterov acceleration [1,
12], leading to an improved rate of O(1/t2); e.g., this was successfully done in [15]. In
this paper, we are able to provably accelerate the distributed CoCoA+ framework,
achieving a O(1/t2) rate for reducing suboptimality. (Compared to [15], our work
represents a unique contribution since we consider a distributed framework. We discuss
our contributions further in the next subsection.)

It is worthwhile to mention that acceleration could be achieved using the Universal
Catalyst proposed in [7]. However, for our purposes, this approach is less appealing
since it does not allow the local solver to produce randomized solutions which might
only have sufficient quality in expectation. Perhaps the accelerated algorithms most
relevant to the present work are those in [5, 11]. The subproblems in these papers are
assumed to be strongly convex. In our case, this is not general enough; instead, we
manage to exploit the structure of the objective OA, which is still quite general.

1.3. Contributions

Overall, the contributions of our work can be summarized as follows. Here, for any
α ∈ Rn in the context of (A), we define a dual solution w ∈ Rd for problem (B) as

w = w(α) := ∇f(Aα) . (4)

• We propose and analyze an accelerated communication-efficient block descent al-
gorithm for solving problems (A) and (B). Our analysis shows that our framework
possesses a convergence rate of O(1/t2) for suboptimality, i.e., with αt representing
the t-th algorithm iterate, we prove the accelerated reduction of OA(αt)−OA(α?)
over time t, where α? represents an optimal solution of (A). Given the recent work
in [4], our results for reducing suboptimality can then also be cast in terms of an
accelerated rate of the duality gap G(α) := OA(α) + OB(w(α)), as a practically
important accuracy certificate. Overall, we refer to our method as a primal-dual
approach since the primal iterate updates occur in parallel, the dual iterates are
communicated to the nodes, and since our theoretical results can be cast in terms of
accelerated convergence of the duality gap to zero.

4



• The convergence analyses of CoCoA and CoCoA+ yielded bounds involving
quantities which depend on the Lipschitz constants for the local subproblems. In this
sense, the results might be no better than similar bounds for inexact block proximal
gradient descent. By contrast, in this paper, we exploit the structure of the dual
objective OB to obtain complexity bounds that do not depend on Lipschitz constants
of the auxiliary subproblems. Instead, our bounds merely depend on quantities
related to local curvature corresponding to the subproblems.

• We extend our accelerated framework also to cover general non-strongly convex
regularizers. This is important, e.g., in the context of `1-norm regularized Lasso,
sparse logistic regression, and elastic net regularized problems.

• We have performed numerous numerical experiments to demonstrate that acceleration
can lead to significant performance improvements. In particular, the gains are
especially large for small values of the regularization parameter λ2, which is important
in very-large-scale settings where one often desires the regularization to be inversely
proportional to n. The C++ code for our implementation of our framework is
available on github: https://github.com/schemmy/CoCoA-Experiments.

We remark at the outset that one should not expect convergence guarantees for a dis-
tributed optimization algorithm to be as good as—let alone better than—corresponding
guarantees for a centralized algorithm. After all, with data distributed across multiple
machines and with practical reasons for limiting communication, it is natural for a
theoretical convergence guarantee to degrade as more machines are involved. That said,
experience has shown that good distributed optimization approaches can maintain the
same convergence rate as a centralized approach, albeit with a larger constant that
depends on the number of machines. This characterizes the accelerated convergence
guarantees that we prove in this paper. Theoretically, we show that the convergence
rate for our approach is no worse than for an accelerated centralized approach, though
the constant depends on the number of machines, and that empirically our distributed
algorithm achieves much better performance in terms of iterations and CPU time.

1.4. Organization

The remainder of the paper is organized as follows. We start by introducing our
new accelerated CoCoA+ (AccCoCoA+) algorithm, including the design of its
subproblems and strategies for solving them. We then describe our main complexity
result for the algorithm, showing its improvement over that for CoCoA+. Finally, we
comment on the results of our numerical experiments.

2. Accelerated CoCoA+

In this section, we introduce our proposed accelerated CoCoA+ (AccCoCoA+) algo-
rithm. We begin by defining notation related to the manner in which data is distributed
across various machines, then define quantities related to the local subproblems to be
solved in each iteration of the algorithm. Of central importance for these subproblems
are a carefully defined regularization scheme and a loose assumption on the accuracy
to which each subproblem must be solved in each step of AccCoCoA+.

5

https://github.com/schemmy/CoCoA-Experiments


2.1. Data Partitioning

Suppose that the n columns of the dataset are split across K machines (nodes). Let the
index set of columns stored on node k ∈ [K] := {1, . . . , k} be denoted as Pk. We assume
that the dataset is partitioned in a disjoint manner such that Pi ∩ Pj = ∅ for any i 6= j
while ∪Kk=1Pk = [n]. For notational convenience, we split the vector α ∈ Rn into the
set of K vectors {α[k]}Kk=1 by employing, for each k ∈ [K], the masking operator

(α[k])i :=

{
αi if i ∈ Pk,
0 otherwise.

(5)

As a consequence of separability of g in (A), we write

ψk(α
[k]) :=

∑
i∈Pk

gi(αi), (6)

so that g(α) =
∑K

k=1 ψk(α
[k]).

2.2. Subproblem

Iteration t of AccCoCoA+ involves the auxiliary vectors (yt, zt) ∈ Rn × Rn, which
one may split into {y[k]

t }Kk=1 and {z[k]t }Kk=1, respectively, in the same manner as α ∈ Rn
in (5). The goal in iteration t on each node k ∈ [K] is to solve (approximately)

min
z
[k]
t+1∈Rn

Gk(z
[k]
t+1;yt, zt), (7)

where, for scalars σ′ ≥ 0 and θt ≥ 0 (see below), the local objective function is

Gk(z
[k]
t+1;yt, zt) := ψk(z

[k]
t+1) +

1

K
f(Ayt)

+∇f(Ayt)>A(z[k]t+1 − y
[k]
t ) +

λθtσ
′

2

∥∥∥A(z[k]t+1 − z
[k]
t )
∥∥∥2 . (8)

At first glance, it is not obvious that this subproblem can be solved only using local
data on node k due to the presence of the term ∇f(Ayt)>A(z[k]t+1 − y

[k]
t ), which is

dependent on the entire dataset. However, by simply making the single shared vector
wt := ∇f(Ayt) available on each node, the local subproblem (7) only requires knowledge
of the pair (y[k]

t , z
[k]
t ) and the local part of A, and not the full vectors (yt, zt). Therefore,

the storage of the variable vectors y and z can also be distributed.
The last term in (8) represents a regularization term in which the parameter σ′ ≥ 0

plays a critical role. It can be interpreted as a measure for the cross-dependency of the
partitioning of the data. For our analysis, this term must be chosen to satisfy

σ′ ≥ σ′min := γ max
α∈Rn

‖Aα‖2∑K
k=1 ‖Aα[k]‖2

for some γ ∈ [ 1K , 1]. (9)

6



It is easy to show that σ′min/γ = maxα∈Rn
‖Aα‖2∑K

k=1 ‖Aα[k]‖2 ∈ [1,K]. If σ′min/γ is equal to
1, then any pair of samples from different elements of the partition must be orthogonal
to each other. In such cases, the function OA is block-separable. On the other hand, if
σ′min/γ is close to K, then the data across the partition are strongly correlated. Note
that the choice σ′ = γK is “safe” in the sense that (9) holds; see [10, Lemma 4].

