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Hybrid Methods in Solving Alternating-Current
Optimal Power Flows

Jie Liu, Alan Claude Liddell, Jr., Jakub Mareček, and Martin Takáč

Abstract—Many steady-state problems in power systems,
including rectangular power-voltage formulations of optimal
power flows in the alternating-current model, can be cast as
polynomial optimization problems (POP). For a POP, one can
derive strong convex relaxations, or rather hierarchies of increas-
ingly strong, but increasingly computationally challenging convex
relaxations. We study means of switching from solving a con-
vex relaxation to Newton’s method working on a non-convex
(augmented) Lagrangian of the POP.

Index Terms—α-β theory, numerical analysis (mathematical
programming), optimization, power system analysis computing.

I. INTRODUCTION

THE ALTERNATING-CURRENT optimal power flow
problem (ACOPF) is one of the best known non-

convex non-linear optimization problems, studied extensively
since the 1960s [17], [30], [31], [39]. Early work focused
on straightforward applications of Newton’s method [43] to
the non-convex problem, which produced exceptionally fast
routines, albeit without any guarantees as to their global con-
vergence. Inspired by Lavaei and Low [27], much recent
work has focussed on iterative strengthening of convexifi-
cations of ACOPF by the iterated addition of variables and
constraints [17], [21], [22], [36], [37]. Such iterative strength-
ening produces a hierarchy of relaxations that converges to the
global optimum of the non-convex problem, asymptotically,
under mild conditions, but at a considerable computational
cost. It has not been clear how to obtain solutions fast, while
benefitting from the convergence guarantees associated with
the convexifications.

The shortcomings of the two approaches seem inherent in
the non-convexity of the problem. Newton’s method exhibits
local quadratic convergence on non-convex problems. When
one starts from an initial point outside of a neighbourhood of
a stationary point, Newton’s method may diverge and produce
no feasible solution. Even within the neighbourhood, where
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ported by the National Science Foundation under Grant NSF:CCF:161871.
Paper no. TSG-01508-2016. (Corresponding author: Jakub Mareček.)
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Newton’s method converges, the stationary point may turn out
to be very far [6], [29] from the global optimum.

On the other hand, solving strong convexifications,
such as the semidefinite programming (SDP) relaxations
of [17], remains challenging, computationally. Leading
second-order methods for solving the SDP relaxations, such
as SeDuMi [42], often converge within dozens of iterations on
SDP relaxations of even the largest available instances avail-
able, but the run-time and memory requirements of a single
iteration may be prohibitively large. One may employ first-
order methods [32], [34], whose memory requirements and
per-iteration run-times are trivial, but whose rates of conver-
gence are, unfortunately, linear or worse. Either way, as one
progresses in the hierarchy of convexifications, the run-time
to reach an acceptable accuracy grows fast.

To address this challenge, we introduce novel means of
combining solvers working on a convexification and solvers
working on the non-convex problem. We employ a first-order
method [34] in solving a convexification, until we can guaran-
tee local convergence of Newton’s method on the non-convex
Lagrangian of the problem, possibly considering some regu-
larisation [34]. In particular, the guarantee considers points z0
and z∗, such that when we start Newton’s method or a similar
algorithm at the point z0, it will generate a sequence of points
zi converging to z∗ with quadratic rate of convergence, i.e.,

‖zi − z∗‖ ≤ (1/2)2i−i‖z0 − z∗‖. (1)

The associated test requires the knowledge of the Lagrangian
and its partial derivatives at z0, but does not require the compu-
tation of zi for i > 0, or solving of any additional optimization
problems. This could be seen as means of on-the-fly choice
of the solver, which preserves the global convergence guar-
antees associated with convexification, whilst improving upon
the convergence rates of first-order methods.

The paper is organised as follows: Section II presents two
key results from the past two decades of study of convergence
properties of Newton’s method on systems of polynomial
equalities and illustrates them on the alternating-current power
flows (ACPF). Section III presents our approach to polynomial
optimization problems, in general, and alternating-current opti-
mal power flows (ACOPF), in particular, with key results in
Section III-C. Section IV describes our implementation and
presents its computational performance on IEEE test cases,
as well as a model of the transmission system of Poland.
Section V puts this in the context of related work, while
Section VI concludes the paper with suggestions for further
research.
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II. A BRIEF OVERVIEW OF α-β THEORY

Our approach is based on the α-β theory of
Smale [7], [10], [40], which is also known as the point
estimation theory. We present some basic results of the theory
first.

Consider a general real-valued polynomial system f : R
m �→

R
n, i.e., a system of polynomial equations f := (f1, . . . , fn)

in variables x := (x1, . . . , xm) ∈ R
m. Let us define Newton’s

operator at x ∈ R
m as

Nf (x) := x− [∇f (x)]†f (x),

where [∇f (x)]† ∈ R
m×n is the Moore-Penrose inverse of the

Jacobian matrix of f at x. A sequence with initial point x0
and iterates of Newton’s method subsequently, xi+1 := Nf (xi)

for i ≥ 0, is well-defined if [∇f (xi)]† is well defined at all
xi, i ≥ 0. We say that x ∈ R

m is an approximate zero of f if
and only if

1) the sequence {xi} is well-defined; and
2) there exists x′ ∈ R

m such that f (x′) = 0 and ‖xi− x′‖ ≤
(1/2)2i−1−i‖x0 − x′‖ for all i ≥ 0.

We call x′ ∈ R
m the associated zero of x ∈ R

m and say that x
represents x′. The key result of α-β theory is as follows.

Proposition 1 [40]: Let f : R
m �→ R

n be a system of poly-
nomial equations and define functions α( f , x), β( f , x), γ ( f , x)
as:

α( f , x) := β( f , x)γ ( f , x), (2a)

β( f , x) :=
∥
∥
∥[∇f (x)]†f (x)

∥
∥
∥ = ‖x− Nf (x)‖, (2b)

γ ( f , x) := sup
k>1

∥
∥
∥
∥
∥

[∇f (x)]†
[∇(k)f

]

(x)

k!

∥
∥
∥
∥
∥

1/(k−1)

, (2c)

where [∇f (x)]† ∈ R
m×n is the Moore-Penrose inverse of the

Jacobian matrix of f at x and [∇(k)f ] is the symmetric tensor
whose entries are the k-th partial derivatives of f at x. Then
there is a universal constant α0 ∈ R such that if α( f , x) ≤ α0,
then x is an approximate zero of f . Moreover, if x′ denotes
its associated zero, then ‖x− x′‖ ≤ 2β( f , x). It can be shown
that α0 = 13−3

√
17

4 ≈ 0.157671 satisfies this property.
We refer to [10] and [40] for the proof and a variety

of extensions. Considering that [40] is somewhat difficult to
read and a part of a five-paper series, we refer to the sur-
vey of Cucker and Smale [10] or the more recent survey of
Beltrán and Pardo [3] for an overview.

Let us illustrate the approach on alternating-current power
flows (ACPF), where the instance is defined by:
• a graph, where n vertices are partitioned into pv (rep-

resenting buses with generators), pq (representing buses
with loads), and {S} (representing the slack bus), and
where adjacency of buses i and j is denoted i ∼ j, and

• the admittance matrix Y ∈ C
n×n, with G := Re(Y), B :=

Im(Y),
• active loads and injections Pi at buses i ∈ pq ∪ pv and

reactive loads Qi at buses i ∈ pq,
• voltage magnitude setpoints vi at buses i ∈ pv.

Following [14], we define the power-flow operator F : R
2n �→

R
2n in terms of complex voltages Vi = Vx

i + ıVy
i , i ∈ V , with

Vc stacked as Vc
i = Vx

i , Vc
n+i = Vy

i :

[F
{

Vc}]i := Gii

{(

Vx
i

)2 + (

Vy
i

)2
}

(3a)

−
∑

j∼i

Bij

{

Vy
i Vx

j − Vx
i Vy

j

}

−
∑

j∼i

Gij

{

Vx
i Vx

j + Vy
i Vy

j

}

− Pi, i ∈ pv ∪ pq

[

F
{

Vc}]

n+i := Bii

{(

Vx
i

)2 + (

Vy
i

)2
}

(3b)

+
∑

j∼i

Bij

{

Vx
i Vx

j + Vy
i Vy

j

}

+
∑

j∼i

Gij

{

Vy
i Vx

j − Vx
i Vy

j

}

− Qi, i ∈ pq

[

F
{

Vc}]

n+i := (

Vx
i

)2 + (

Vy
i

)2 − v2
i , i ∈ pv. (3c)

Whether a point x ∈ R
m is in a domain of monotonicity can

be tested by the simple comparison of α and α0.
Proposition 2: For every instance of ACPF, there exists a

universal constant α0 ∈ R and a function α of the instance of
ACPF and a vector x ∈ R

m such that if α(F, x) ≤ α0, then x
is an approximate zero of F.

Proof: One can either apply Proposition 1 to a problem
in Vc, which stacks the real and imaginary parts of the
complex-valued vector to obtain a real-valued problem, or one
may apply an extension of the proposition to complex-valued
polynomials, such as [13, Th. 4.3].