It is worthwhile to emphasize the dependence of σ′min, and hence of σ′, on the
parameter γ, even though, for simplicity, we do not make this dependence explicit
in our notation. In turn, the parameter γ leads to different theoretical and empirical
trade-offs over its range [ 1K , 1]. We discuss these trade-offs further in §3.1 and §4.

2.3. Approximate Subproblem Solutions

A strength of our framework is that each subproblem (7) need not be solved exactly.
This is critical since, in the extreme, solving the subproblems exactly can be as
difficult as solving the original problem. In AccCoCoA+, we make the assumption
that, in iteration t, the solver employed to solve the subproblem on node k yields an
approximate solution with some additive error εt ≥ 0. To be precise, we make the
following assumption.

Assumption 2 (εt-approximate solutions). There exists a sequence {εt}∞t=0 ≥ 0 such
that, for each t ∈ {0, 1, 2, . . . } and k ∈ [K], the local solver employed on node k in
iteration t produces a (possibly random) z

[k]
t+1 satisfying

Et+1[Gk(z
[k]
t+1;yt, zt)|t] ≤ Gk(z

?
t+1

[k];yt, zt) + εt, (10)

where z?t+1
[k] := argminz[k]

t+1∈Rn
Gk(z

[k]
t+1;yt, zt) and Et+1[·|t] indicates conditional ex-

pectation given the algorithm history up to time t.

2.4. Algorithm

AccCoCoA+ is stated as Algorithm 1. Given an initial iterate vector α0 in the
effective domain of g and the scalar θ0 = 1, each iteration involves a series of steps,
only one of which involves communication between nodes. First, the auxiliary vectors
{y[k]

t }Kk=1 are set on each node, each representing a convex combination of the variables
α

[k]
t and z

[k]
t . Then, for setting up the local objective (8) for each subproblem (7), the

combined vector yt is used to compute wt, which must be communicated to all nodes.
After this point in iteration t, all remaining steps involve local computation on each
node: each subproblem is solved approximately to compute {z[k]t+1}Kk=1, after which
the elements of {α[k]

t+1}Kk=1 are set. Acceleration of the algorithm is due to the careful
update for the sequence {θt}, which, since it only involves a prescribed formula for a
scalar quantity, can be performed identically on each node. Observe that the update
sequence ensures that θt ∼ O(1/t).

3. Convergence Analysis

In this section, we study the convergence properties of the proposed AccCoCoA+
algorithm. First, we prove general complexity results, then, respectively in Sections 3.1

7



Algorithm 1 Accelerated CoCoA+ (AccCoCoA+)
1: choose α0 ∈ dom(g) ⊆ Rn; set z0 := α0, γ ∈ [ 1K , 1] and θ0 := 1
2: for t ∈ {0, 1, 2, . . . } do
3: for k ∈ [K] in parallel, set

y
[k]
t := (1− γθt)α[k]

t + γθtz
[k]
t (11)

4: set wt := ∇f(Ayt) and communicate to all nodes
5: for k ∈ [K] in parallel, compute an εt-approximate solution z

[k]
t+1 of subproblem (7)

6: for k ∈ [K] in parallel, set

α
[k]
t+1 := y

[k]
t + γθt(z

[k]
t+1 − z

[k]
t ) (12)

7: set θt+1 :=

√
γ2θ4t+4θ2t−γθ

2
t

2 (on each node)
8: end for

and 3.2, we provide interpretations of this main theorem for cases when the subproblems
are solved exactly or inexactly.

First, we prove the following lemma related to the sequence {θt}t≥0. The result is
similar to that given as Lemma 1 in [5].

Lemma 3.1. The sequence {θt}t≥0 is positive, monotonically decreasing, and has

1− γθt+1

θ2t+1

=
1

θ2t
(13)

and

θt ≤
2

tγ + 2
≤ 1 (14)

for all t ≥ 0.

Proof. For each t ≥ 0, the value θt+1 can be seen from Step 7 of Algorithm 1 to be
the positive root of the quadratic equation

θ2 + (γθ2t )θ − θ2t = 0. (15)

Since θ0 = 1, it follows from (15), the fact that a strongly convex quadratic univariate
function with a negative vertical intercept has a positive real root, and a simple inductive
argument that θt > 0 for all t ≥ 0, as desired. Next, plugging in θt+1 for θ in (15) and
rearranging, we obtain (13). This can again be rearranged to yield

1

θ2t+1

=
1

θ2t
+

γ

θt+1
, (16)

from which it follows that

1

θ2t
= 1 +

t∑
i=1

γ

θi
for all t ≥ 0.

8



This shows that {θt}t≥0 is monotonically decreasing, as desired. We now use mathe-
matical induction to show (14). First, (14) clearly holds for t = 0, for which we have
θ0 =

2
0+2 = 1. Assuming it holds up to t, we have from (16) that

1

θ2t+1

− γ

θt+1
=

1

θ2t
≥ (γt+ 2)2

4
. (17)

Now observe that the quadratic equation in the variable 1/θ given by

1

θ2
− γ

θ
− (γt+ 2)2

4
= 0 has roots

1

θ
=
γ ±

√
γ2 + (γt+ 2)2

2
.

This shows that, by (17) and since θt+1 > 0, we have

1

θt+1
≥
γ +

√
γ2 + (γt+ 2)2

2
≥
γ +

√
(γt+ 2)2

2
=
γ(t+ 1) + 2

2
.

Therefore, we conclude θt+1 ≤ 2
(t+1)γ+2 ≤ 1, which concludes the proof.

Next, we prove the following lemma, which is a modification of Lemma 2 in [5].

Lemma 3.2. Let {αt, zt}t≥0 be generated by Algorithm 1. Then, for all t ≥ 0,

αt =

t∑
l=0

ρltzl, (18)

where the coefficients {ρ0t , ρ1t , ..., ρtt} are nonnegative and sum to 1; i.e., αt is a convex
combination of the vectors {z0, z1, ..., zt}. More precisely, the coefficients are defined
recursively in t as ρ00 = 1, ρ01 = 1− γθ0, ρ11 = γθ0 and, for all t ≥ 1,

ρlt+1 =

{
(1− γθt)ρlt for l ∈ {0, ..., t},
γθt for l = t+ 1.

(19)

Proof. We proceed by induction. First, notice that α0 = z0 = ρ00z0 where ρ00 := 1. By
(11), this implies that y0 = z0, which together with θ0 = 1 gives (see (12))

α1 = y0 + γθ0(z1 − z0) = z0 + γθ0(z1 − z0) = (1− γθ0)z0 + γθ0z1,

which proves (18) for t = 1. Assuming now that (18) holds for some t ≥ 1, we obtain

αt+1
(12)
= yt + γθt(zt+1 − zt)

(11)
= (1− γθt)αt + γθtzt + γθt(zt+1 − zt)

(18)
= (1− γθt)

t∑
l=0

ρltzl + γθtzt + γθt(zt+1 − zt)

(18)
=

t∑
l=0

(1− γθt)ρlt︸ ︷︷ ︸
ρlt+1

zl + γθt︸︷︷︸
ρt+1
t+1

zt+1. (20)

9



From (14) and since γ ∈ [ 1K , 1], it follows that ρlt+1 ≥ 0 for all l ∈ {0, . . . , t + 1}. It
remains to show that the constants sum to 1. This is true since, for all t ≥ 1, the
weights in (20) (for αt+1) are obtained by taking the corresponding weights for αt,
multiplying them by γθt ∈ (0, 1], then including the weight for zt+1 as γθt.

Our next result relates to the optimal solution of an instance of subproblem (7).

Lemma 3.3. Let u?[k] := argminu[k] Gk(u[k];y, z). Then, for all u[k],

Gk(u[k];y, z) ≥ Gk(u?[k];y, z) +
λθtσ

′

2
‖A(u[k] − u?[k])‖2. (21)

Proof. Using convexity of f and gi for all i ∈ I (and, therefore, convexity of ψk defined
in (6)), one finds that for v[k] ∈ ∂ψk(u?[k]) one has

Gk(u[k];y, z)

(8)
= ψk(u

[k]) +
1

K
f(Ay) +∇f(Ay)>A(u[k] − y[k]) +

λθtσ
′

2

∥∥∥A(u[k] − z[k])
∥∥∥2

≥ ψk(u
?[k]) + 〈v[k],u[k] − u?[k]〉

+
1

K
f(Ay) +∇f(Ay)>A(u[k] − u?[k] + u?[k] − y[k])

+
λθtσ

′

2

∥∥∥A(u[k] − u?[k] + u?[k] − z[k])
∥∥∥2

= ψk(u
?[k]) + 〈v[k],u[k] − u?[k]〉

+
1

K
f(Ay) +∇f(Ay)>A(u[k] − u?[k]) +∇f(Ay)>A(u?[k] − y[k])

+
λθtσ

′

2

∥∥∥A(u[k] − u?[k])
∥∥∥2 + λθtσ

′

2

∥∥∥A(u?[k] − z[k])
∥∥∥2

+ λθtσ
′(u[k] − u?[k])>A>A(u?[k] − z[k])

= ψk(u
?[k]) +

1

K
f(Ay) +∇f(Ay)>A(u?[k] − y[k]) +

λθtσ
′

2

∥∥∥A(u?[k] − z[k])
∥∥∥2︸ ︷︷ ︸

=Gk(u?[k];y,z)

+ 〈v[k] +A>∇f(Ay) + λθtσ
′A>A(u?[k] − z[k]),u[k] − u?[k]〉

+
λθtσ

′

2

∥∥∥A(u[k] − u?[k])
∥∥∥2

≥ G(u?[k];y, z) + λθtσ
′

2

∥∥∥A(u[k] − u?[k])
∥∥∥2 ,

where the fact that

v[k] +A>∇f(Ay) + λθtσ
′A>A(u?[k] − z[k]) ∈ ∂Gk(u?[k];y, z)

yields the final inequality.

We now present our main convergence theorem. Our approach for proving the result is
based on the use of randomized estimated sequences, as in [5]. However, we have included
an important improvement to this approach that allows us to consider subproblems
that are not strongly convex. This is only possible due to the special structure of OA.

10



Theorem 3.4. For any optimal solution α? of problem (A) and all t ≥ 1,

E[OA(αt)−OA(α?)]

≤ 4

(tγ − γ + 2)2

(1− γ)(OA(α0)−OA(α?)) +
γλσ′

2
C +Kε0γ +

t−1∑
j=1

Ej

 (22)

holds where

C :=

K∑
k=1

‖A(α[k]
? −α

[k]
0 )‖2, (23a)

Ej :=
Kεjγ

θj
+

γ

θj−1
εj−1 + γR

√
2λσ′

θj−1
εj−1 for all j ∈ {1, . . . , t− 1}, (23b)

and R := max
k∈{1,...,K},a,b∈{α∈Rn | ∀i: αi∈dom(gi)}

‖A(a[k] − b[k])‖ ≤ max
k∈{1,...,K}

2Lnk. (23c)

Proof. By convexity of g, it follows that, for all t ≥ 0, one has

g(αt)
(18)
= g

(
t∑
l=0

ρltzl

)
≤

t∑
l=0

ρltg (zl) =: ĝt. (24)

Combining this definition and the result from Lemma 3.2, one gets that

ĝt+1 (24),(19)
=

t+1∑
l=0

ρlt+1g (zl) = γθtg (zt+1) +

t∑
l=0

ρlt+1g (zl) . (25)

On the other hand, under Assumption 1, one finds that

f(Aαt+1)

(12)
= f(Ayt + γθtA(zt+1 − zt))

≤ f(Ayt) + 〈∇f(Ayt), γθtA(zt+1 − zt)〉+
λγ2θ2t

2
‖A(zt+1 − zt)‖2

(9)
≤ f(Ayt) + γθt

〈
A>∇f(Ayt),

K∑
k=1

(z
[k]
t+1 − z

[k]
t )

〉
+
λγσ′θ2t

2

K∑
k=1

∥∥∥A(z[k]t+1 − z
[k]
t )
∥∥∥2

=

K∑
k=1

{
1

K
(1− γθt)f(Ayt) + γθt

〈
A>∇f(Ayt),y[k]

t − z
[k]
t

〉
+ γθt

( 1

K
f(Ayt) +

〈
A>∇f(Ayt), z[k]t+1 − y

[k]
t

〉
+
λσ′θt
2

∥∥∥A(z[k]t+1 − z
[k]
t )
∥∥∥2 )}.

Next, note that from the definition of yt in the algorithm one finds

y
[k]
t

(11)
= (1− γθt)α[k]

t + γθtz
[k]
t ,

γθty
[k]
t − γθtz

[k]
t = (1− γθt)α[k]

t − (1− γθt)y[k]
t ,

11



γθt(y
[k]
t − z

[k]
t ) = (1− γθt)(α[k]

t − y
[k]
t ). (26)

Defining, for all t ≥ 0, an upper-bound on OA(αt) as

ÔA
t
:= ĝt + f(Aαt)

(24)
≥ OA(αt), (27)

it follows from above and convexity of f that one has

ÔA
t+1 (27)

= ĝt+1 + f(Aαt+1)

(25)
= γθtg (zt+1) +

t∑
l=0

ρlt+1g (zl) + f(Aαt+1)

≤ γθtg (zt+1) +

t∑
l=0

ρlt+1g (zl)

+

K∑
k=1

{
1

K
(1− γθt)f(Ayt)