Obviously, one needs to compute β (2b) and γ (2c) to com-
pute α (2a). Because γ ( f , x) is difficult to compute in practice,
we wish to establish a bound, e.g., when m = n. Let us first
define some auxiliary quantities, which will be used in the fol-
lowing proposition. Define a pseudo-norm ‖ · ‖1 on R

n, along
with an auxiliary diagonal matrix �(d):

‖x‖1 :=
(

1+
n∑

i=1

|xi|2
)1/2

, �(d)(x)i,i := d1/2
i ‖x‖di−1

1 ,

where di := deg( fi) is the degree of fi in the system of
polynomials f = ( f1, . . . , fn). Let us consider the degree-
d polynomial g(x) := ∑

|ν|p≤d gνxν where the coefficients
gν ∈ R and xν := xν1

1 · · · xνn
n with |ν|p := ∑n

i=1 νi. We can
define the following norm:

‖g‖2p :=
∑

|ν|p≤d

|gν |2 ν!(d − |ν|)!
d!

, (4)

where ν! := ∏n
i=1 νi!, which, in turn, makes it possible to

define a norm on the polynomial system f :

‖f‖2p :=
n∑

i=1

‖fi‖2p.

Finally, we define:

μ( f , x) := max{1, ‖f‖p · ‖[∇f (x)]†�(d)(x)‖}.
With these quantities, we arrive at the following proposition
bounding γ ( f , x).
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Proposition 3 [40]: Let f : R
n �→ R

n be a polynomial
system f := ( f1, . . . , fn) with degree di := deg( fi), i ∈
{1, 2, . . . , n} and D := maxi∈{1,2,...,n}{di}. If x ∈ R

n such that
[∇f (x)] is invertible, then

γ ( f , x) ≤ μ( f , x)D3/2

2‖x‖1 . (5)

Notice that the proposition assumes a polynomial system,
rather than a polynomial optimization problem.

III. THE THEORY

We extend the approach to polynomial optimization prob-
lems (POP). Considering the recent insights [26] into the
availability and strength of certain Lagrangian relaxations of
a POP, we derive a test, whereby knowing only the relaxation
and its derivatives at a particular point, we can decide whether
one can switch to Newton’s method on the polynomial relax-
ation. Although there are many options for implementing the
test, we suggest tracking the active set and waiting until it
stabilises. Then, one may consider a polynomial, in whose
construction inequalities in the active set are treated as equal-
ities, while the remaining inequalities are disregarded. Notice
that unless one runs Newton’s method on that very polynomial,
one may need to back-track, whenever the active set changes
while running Newton’s method.

A. The Preliminaries

In order to describe the approaches formally, we introduce
some notation. Let us denote the polynomial ring over the
reals by R[x] and consider the compact basic semi-algebraic
set:

K := {

x ∈ R
m : gj(x) ≥ 0, j = 1, . . . , p,

hk(x) =, 0, k = 1, . . . , q
}

(6)

for some gj ∈ R[x], j = 1, . . . , p in x ∈ R
m, hk ∈ R[x], k =

1, . . . , q. The corresponding polynomial optimization problem
is:

POP : f ∗ := min
x∈Rm
{f (x) : x ∈ K} (7)

where f ∈ R[x] is the objective function. We use f ∗ to denote
the value of the objective function f at the optimum of the
POP (7); notice that there need not be a unique point at which
f ∗ is attained. We use P

m to denote the space of all possible
descriptions of a POP (7) in dimension m, and T(x) to denote
a measure of infeasibility of R

m:

T(x) :=
p

∑

j=1

min{0, gj(x)}2 +
q

∑

k=1

hk(x)
2 (8)

in keeping with [34]. For additional background material on
polynomial optimization, we refer to [2].

In a departure from the tradition, we use the term
Lagrangian loosely, to mean a function L̃ : R

m̃ �→ R, m̃ > m
associated with a particular instance of a POP (7) in R

m. In the
best-known example, one has m̃ = m+p+q and x̃ ∈ R

m̃ is the

concatenation of the original variable x ∈ R
m and the so called

Lagrangian coefficients λ, κ associated with the constraints:

L(x, λ, κ) := f (x)+
p

∑

j=1

λj min{0, gj(x)} +
q

∑

k=1

κk|hk(x)| (9)

The best-known version [5] of a Lagrangian relaxation is:

ρ0 := max
λ∈Rp,κ∈Rq

min
x∈Rm

L(x, λ, κ). (10)

One often adds additional regularisation terms to the
Lagrangian [34], which may improve the rate of convergence,
but should not obscure the fact that ρ0 of the Lagrangian relax-
ation may be far removed from f ∗. One may also remove the
min in (9) and add constraints on λj to be non-negative in (10),
but either way, it is impossible to apply α-β theory directly.

Using the looser definition of the Lagrangian, we define
the domain of monotonicity of a POP (7) with respect to a
particular Lagrangian.

Definition 1 (Monotonicity Domain With Respect to L̃): For
any x̃ ∈ R

m̃ and L̃ : R
m̃ �→ R, consider a sequence x̃0 := x̃,

x̃i+1 := NL̃(x̃i) for i > 0. The point x̃ is within the domain of
monotonicity with respect to L̃ if this sequence is well defined
and there exists a point x̃′ ∈ R

m̃ such that L̃(x̃′) = 0 and

‖ x̃i − x̃′ ‖≤ (1/2)2i−i ‖ x̃0 − x̃′ ‖ . (11)

Then, we call x̃′ the associated stationary point of x̃ and say
that x̃ represents x̃′.

Notice that we use tilde to stress the variable parts, such
as the Lagrangian L̃ and its dimension m̃. Notice also that
domains of monotonicity are known also as the region of
attraction, the basin of attraction, etc.

B. The Assumptions

Recently, it has been realised that one can approximate the
global optimum f ∗ as closely as possible, in case one applies
the relaxation to a problem P̃ equivalent to P, which has suf-
ficiently many redundant constraints. To state the result, we
need some additional technical assumptions as follows.

Assumption 1: K is compact and 0 ≤ gj(x) ≤ 1 on x ∈ K
for all j = 1, . . . , p, possibly after re-scaling. Moreover, the
family of polynomials {gj, 1− gj} generates the algebra R[x].

Notice that if K is compact, one may always rescale vari-
ables xi and add redundant constraints such that Assumption 1
holds. Further, we assume the following.

Assumption 2: There exists a unique point x∗ ∈ K, where
f ∗ is attained.

Notice that one can easily construct an example with two
generators with the same feed-in tariff and a single load bus
connected to the two generators by branches so short that the
losses are too low to measure, where this assumption is vio-
lated. At the same time, it is easy to see that an arbitrarily small
perturbation to the cost function makes it possible to satisfy
the assumption. Alternatively, one could replace Assumption 2
with an assumption on the separation of stationary points, as
discussed in [9].
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C. The Results

It is well-known that one can construct the following.
Lemma 1 (Lasserre Hierarchy): Let Assumption 1 hold for

K (6) underlying a POP P with optimum f ∗. For every ε > 0,
there exists dε ∈ N such that for every d ≥ dε , there exists
a convex Lagrangian relaxation of P, which yields a lower
bound f ∗ − ε ≤ ρd ≤ f ∗.

Proof: There are several possible proofs. One follows that
of [26, Corollary 2.1]. An alternative is based on [25] and
considers a Lagrangian relaxation of semidefinite program-
ming problems. There, the strong duality can be assured by a
reformulation of the POP, see [20].

Notice, however, that these Lagrangians, while convex, are
not polynomial, due to the presence of the semidefinite con-
straint. Moreover, for d ≥ dε , a single iteration of minimising
the convex Lagrangian, even using a first-order method, can
be computationally much more demanding than a single itera-
tion of second-order methods for the basic Lagrangian ρ0. We
would hence like to study the domains of monotonicity with
respect to variants of the basic Lagrangian, where there would
be no inequalities.

At a particular point, one can check which inequalities are
satisfied with equality, up to some tolerance, and replace such
inequalities with equalities. As usual [5], we use A(x, ε) ⊆
{1, 2, . . . , p} to denote the index set of the so-called active
inequalities of the POP (7) that are satisfied with equality, up
to the tolerance of ε, at a point x ∈ R

m:

A(x, ε) := {

j : |gj(x)| ≤ ε, j = 1, 2, . . . , p
}

, (12)

At the point x, we can evaluate A(x, ε) and construct a locally
valid, but polynomial, Lagrangian:

L′(x, λ, κ) := f (x)+
p

∑

j=1

(

�j∈Aλjgj(x)
)+

q
∑

k=1

κkhk(x) (13)

The following is clear:
Lemma 2: Let Assumptions 1 and 2 hold for K (6). For

every ε > 0, there exists dε ∈ N such that for every d ≥ dε ,
the Lagrangian relaxation of P̃d yields a lower bound f ∗−ε ≤
ρd ≤ f ∗ achieved at x∗d and the active set A(x∗d, ε) induces
L′(x, λ, κ) with optimum ρd.

Proof: The proof follows from the reasoning of
[9, Propositions 7 and 8], as explained by Henrion and
Lasserre [19]: Under Assumptions 1 and 2, the moment
matrix for d makes it possible to extract a feasible solution
by performing Schur decomposition [9], which in turn allows
one to estimate the active set.

This allows for the direct application of α-β theory.
Theorem 1: There exists a universal constant α0 ∈ R, such

that for all m ∈ N, P ∈ P
m, where Assumptions 1 and 2

hold for P, there exists a d ∈ N, such that for every ε >

0, there exists dε ∈ N such that for every d ≥ dε , there is
a Lagrangian relaxation L̃d in dimension m̃, and a function
α:Pm̃ × R

m̃ �→ R such that if α(∇L̃d, x̃) ≤ α0, then x is the
domain of monotonicity of a solution with objective function
value ρd such that f ∗ − ε ≤ ρd ≤ f ∗.