+ γθt

〈
A>∇f(Ayt),y[k]

t − z
[k]
t

〉
+ γθt

(
1

K
f(Ayt) +

〈
A>∇f(Ayt), z[k]t+1 − y

[k]
t

〉
+
λσ′θt
2

∥∥∥A(z[k]t+1 − z
[k]
t )
∥∥∥2)}

(19),(26)
= γθtg (zt+1) + (1− γθt)

t∑
l=0

ρltg (zl)︸ ︷︷ ︸
ĝt

+

K∑
k=1

{
1

K
(1− γθt)f(Ayt)

+ (1− γθt)
〈
A>∇f(Ayt),α[k]

t − y
[k]
t

〉
+ γθt

(
1

K
f(Ayt) +

〈
A>∇f(Ayt), z[k]t+1 − y

[k]
t

〉
+
λσ′θt
2

∥∥∥A(z[k]t+1 − z
[k]
t )
∥∥∥2)}

(6)
= (1− γθt)ĝt + (1− γθt)

(
f(Ayt) +

〈
A>∇f(Ayt),αt − yt

〉)
+ γθt

K∑
k=1

(
ψk(z

[k]
t+1) +

1

K
f(Ayt) +

〈
A>∇f(Ayt), z[k]t+1 − y

[k]
t

〉
+
λσ′θt
2
‖A(z[k]t+1 − z

[k]
t )‖2

)

12



(8)
≤ (1− γθt)

(
ĝt + f(Aαt)

)
+ γθt

K∑
k=1

Gk(z
[k]
t+1;yt, zt)

(27)
= (1− γθt)ÔA

t
+ γθt

K∑
k=1

Gk(z
[k]
t+1;yt, zt).

Conditioning on the history up to time t, it follows from above that

Et+1[ÔA
t+1|t] ≤ (1− γθt)ÔA

t
+ γθt

K∑
k=1

Et+1[Gk(z
[k]
t+1;yt, zt)|t]

(10)
≤ (1− γθt)ÔA

t
+ γθt

K∑
k=1

(
Gk(z?t+1

[k];yt, zt) + εt

)
,

meaning that, for any u, one has

Et+1[ÔA
t+1|t]

(21)
≤ (1− γθt)ÔA

t
+ γθt

K∑
k=1

(
Gk(u[k];yt, zt)−

λθtσ
′

2

∥∥∥A(u[k] − z?t+1
[k])
∥∥∥2 + εt

)
.

In particular, choosing u = α?, where α? is any optimal solution of problem (A), and
taking the total expectation, one finds

E[ÔA
t+1

]

≤ (1− γθt)E[ÔA
t
] + γθt

K∑
k=1

E

[
Gk(α

[k]
? ;yt, zt)−

λθtσ
′

2

∥∥∥A(α[k]
? − z?t+1

[k])
∥∥∥2 + εt

]
= (1− γθt)E[ÔA

t
]

+ γθt

K∑
k=1

E

[
λθtσ

′

2
‖A(α[k]

? − z
[k]
t )‖2 − λθtσ

′

2

∥∥∥A(α[k]
? − z?t+1

[k])
∥∥∥2 + εt

]

+ γθt

K∑
k=1

E

[
ψk(α

[k]
? ) +

1

K
f(Ayt) + 〈A>∇f(Ayt),α[k]

? − y
[k]
t 〉
]

≤ (1− γθt)E[ÔA
t
] + γθtOA(α?)

+ γθt

K∑
k=1

E

[
λθtσ

′

2
‖A(α[k]

? − z
[k]
t )‖2 − λθtσ

′

2

∥∥∥A(α[k]
? − z?t+1

[k])
∥∥∥2 + εt

]
,

where the last inequality follows from convexity of f . Defining the scalar quantity
r2t+1 =

∑K
k=1 ‖A(α

[k]
? − z?t+1

[k])‖2, we may conclude from above that

E

[
ÔA

t+1 −OA(α?) +
γλθ2t σ

′

2
r2t+1

]

13



≤ (1− γθt)E[ÔA
t −OA(α?)] +Kεtγθt +

γλθ2t σ
′

2
E

[
K∑
k=1

‖A(α[k]
? − z

[k]
t )‖2

]
. (28)

To bound the last term on the right-hand side, observe that, for all k ∈ {1, . . . ,K},

E
[
‖A(α[k]

? − z
[k]
t )‖2

]
= E

[
‖A(α[k]

? − z?t
[k] + z?t

[k] − z
[k]
t )‖2

]
≤ E[‖A(α[k]

? − z?t
[k])‖2] +E

[
‖A(z?t

[k] − z
[k]
t )‖2

]
︸ ︷︷ ︸

=:C1

+ 2E
[
‖A(α[k]

? − z?t
[k])‖ · ‖A(z?t

[k] − z
[k]
t )‖

]
︸ ︷︷ ︸

=:C2

≤ E[r2t ] + C1 + C2.

It remains to bound C1 and C2. From (21) and (10), one finds that

Gk(z?t+1
[k];yt, zt) +

λθtσ
′

2
Et+1[‖A(z?t+1

[k] − z
[k]
t+1)‖

2|t]
(21)
≤ Et+1[Gk(z

[k]
t+1;yt, zt)|t]

(10)
≤ Gk(z?t+1

[k];yt, zt) + εt,

(29)

and hence we can conclude that

λθtσ
′

2
Et+1[‖A(z?t+1

[k] − z
[k]
t+1)‖

2|t] ≤ εt. (30)

Therefore,

γλθ2t σ
′

2
C1 =

γλθ2t σ
′

2
E
[
‖A(z?t

[k] − z
[k]
t )‖2

]
=

γθ2t
θt−1

λθt−1σ
′

2
Et−1

[
Et

[
‖A(z?t

[k] − z
[k]
t )‖2|t− 1

]] (30)
≤ γθ2t

θt−1
εt−1. (31)

Now, let us bound C2. By defining R as in (23c), Jensen’s inequality gives

γλθ2t σ
′

2
C2 =

γλθ2t σ
′

2

(
2E
[
‖A(α[k]

? − z?t
[k])‖ · ‖A(z?t

[k] − z
[k]
t )‖

])
(23c)
≤ Rγλθ2t σ′E

[
‖A(z?t

[k] − z
[k]
t )‖

]
≤ Rγλθ2t σ′

√
2

γλθ2t σ
′

√
γλθ2t σ

′

2
E
[
‖A(z?t [k] − z

[k]
t )‖2

]
(31)
≤ Rγλθ2t σ′

√
2

γλθ2t σ
′

√
γθ2t
θt−1

εt−1 = γθ2tR

√
2λσ′

θt−1
εt−1.

14



Putting everything together leads to

E

[
ÔA

t+1 −OA(α?) +
γλθ2t σ

′

2
r2t+1

]
(28)
≤ E

[
(1− γθt)(ÔA

t −OA(α?)) +
γλθ2t σ

′

2
r2t

]
+Kεtγθt +

γθ2t
θt−1

εt−1 + γθ2tR

√
2λσ′

θt−1
εt−1.