Proof: The proof follows from the observation that each
convex Lagrangian of Lemma 1 is associated with a non-
convex, but polynomial Lagrangian of Lemma 2, and that both
Lagrangians will have a function value at their optima bounded
from below by f ∗ − ε. Formally, for all m ∈ N, p ∈ P

m, and
x ∈ R

m, there exists P̃d, d ∈ N, such that for every ε > 0, there
exists dε ∈ N such that for every d ≥ dε , both the Lagrangian
relaxation L̃d of P̃d and the new Lagrangian relaxation of the
same problem L′d yield a lower bound f ∗ − ε ≤ ρd ≤ f ∗.
While minimising the convex Lagrangian of the polynomial
optimization problem (7), we can apply Proposition 1 to the
first-order conditions of the corresponding Lagrangian L′d of
Lemma 2.

D. An Application to ACOPF

The alternating-current optimal power flow prob-
lem (ACOPF) extends the constraints of alternating-current
power flow (ACPF) of Section II with a number of box
constraints; an objective, which is the sum of quadratic
functions of real powers; and the so-called thermal limits.
We refer to [34] for the complete formulation. In terms of
ACOPF, the theory can be summarised as follows.

Corollary 1: There exists a universal constant α0 ∈ R, such
that for every instance of ACOPF, there exists δ ∈ R, δ ≥ 0
and a function α : R

m �→ R specific to the instance of ACOPF,
such that for any ε > δ and vector x ∈ R

m if α(x) ≤ α0, x is
in the domain of monotonicity of an optimum of the instance
of ACOPF, which is no more than ε away from the value of
the global optimum with respect to its objective function.

Proof: By Theorem 1. The δ accounts for the
perturbation.

In the hybridisation we propose, one starts by solving a
convexification, followed by the estimation of the active set
in the outer loop. Then, one may test the stability of the
active set. Whenever the active set seems stable and the test
of Proposition 1 applied to L′ allows, we switch to Newton’s
method on the non-convex Lagrangian L′. Some back-tracking
line search may be employed within Newton’s method, until
a sufficient decrease in L is observed. Although this algorithm
may seem somewhat crude, it seems to perform well.

Alternatively, one may employ a variant, whose schematic
overview is in Algorithm 1. There, we consider first-order
optimality conditions of L′ in the test on Line 6, but switch
to Newton’s method on the first-order optimality conditions
of (9), while memorising the current value as S. While min-
imising (9), we check the active set; when it does change,
we revert to solving the convexification with the memorised
value S. Although this algorithm may seem even cruder than
the above, it performs better still in practice.

IV. THE PRACTICE

In implementing a hybrid method for ACOPF, such as
Algorithm 1, one encounters a number of challenges. One
requires a solver for the convexification of ACOPF, a well-
performing implementation of Newton’s method for the non-
convex Lagrangian L′, and an implementation of Proposition 3.
We will comment upon these in turn.
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Algorithm 1 A Schema of the Hybrid Method
1: Initialise x ∈ R

m, λ ∈ R
p, κ ∈ R

q, e.g., randomly
2: for k← 0, 1, 2, . . . do
3: Update (x, λ, κ), e.g., using [34]
4: Ak ← A(x, ε), i.e., index-set (12) of inequalities satisfied up

to ε-accuracy
5: Construct the polynomial Lagrangian function L′ correspond-

ing to Ak
6: if k > K and Ak = Ak−1 = . . . = Ak−K and α(∇L′, x) ≤ α0

then
7: S← (x, λ, κ)
8: for l← 0, 1, 2, . . . do
9: Update (x, λ, κ) using Newton’s step, as discussed in

Section IV-C.C
10: A′l← A(x, ε), i.e., index-set (12) of inequalities satisfied

up to ε-accuracy
11: if A′l �= Ak then
12: (x, λ, κ)← S
13: break
14: end if
15: if infeasibility T(x) < ε, cf. (8) then
16: Optionally, test sufficient conditions for global opti-

mality, e.g., [35]
17: break
18: end if
19: end for
20: if infeasibility T(x) < ε, cf. (8) then
21: break
22: end if
23: end if
24: end for

A. The Convexification

The convexification we use is based on of the Lagrangian
of the relaxation of Lavaei and Low [27]. (As we have shown
in [17], the relaxation of Lavaei and Low is the first level of
the hierarchy of Lasserre [25], considered in Lemma 1.) In
particular, we have used a variant introduced in [34].

To solve the convexification, we have used a problem-
specific first-order method [34], which is based on a low-rank
coordinate descent with a closed-form step. Outside of other
advantages, this method maintains the feasible solution of
ACOPF at least throughout the first iteration of the outer
loop, which often suffices, and makes it unnecessary to extract
the feasible solution of ACOPF, as suggested in the proof of
Lemma 2.