Dividing both sides by θ2t and denoting φt := E[ÔA
t −OA(α?)] and r̃2t := E[r2t ] gives

1

θ2t
φt+1 +

γλσ′

2
r̃2t+1

(28)
≤ 1− γθt

θ2t
φt +

γλσ′

2
r̃2t

+
Kεtγ

θt
+

γ

θt−1
εt−1 + γR

√
2λσ′

θt−1
εt−1︸ ︷︷ ︸

=:Et

. (32)

Now, by the property of θt in (13), one finds

1− γθt+1

θ2t+1

φt+1 +
γλσ′

2
r̃2t+1 ≤

1− γθt
θ2t

φt +
γλσ′

2
r̃2t + Et. (33)

Unrolling the recurrence, one obtains for t ≥ 1 that

1− γθt
θ2t

φt +
γλσ′

2
r̃2t

(33)
≤ 1− γθ0

θ20
φ0 +

γλσ′

2
r̃20 +

t−1∑
i=0

Ei. (34)

Hence, along with (13), one has for t ≥ 1 that

φt ≤ θ2t−1

(
1− γθ0
θ20

φ0 +
γλσ′

2
r̃20 +

t−1∑
i=0

Ei.

)
(14)
≤
(

2

tγ − γ + 2

)2
(
1− γθ0
θ20

φ0 +
γλσ′

2

K∑
k=1

‖A(α[k]
? − z

[k]
0 )‖2 +Kε0γ +

t−1∑
i=1

Ei

)

and (22) follows.
The stated upper bound for the quantity R, which measures the maximum possible

distance between any two feasible solutions, can be derived as follows:

R
(23c)
:= max

k∈{1,2,...,K},a,b∈{α∈Rn | ∀i: αi∈dom(gi)}
‖A(a[k] − b[k])‖

≤ max
k∈{1,2,...,K},a,b∈{α∈Rn | ∀i: αi∈dom(gi)}

σk‖a[k] − b[k]‖

(3)
≤ max

k∈{1,2,...,K}

√
nk
√
nk4L2 = max

k∈{1,2,...,K}
2Lnk,

where σ2k = maxα[k]
‖Aα[k]‖2
‖α[k]‖2 ≤ nk.

15



Table 1. Important quantities for our comparisons with related convergence results.

worst-case worst-case
symbol expression upper bound limK→n

σ̃2 maxα
‖Aα‖2
‖α‖2 n n

σ2
k maxα[k]

‖Aα[k]‖2
‖α[k]‖2 nk = n

K 1

σ2
∑K
k=1 |Pk|σ2

k

∑
k n

2
k = K n2

K2 = n2

K n

R maxk,a,b∈dom(g) ‖A(a[k] − b[k])‖ maxk 2Lnk = 2Ln
K 2L

Theorem 3.4 describes the behavior of suboptimality only. We can, however, use the
following theorem from [4], which relates suboptimality with the duality gap.

Theorem 3.5 ([4, Theorem 4]). Suppose problem (A) is solved by a (possibly random-
ized) algorithm producing a sequence of iterates {αt}∞t=0 such that, for all t ≥ 1,

E[OA(αt)−OA(α?)] ≤
F

d(t)

for some scalar F ≥ 0 and function d. If, for t ≥ 1, it holds that

d(t) ≥ max

{
2Fλn

σ̃2L2
,
2Fσ̃2L2

λnε2

}
, (35)

where σ̃2 is the maximum eigenvalue of A>A, then the expected duality gap satisfies

E[OA(αt) +OB(w(αt))] ≤ ε.

Related to (35), henceforth, we assume that ε is such that 2Fλn
σ̃2L2 <

2F σ̃2L2

λnε2 .
Before stating our key corollaries of Theorem 3.4 and comparisons with results for

other methods in the literature, let us define a few important quantities on which these
results depend (see Table 1). The first quantity is σ̃2, already defined in Theorem 3.5.
Due to the fact that for each data column Ai we have ‖Ai‖ ≤ 1, it follows that this
quantity is bounded by n. The second quantity is σ2k, the maximum eigenvalue of a
Gram matrix for the local data on node k. This value will be large if the samples stored
on node k are correlated. The next important quantity is σ2, which depends on each
σ2k and the size of each partition nk.

3.1. Exact Subproblem Solutions

If the subproblems are solved exactly, i.e., if εt = 0 for all t ≥ 0, then (22) has the form

E[OA(αt)−OA(α?)] ≤ 4
(tγ−γ+2)2

(
(1− γ)(OA(α0)−OA(α?))

+ γλσ′

2

∑K
k=1‖A(α

[k]
? −α

[k]
0 )‖2

)
. (36)

A nice property of this result is that the second term in the parentheses might be equal
to zero even if z0 = α0 6= α?. This is not the case for other results for accelerated
algorithms as their subproblems are strongly convex [1, 5, 7, 12] and hence have the

16



term ‖α? −α0‖2 present in their complexity guarantees. Another nice property is that∑K
k=1‖A(α

[k]
? − α

[k]
0 )‖2 can be bounded above by

∑K
k=1σ

2
k‖α

[k]
? − α

[k]
0 ‖2, though the

former can be much smaller.

Corollary 3.6. Consider the extreme cases γ = 1
K and γ = 1 and assume that nk = n

K .
As discussed in Section 2, for the first case, one can choose σ′ = 1 while for the second
case one can choose σ′ = K. To obtain E[OA(αt) − OA(α?)] ≤ ε, one has to run
Algorithm 1 for at least t > T iterations, where T is defined as follows for each case.
• Case γ = 1:

T =

√
2λσ′

ε

∑K
k=1‖A(α

[k]
? −α

[k]
0 )‖2 ≤

√
2
ε

√
λσ′
∑K

k=1σ
2
k‖(α

[k]
? −α

[k]
0 )‖2

≤
√

2

ε

√
λσ′
∑K

k=1σ
2
k4L

2nk =

√
8L2

ε

√
λK
∑K

k=1
n
Knk =

√
8L2n2λ

ε
.

• Case γ = 1/K:

T ≤ K
√

4
ε

(
(1− 1

K )(OA(α0)−OA(α?)) +
γλσ′

2

∑K
k=1‖A(α

[k]
? −α

[k]
0 )‖2

)
≤
√

4K(K−1)
ε (OA(α0)−OA(α?)) +

4
ε
Kλσ′

2

∑K
k=1σ

2
k‖(α

[k]
? −α

[k]
0 )‖2

≤
√

4K(K−1)
ε (OA(α0)−OA(α?)) +

8L2n2λ
ε .

Comparison with CoCoA+. As found in [10], the complexity for γ = 1 is better as
one requires fewer iterations in order to have an ε-approximate solution in expectation.
Hence, let us focus only on the case of γ = 1 and compare our rate with the results
derived in [10]. From the proof of [10, Theorem 8], one obtains that for CoCoA+, if
α0 = 0, it holds that E[OA(αt)−OA(α?)] ≤ 4KL2λσ2

(1+ 1

2
(t−t0)) , where

t0 ≥ max{0, log(2(OA(α0)−OA(α?))/(4KL
2λσ))}.

To obtain suboptimality below ε, CoCoA+ needs to be run for t ≥ T = t0+
8KL2λσ2

ε ≤
t0+

8L2n2λ
ε iterations. Neglecting the t0 term, CoCoA+ needs 8L2n2λ

ε iterations, whereas

AccCoCoA+ needs only
√

8L2n2λ
ε . This improvement is consistent with proximal

gradient and accelerated gradient descent [11], which is as expected since, in the
worst-case, they will produce the same iterates as CoCoA+ and AccCoCoA+.