B. The Test

A key contribution of ours is an implementation of
Proposition 3 specific to ACOPF. There, one should observe
that β is easy to obtain as β(x, L) := ‖d‖2 = ‖Lp‖2, where
Lp is Newton’s direction, and f = ∂L

∂x . By observing ∂L
∂x , we

can use di = 3 ∀i, thus D = 3 and �(d)(x) = 31/2‖x‖21I2n×2n,
where I2n×2n is a 2n× 2n identity matrix, so

μ(L, x) = max
{

1,
√

3‖x‖21 · ‖∇L‖ · ‖[∇2L(x)]−1‖
}

,

where the spectral norm ‖[∇2L(x)]−1‖ can be computed as the
inverse of the non-zero eigenvalue of ∇2L(x) whose absolute
value is minimal.

A trivial implementation may run for days even on modest
instances. In our implementation, we used about 2000 lines

of algebraic manipulations in Python to generate considerable
amounts of instance-specific, optimized C code employing
Intel MKL Libraries. For example, the test for case2383wp
involves about 30 MB of C code. This makes it possible to run
the test within seconds even on case2383wp. Still, one may
benefit from running the test, only when the active set has
been constant for K iterations of the outer loop, as suggested
in Line 6 of Algorithm 1.

C. The Newton Method

There are a number of options for implementing Newton’s
method in Line 9 of Algorithm 1. The straightforward option
is to apply Newton’s method to ∇L′ = 0, which has the local
quadratic convergence rate [5, Proposition 4.4.3] and where
the theory of the previous section holds. One can also use any
other method with a quadratic rate of convergence for solving
∇L′ = 0 in order for the reasoning of the previous section to
be applicable, see [7].

Further, a number of alternatives are possible:
1) One can smooth the non-smooth parts of the

Lagrangian (9) and then apply Newton’s method to
solve (10), or consider projected Newton’s method with
box constraints. The implementation is non-trivial, con-
sidering the min-max structure, but standard. [4] details
many practical suggestions for the former, while [24]
presents the latter.

2) One can apply primal-dual interior-point methods to
a variant of the problem with logarithmic barriers
[5, Sec. 4.4.4] or similar [8]. The implementation is,
again, non-trivial, but standard. The local rate of conver-
gence is quadratic [8] or better, under mild conditions.

3) One can employ alternating-minimisation methods in
solving (10), with Newton’s step for some or all of the
blocks. In particular, one can alternate between minimi-
sation of primal variables (x) and maximisation of dual
variables (λ, κ). Multiple Newton steps, each satisfying
sufficient decrease, can be performed in each iteration
of the loop, before a sufficient decrease in the convex
Lagrangian is tested.

We will not provide theoretical results matching those of
Section III for any of these three alternatives. Due to this fact,
combined with the non-convexity of the Lagrangian, Newton’s
direction may turn out not to be a direction of descent, in
which case one can multiply it by -1, as usual [16]. See
Section IV-E below for some computational illustrations.

D. Set-Up of Computational Experiments

To validate the impact of our approach, we performed
numerical experiments on a collection of well-known
instances [48] and two variants of thermal limits. Whenever
we mention “extended” next to the name of the instance, we
use a formulation of thermal limits allowing for phase-shifting
and tap-changing transformers as explained in [34, Sec. 5.2].
The experiments were performed on a computer with an
Intel Xeon CPU E5-2620 clocked at 2.40GHz and 128 GB
of RAM. Throughout, we compare the performance of the
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Fig. 1. The motivation: the evolution of a measure of infeasibility (top row) as defined in (8) and objective function (bottom row) when one switches from
solving the convexification to Newton’s method after a given number of steps on IEEE 30-bus test system (left), 118-bus test system (middle), and a snapshot
of the Polish system (case2383wp; right).

coordinate descent of [34] on the Lavaei-Low SDP relax-
ation [27] (plotted in blue), against Newton’s method on the
non-convex Lagrangian (plotted in yellow), against the per-
formance of a variant of the hybrid method (plotted in red),
which switches from the coordinate descent on the convexifi-
cation to to Newton’s method on the non-convex Lagrangian,
when the α-β test is satisfied. In particular, we plot the
evolution of the infeasibility as defined in (8) and the evo-
lution of the objective function over the number of epochs,
where each epoch refers to either m iterations of coordinate
descent, or m coordinate-wise Newton’s steps, for an instance
in dimension m.

We have used randomisation in sampling of coordinates, but
we have used a fixed random seed for all runs of all methods.
Unless stated otherwise, we have used voltage magnitudes uni-
formly at 1, phase angles uniformly at 0, and power generated
uniformly at mid-points of the respective intervals as the ini-
tial point, in keeping with [48]. We discuss the stability of the
methods in more detail below.