Let us also derive a complexity bound for the duality gap. Corollary 3.6 with The-

orem 3.5 implies that whenever t ≥ T , where T = 2L
ε

√
σ′σ̃2

n

∑K
k=1‖A(α

[k]
? −α

[k]
0 )‖2 ∼

O(1ε ), the expected duality gap satisfies E[OA(αt) +OB(w(αt))] ≤ ε. This is valid for
the number of iterations of AccCoCoA+. Note also that for the worst-case complexity
for non-accelerated batch-SDCA (or full gradient method) for hinge loss (L = 1), the
known results hold for the average solution and the number of iterations are ∼ O(1ε )
(see, e.g., [19, 20] with the batch size chosen as large as possible).

17



3.2. Inexact Subproblem Solutions

To get a better understanding of the case when the subproblems are solved approximately,
let us define an auxiliary nonnegative sequence {at}∞t=0 such that

∑∞
t=0

√
at

t2 → 0. In this
section, we assume that the errors for the local solvers are set as εt = atθt.

Before analyzing this case in more detail, let us bound the total accumulated error
up to iteration t, i.e.,

∑t−1
j=1Ej . One finds that

t−1∑
j=1

Ej = Kγ

t−1∑
j=1

aj +

t−2∑
j=0

aj +R
√
2λσ′

t−1∑
j=1

√
aj−1

≤ (K + 1)

t−1∑
j=0

aj +R
√
2λσ′

t−1∑
j=0

√
aj

≤ (K + 1)

t−1∑
j=0

aj +

√
8L2

λK

t−1∑
j=0

√
aj =: St.

Let us now consider two cases:
• Suppose that at = r ∈ R+. In this case, εt = rθt = O(1/t). Moreover, St =(

(K + 1)r +
√
r 8L

2

λK

)
t. This implies that

E[OA(αt)−OA(α?)] ≤4
λσ′
2

∑K
k=1‖A(α

[k]
? −α

[k]
0 )‖2 +Kε0 + St

(t+1)2

∼O

(
(K+1)r+

√
r 8L2

λK

t

)
.

Note that, in this case, ε ∼ O(1/t). This might create the impression that the local
solver has to do more work as t increases; however, note that the Lipschitz constant
of the gradient of the smooth part of the subproblem solved by the local solver also
scales as θt ∼ O(1/t).
• A second interesting case is when limt→∞ St =: S∞ < ∞. For example, suppose
at =

r
tp with p > 2. Then, indeed, limt→∞ St is finite. In this case, one obtains

E[OA(αt)−OA(α?)] ≤ 4
λσ′
2

∑K
k=1‖A(α

[k]
? −α

[k]
0 )‖2 +Kε0 + St

(t+1)2

≤ 4
λσ′
2

∑K
k=1‖A(α

[k]
? −α

[k]
0 )‖2 +Kε0 + S∞

(t+1)2

≤
8L2

λ
+4Kε0+4(K+1)

∑∞
i=0 ai+4

√
8L2

λK

∑∞
i=0

√
ai

(t+1)2 ∼ O(1/t2).

4. Numerical Experiments

In this section, we report the results of numerical experiments. The purpose of pro-
viding the results of these experiments is twofold. For one thing, we use them to
illustrate the benefits of acceleration by providing results that compare the performance

18



of AccCoCoA+ versus CoCoA+ [10, 18]. In addition, we explore the communica-
tion/computation tradeoff and the scalability of AccCoCoA+. Here, it is important
to recall that for AccCoCoA+ one communication is needed for each iteration. Hence,
one reduces the communication costs by reducing the number of required iterations. For
a recent comparison of CoCoA+ to other distributed solvers, including Quasi-Newton
methods and ADMM, we refer the reader to [10, 18].

Our implementations of CoCoA+ and AccCoCoA+ are written in C++ using
MPI for communication, run on m3.xlarge Amazon EC2 instances. We run all the
experiments with K = 4 nodes using SDCA [16] as the local solver. The datasets used
are summarized in Table 2.1 For all runs, we chose σ′ by the “safe rule,” i.e., σ′ = Kγ.

Table 2. Datasets used in the numerical experiments.

Dataset n d size(GB)

url 2,396,130 3,231,961 2.21
rcv1.test 677,399 47,236 1.21
covtype 581,012 54 0.07
epsilon 400,000 2,000 3.6

We first compare CoCoA+ versus AccCoCoA+ for solving hinge-loss SVM prob-
lems of the form (2). For both algorithms, the local solver, SDCA, is run for H = 5×105

iterations (closed-form single coordinate solutions). In Figure 1, we compare the evo-
lution of the duality gap with respect to the number of iterations and elapsed time.
The results suggest a benefit of acceleration in terms of decreasing the duality gap,
both when γ = 1/K and when γ = 1. That said, the performance of AccCoCoA+ is
not uniformly better than that of CoCoA+ for all iterations and at all time. Indeed,
it is possible for CoCoA+ to “catch up” to AccCoCoA+, such as in the results for
news20. That said, it is clear that AccCoCoA+ typically outperforms CoCoA+ (here
and in the remainder of our experiments).

In Figure 2, we show how the regularization parameter λ2 (indicated as λ) can affect
the performance of both algorithms when solving the problem with the url dataset. In
particular, the experiments suggest that as the value of λ2 becomes smaller, there will
be a more significant benefit from employing the accelerated algorithm.

1All data are available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

19

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


0 200 400 600 800 1000

10
−2

10
−1

covtype, Hinge Loss, λ=1e−6 

Number of Iterations

D
u

a
lit

y
 G

a
p

 

 
CoCoA+,       γ=1/K

CoCoA+,       γ=1

AccCoCoA+,γ=1/K

AccCoCoA+,γ=1

0 200 400 600 800 1000

10
−3

10
−2

10
−1

news20, Hinge Loss, λ=1e−4 

Number of Iterations

D
u

a
lit

y
 G

a
p

 

 
CoCoA+,       γ=1/K

CoCoA+,       γ=1

AccCoCoA+,γ=1/K

AccCoCoA+,γ=1

0 200 400 600 800 1000

10
−3

10
−2

url, Hinge Loss, λ=1e−6 

Number of Iterations

D
u

a
lit

y
 G

a
p

 

 
CoCoA+,       γ=1/K

CoCoA+,       γ=1

AccCoCoA+,γ=1/K

AccCoCoA+,γ=1

0 10 20 30 40

10
−2

10
−1

covtype, Hinge Loss, λ=1e−6 

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

 

 
CoCoA+,       γ=1/K

CoCoA+,       γ=1

AccCoCoA+,γ=1/K

AccCoCoA+,γ=1

0 20 40 60 80 100 120

10
−3

10
−2

10
−1

news20, Hinge Loss, λ=1e−4 

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

 

 
CoCoA+,       γ=1/K

CoCoA+,       γ=1

AccCoCoA+,γ=1/K

AccCoCoA+,γ=1

0 200 400 600 800

10
−3

10
−2

url, Hinge Loss, λ=1e−6 

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

 

 
CoCoA+,       γ=1/K

CoCoA+,       γ=1

AccCoCoA+,γ=1/K

AccCoCoA+,γ=1

Figure 1. Duality gap as a function of iterations (top row) and elapsed time (bottom row) when solving
hinge-loss SVM problems.

0 200 400 600 800 1000

10
−3

10
−2

url, Hinge Loss, λ=1e−5 

Number of Iterations

D
u

a
lit

y
 G

a
p

 

 
CoCoA+,       γ=1/K

CoCoA+,       γ=1

AccCoCoA+,γ=1/K

AccCoCoA+,γ=1

0 200 400 600 800 1000

10
−3

10
−2

url, Hinge Loss, λ=1e−6 

Number of Iterations

D
u

a
lit

y
 G

a
p

 

 
CoCoA+,       γ=1/K

CoCoA+,       γ=1

AccCoCoA+,γ=1/K

AccCoCoA+,γ=1

0 200 400 600 800 1000

10
−3

10
−2

url, Hinge Loss, λ=1e−7 

Number of Iterations

D
u

a
lit

y
 G

a
p

 

 
CoCoA+,       γ=1/K

CoCoA+,       γ=1

AccCoCoA+,γ=1/K

AccCoCoA+,γ=1

0 200 400 600 800

10
−3

10
−2

url, Hinge Loss, λ=1e−5 

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

 

 
CoCoA+,       γ=1/K

CoCoA+,       γ=1

AccCoCoA+,γ=1/K

AccCoCoA+,γ=1

0 200 400 600 800

10
−3

10
−2

url, Hinge Loss, λ=1e−6 

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

 

 
CoCoA+,       γ=1/K

CoCoA+,       γ=1

AccCoCoA+,γ=1/K

AccCoCoA+,γ=1

0 200 400 600 800

10
−3

10
−2

url, Hinge Loss, λ=1e−7 

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

 

 
CoCoA+,       γ=1/K

CoCoA+,       γ=1

AccCoCoA+,γ=1/K

AccCoCoA+,γ=1

Figure 2. Duality gap as a function of iterations (top row) and elapsed time (bottom row) when solving
hinge-loss SVM problems with different regularization values (λ2) on the url dataset.

Figure 3 shows analogous results when the algorithms are employed to solve the
Lasso problem in (1), for which increasing the regularization parameter λ1 typically
leads to more sparsity of the solution vector. The results indicate that the accelerated
algorithm offers faster convergence of the sub-optimality gap to zero, especially for
small values of λ1.

20



0 50 100 150
10

1

10
2

10
3

10
4

url, Lasso, λ
1
=1 

Number of Iterations
S
u

b
o

p
ti
m

a
lit

y
 G

a
p

 

 
CoCoA+,       γ=1/K

CoCoA+,       γ=1

AccCoCoA+,γ=1/K

AccCoCoA+,γ=1

0 20 40 60 80
10

−2

10
−1

10
0

10
1

10
2

epsilon, Lasso, λ
1
=10 

Number of Iterations

S
u

b
o

p
ti
m

a
lit

y
 G

a
p

 

 
CoCoA+,       γ=1/K

CoCoA+,       γ=1

AccCoCoA+,γ=1/K

AccCoCoA+,γ=1

0 500 1000 1500 2000 2500
10

1

10
2

10
3

10
4

url, Lasso, λ
1
=1 

Elapsed Time (s)

S
u

b
o

p
ti
m

a
lit

y
 G

a
p

 

 
CoCoA+,       γ=1/K

CoCoA+,       γ=1

AccCoCoA+,γ=1/K

AccCoCoA+,γ=1

0 500 1000 1500 2000
10

−1

10
0

10
1

10
2

epsilon, Lasso, λ
1
=10 

Elapsed Time (s)

S
u

b
o

p
ti
m

a
lit

y
 G

a
p

 

 
CoCoA+,       γ=1/K

CoCoA+,       γ=1

AccCoCoA+,γ=1/K

AccCoCoA+,γ=1

Figure 3. Sub-optimality gap as a function of iterations (top row) and elapsed time (bottom row) when
solving Lasso problems. The choice of the regularizer value (λ1) are such that for the url dataset the density of
the optimal solution is 5.3%, while for the epsilon dataset the density is 13.56%.

We also ran experiments to demonstrate how the performance of AccCoCoA+
depends on the number of iterations (H) that SDCA runs for solving each subproblem.
Figure 4 shows that for larger H the subproblems will be solved more accurately, and
thus fewer outer iterations can be expected to reach a desired tolerance on the duality
gap. However, in terms of running time, it is not always better to choice larger H. For
example, for the covtype dataset, choosing H = 104 results in less time to reach a
tolerance of 10−2 than is needed when H = 103 or H = 105. However, for the news20
dataset, the time required decreases with H for all values considered in our experiments.
The reason that this occurs is that d is quite large in this dataset, which makes each
round of communication quite time consuming. Therefore, by solving the subproblems
more accurately (by running more iterations), one achieves a better balance between
communication and computation.

Such a tradeoff between communication and computation can also be observed in
Figure 5, where we compare how the values of H can affect the convergence of the
duality gap for the covtype and rcv_test datasets. The left two plots illustrate that
to reach the same tolerance on the duality gap, the number of iterations can always
be reduced by reaching a more accurate solution for each subproblem. However, the
curves in the other two plots indicate that there is always a best value of H that leads
to fastest convergence with respect to running time.

21



0 200 400 600 800 1000

10
−3

10
−2

10
−1

covtype, Hinge Loss, λ=1e−5 

Number of Iterations

D
u

a
lit

y
 G

a
p

 

 

γ=1/K, H=10
3

γ=1/K, H=10
4

γ=1/K, H=10
5

γ=1,    H=10
3

γ=1,    H=10
4

γ=1,    H=10
5

0 200 400 600 800 1000

10
−4

10
−3

10
−2

10
−1

news20, Hinge Loss, λ=1e−4 

Number of Iterations

D
u

a
lit

y
 G

a
p

 

 
γ=1/K, H=50

γ=1/K, H=500

γ=1/K, H=5000

γ=1,    H=50

γ=1,    H=500

γ=1,    H=5000

0 0.5 1 1.5 2

10
−2

10
−1

10
0

covtype, Hinge Loss, λ=1e−5 

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

 

 

γ=1/K, H=10
3

γ=1/K, H=10
4

γ=1/K, H=10
5

γ=1,    H=10
3

γ=1,    H=10
4

γ=1,    H=10
5

0 50 100 150 200

10
−4

10
−3

10
−2

10
−1

news20, Hinge Loss, λ=1e−4 

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

 

 
γ=1/K, H=50

γ=1/K, H=500

γ=1/K, H=5000

γ=1,    H=50

γ=1,    H=500

γ=1,    H=5000

Figure 4. Comparison of performance for different inner iteration limits when γ = 1
K

and γ = 1.