E. Results of Computational Experiments

In Figures 1–6, we present a sample of the results. First,
we motivate the need for a hybrid method in Figure 1.
There, each time series represents one run, where one starts
by solving the convexification using coordinate descent, and
switches over to Newton’s method after a specified number
of epochs. For example, series CD 4 is obtained by running
4 epochs of coordinate descent before switching to Newton’s
method. We chose series with 4i epochs of coordinate descent,

Fig. 2. An illustrative comparison of three variants of the Newton method,
as discussed in Section IV-E.

i = 1, 2, . . . , up to the point where the α-β test is satis-
fied. Figure 1 shows that even after a number of iterations
of coordinate descent, each of which decreases the value of
the Lagrangian, Newton’s method can diverge. See, for exam-
ple, the series denoted CD 4 and CD 500 in the middle plots
for the IEEE 118-bus test system, where one switches-over
after 4 and 500 epochs of the coordinate descent on the con-
vexification, respectively. In the middle plot in the top row,
we see that T, the measure of infeasibility (8), for CD 4
does not seem to fall below 1, ever. In the middle plot in
the bottom row, we see that a variety of stationary points
can be reached, with the switch-over after 500 epochs (CD
500) yielding a considerably different stationary point com-
pared to the switch-over after 16 epochs (CD 16) and 64
epochs (CD 64).

Next, we illustrate the performance of three variants of
Newton’s method in our own implementation in Figure 2,
again in terms of the evolution of the objective and T, the
measure of infeasibility (8). The shaded areas are the sup-
port of an empirical distribution obtained as 100 sample paths
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Fig. 3. The performance of the hybrid method on the IEEE 300-bus test system (case300).

Fig. 4. The stability of the methods studied. Mean and support of an empirical distribution of the sample paths generated by 100 runs with 100 different
random seeds, as described in Section IV-E.

where one adds Gaussian noise N (0, 10−7) to the initial point
(see Section IV-D above). The time series are averages over
the same 100 runs. For the sake of the comparison, we use
the same perturbation of the initial point across each of the
three methods and we use tuned and fixed penalty parameters
and step sizes throughout. Each epoch refers to one Newton
step. In the series labelled “Regular”, we use the textbook
Newton’s method [5] on ∇L′ = 0, with Hessian obtained
using symbolic differentiation. In the series labelled “Alt. 1)”,
we use Newton’s method projected onto box constraints, as
proposed by [24]. In the series labelled “Alt. 3)”, we use alter-
nating minimisation, where we solve the minimisation problem
in primal variable (x) using Newton’s method and where we
use the gradient step for dual variables (λ, κ). As expected,
regular Newton’s method has quadratic rate of local conver-
gence, but major issues with numerical stability; increasing
the standard deviation of the noise applied to the initial point

to 0.0001 or moving from case14 to a larger instance seems
to make the method useless. Although we have no theoreti-
cal justification for this, Alternative 3 seems to exhibit local
quadratic convergence and outperforms all other methods we
have experimented with. In the subsequent results, we hence
employ Alternative 3.

Next, we compare the hybrid method against the use of
coordinate descent on the convexification on its own and the
use of Newton’s method on its own. For the first illustration,
we chose the IEEE 300-bus test system. As above, we plot
a measure T of infeasibility (left; see Equation (8) for the
definition) and the objective function value (middle) against
both wall-clock time (top row) and epochs (bottom row) in
Figure 3. As can be seen by comparing the top and bot-
tom row, the wall-clock time corresponding to one epoch
across the three methods is similar. On the other hand, the
convergence rates are visibly different, with the infeasibility
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Fig. 5. The performance of the hybrid method on three IEEE test systems: 30-bus, 57-bus, and 118-bus.

Fig. 6. The performance of the hybrid method on a snapshot of the Polish transmission system (case2383wp).

decreasing at a quadratic rate for Newton’s and hybrid
method.

On the IEEE 300-bus test system, we can also illustrate
the stability of the methods with respect to the sampling of
coordinates (in coordinate descent and its use in the hybrid
method) and random perturbations to the initial point. Figure 4
presents the mean (dark-colored lines) and support (trans-
parent regions) of an empirical distribution of the sample
paths generated by 100 runs with 100 different random seeds.
The empirical distribution has been sampled from a distri-
bution generated as follows: we have added Gaussian noise
N(0, 0.01) to the initial point (see Section IV-D above) and
the coordinates have been sampled uniformly at random. Note
that the right-most plot is a close-up of the middle plot. In
contrast to Figure 3, where Newton’s method outperforms the
hybrid method on the one sample, the average in Figure 4
suggests that Newton’s method will not yield infeasibility less
than 10−6 on average. This seems to demonstrate the bene-
fits of the hybrid method compared to the coordinate descent

and Newton’s method, in terms of the rate of convergence and
stability.