10
3

10
4

10
5

10
3

10
4

covtype,  λ=1e−5 

H

N
u

m
b

e
r 

o
f 

It
e

ra
ti
o

n
s

 

 

K=1,γ=1/K

K=1,γ=1

K=2,γ=1/K

K=2,γ=1

K=4,γ=1/K

K=4,γ=1

K=8,γ=1/K

K=8,γ=1

10
3

10
4

10
5

10
2

10
3

10
4

rcv1.test,  λ=1e−5 

H

N
u

m
b

e
r 

o
f 

It
e

ra
ti
o

n
s

 

 
K=1,γ=1/K

K=1,γ=1

K=2,γ=1/K

K=2,γ=1

K=4,γ=1/K

K=4,γ=1

K=8,γ=1/K

K=8,γ=1

10
3

10
4

10
5

10
1

10
2

10
3

covtype,  λ=1e−5 

H

E
la

p
se

d
 T

im
e

 [
s]

 

 
K=1,γ=1/K

K=1,γ=1

K=2,γ=1/K

K=2,γ=1

K=4,γ=1/K

K=4,γ=1

K=8,γ=1/K

K=8,γ=1

10
3

10
4

10
5

10
1

10
2

rcv1.test,  λ=1e−5 

H

E
la

p
se

d
 T

im
e

 [
s]

 

 
K=1,γ=1/K

K=1,γ=1

K=2,γ=1/K

K=2,γ=1

K=4,γ=1/K

K=4,γ=1

K=8,γ=1/K

K=8,γ=1

Figure 5. Number of iterations and running time required to reach a tolerance of 10−3 on the duality gap as
the inner iteration limit (H) is varied.

Our last experiment shows how AccCoCoA+ scales with the number of ma-
chines (K). The results are shown in Figure 6. We set H = n

K for every K to make sure
that the same amount of data is utilized during each iteration of AccCoCoA+ across
all K machines. By doing so, it is also expected that each subproblem has been solved
to similar accuracy, according to the complexity result of SDCA in [16]. The results
show that when γ = 1, AccCoCoA+ takes almost the same amount of time regardless
of how many machines are used, which demonstrates the better scaling properties it
has than the γ = 1

K case.

22



0 50 100 150

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

rcv1.test, γ=1/K, λ=1e−5 

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

 

 
K=2

K=4

K=6

K=8

K=10

K=12

K=16

0 50 100 150

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

rcv1.test, γ=1, λ=1e−5 

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

 

 
K=2

K=4

K=6

K=8

K=10

K=12

K=16

Figure 6. Running times on different numbers of machines K.

5. Conclusion

We proposed and analyzed AccCoCoA+, an accelerated variant of CoCoA+ achieving
the optimal O(1/t2) convergence rate. The method is robust to inaccurate subproblems
both in theory and practice, and performs well in large-scale experiments. Our analysis
provides constants in the convergence rate which are significantly tighter compared to
those previously obtained for CoCoA+.

Funding

This material is based upon work supported by the U.S. National Science Foundation,
Division of Computing and Communications Foundations, under Award Number CCF-
1618717 and CCF:1740796.

References

[1] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[2] Joseph K Bradley, Aapo Kyrola, Danny Bickson, and Carlos Guestrin. Parallel coordinate
descent for l1-regularized loss minimization. arXiv:1105.5379, 2011.

[3] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. The Journal of Machine Learning Research, 12:2121–
2159, 2011.

[4] Celestine Dünner, Simone Forte, Martin Takáč, and Martin Jaggi. Primal-dual rates and
certificates. In 33rd International Conference on Machine Learning, ICML 2016, 2016.

[5] Olivier Fercoq and Peter Richtárik. Accelerated, parallel and proximal coordinate descent.
SIAM Journal on Optimization, 25(4):1997–2023, 2015.

[6] Martin Jaggi, Virginia Smith, Martin Takác, Jonathan Terhorst, Sanjay Krishnan, Thomas
Hofmann, and Michael I Jordan. Communication-efficient distributed dual coordinate
ascent. In Advances in Neural Information Processing Systems, pages 3068–3076, 2014.

[7] Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order
optimization. In Advances in Neural Information Processing Systems, pages 3366–3374,
2015.

[8] Ji Liu and Stephen J Wright. Asynchronous stochastic coordinate descent: Parallelism
and convergence properties. SIAM Journal on Optimization, 25(1):351–376, 2015.

23



[9] Chenxin Ma, Jakub Konečnỳ, Martin Jaggi, Virginia Smith, Michael I Jordan, Peter
Richtárik, and Martin Takáč. Distributed optimization with arbitrary local solvers.
Optimization Methods and Software, 32(4):813–848, 2017.

[10] Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I Jordan, Peter Richtárik, and Martin
Takáč. Adding vs. averaging in distributed primal-dual optimization. In 32th International
Conference on Machine Learning, ICML 2015, 2015.

[11] Yu Nesterov. Gradient methods for minimizing composite functions. Mathematical
Programming, 140(1):125–161, 2013.

[12] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

[13] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In Advances in Neural Information
Processing Systems, pages 693–701, 2011.

[14] R Tyrrell Rockafellar. Convex analysis princeton university press. Princeton, NJ, 1970.
[15] Shai Shalev-Shwartz and Tong Zhang. Accelerated mini-batch stochastic dual coordinate

ascent. In Advances in Neural Information Processing Systems, pages 378–385, 2013.
[16] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for

regularized loss minimization. The Journal of Machine Learning Research, 14(1):567–599,
2013.

[17] Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed opti-
mization using an approximate newton-type method. pages 1000–1008, 2014.

[18] Virginia Smith, Simone Forte, Ma Chenxin, Martin Takáč, Michael I Jordan, and Martin
Jaggi. COCOA: A general framework for communication-efficient distributed optimization.
Journal of Machine Learning Research, 18:230, 2018.

[19] Martin Takáč, Avleen Bijral, Peter Richtárik, and Nathan Srebro. Mini-batch primal and
dual methods for svms. In In 30th International Conference on Machine Learning, ICML
2013, 2013.

[20] Martin Takáč, Peter Richtárik, and Nathan Srebro. Distributed mini-batch SDCA.
arXiv:1507.08322, 2015.

[21] Tianbao Yang, Shenghuo Zhu, Rong Jin, and Yuanqing Lin. Analysis of distributed
stochastic dual coordinate ascent. arXiv:1312.1031, 2013.

[22] Yuchen Zhang and Lin Xiao. Communication-efficient distributed optimization of self-
concordant empirical loss. In Large-Scale and Distributed Optimization, pages 289–341.
Springer, 2018.

[23] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-bfgs-b:
Fortran subroutines for large-scale bound-constrained optimization. ACM Transactions
on Mathematical Software (TOMS), 23(4):550–560, 1997.

24


	Introduction
	Problem Statements
	Motivation and Literature Review
	Contributions
	Organization

	Accelerated CoCoA+
	Data Partitioning
	Subproblem
	Approximate Subproblem Solutions
	Algorithm

	Convergence Analysis
	Exact Subproblem Solutions
	Inexact Subproblem Solutions

	Numerical Experiments
	Conclusion