Further, we present the results on three more IEEE test
systems in Figure 5 in a more concise form with only the
evolution of T, the measure of infeasibility (top row), and the
objective function (bottom row) over the number of epochs.
The 30-bus (on the left) and 118-bus (on the right) test sys-
tems illustrate the typical performance: the evolution of T,
the measure of infeasibility, of the hybrid method overlaps
with the first-order method until the switch-over. Thenceforth,
the quadratic rate of convergence resembles that of Newton’s
method, except with a better starting point. The 57-bus test
system (in the middle) demonstrates the importance of the
starting point: our implementation of Newton’s method from
the Matpower starting point does not converge.

Next, to illustrate the scalability of the approach, we present
the results on a snapshot of the Polish system in Figure 6.
There are 2383 buses in the snapshot and, more importantly,
tap-changing and phase-shifting transformers, double-circuit
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transmission lines, and multiple generators at each bus, which
complicate the formulation of the thermal limits, as explained
in [34, Sec. 5.2]. Despite the preliminary nature of our imple-
mentation, compared to the established codes, developed over
a decade or more [48], the convergence seems very robust.

Finally, in the right-most plots of Figures 3 and 6, we plot
the ratio of the cardinality of the active set to the number of
inequalities over the epochs or time. This provides an empir-
ical justification for the choice of Algorithm 1: the active
set clearly stabilises much earlier than the objective func-
tion value, and is only a small fraction of the count of the
inequalities, which allows for the short run-time of the test
implementing Proposition 3.

V. RELATED WORK

Let us present a brief overview of the rich history of the
study of the convergence of Newton’s method. The best known
result in the field is the theorem of Kantorovich [23], which
formalises the assumptions under which whenever for a closed
ball of radius t∗ centered at x0, it holds that ∇F(x)+∇F(x)T �
0 for all x in the ball, the ball is a domain of monotonicity for
the function F. Traditionally, it has been assumed that testing
the property across the closed ball is difficult.

Recently, Henrion and Korda [18] have shown that the
domain of monotonicity of a polynomial system can be com-
puted by solving an infinite-dimensional linear program over
the space of measures, whose value can be approximated by
a certain hierarchy of convex semidefinite optimization prob-
lems. See also the work of Valmórbida et al. [44]–[46] in the
context of partial differential equations, and elsewhere [12].
Dvijotham et al. [14], [15] showed that it can also be cast
as a certain non-convex semidefinite optimization problem.
Notice, however, that this line of work [14], [15], [18] does
not consider inequalities and may be rather computationally
challenging. Similarly, the α-β theory [7], [10], [40], does not
consider inequalities.

To summarise: traditionally, the convergence of Newton’s
method could be guaranteed only by the non-constructive
arguments of the theorem of Kantorovich [23]. Alternatively,
one could use recently developed approaches [14], [15], [18],
albeit at a computational cost possibly higher than that of
solving ACOPF. Our approach seems to improve upon these
considerably.

Let us also highlight some of the recent advances in convex-
ifications in power systems. Lavaei and Low [27] have shown
that a convex relaxation employing optimization over posi-
tive semidefinite matrices (semidefinite programming, SDP)
produces global optima in some cases. In particular, this
is the case for tree-like network topologies [28], [47] and
some IEEE benchmark instances [27]. For further classes
of instances [33], [38], [41], minor changes to the instance
make the feasible set convex as well. Still, there are instances
where the SDP relaxation provides only unsatisfactory lower
bounds [6], [29], [34]. There, the SDP relaxation can be
strengthened by the iterated addition of further constraints [17]
or variables and constraints [17], [21], [22], [36], [37]. Such
iterative strengthening produces a hierarchy of relaxations that

converges to the global optimum of the non-convex problem,
asymptotically, under mild conditions, albeit at a considerable
computational cost. Similarly, one can also derive a convergent
hierarchy of upper bounds [11]. See [30], [31], [39] for fur-
ther references. Our approach aims to make the strengthened
convexifications practical.

VI. CONCLUSION

Newton-type methods can converge to particularly bad local
optima of non-convex problems, when applied directly. On
the other hand, even the fastest first-order methods for solv-
ing strong convexifications are rather slow. Hybrid methods
combine the use of Newton-type methods on the non-convex
problem with the use of (hierarchies of) strong convexifi-
cations so as to benefit from both from the guarantees of
convergence associated with (hierarchies of) convex relax-
ations and the quadratic rates of convergence of Newton-type
methods. Crucially, such hybrid methods can be implemented
in a distributed fashion, as discussed in [34]. This improves
upon [14] and [15] and opens up many novel directions for
future research.

An important direction for further study is the trade-off
between run-time to acceptable precision in solving convex-
ifications, in practice, and the strength of their convergence
guarantees, in theory. Throughout our computational tests, we
have used a variant of the relaxation of Lavaei and Low [27]
introduced by Marecek and Takac [34], which is exact on
a variety of well-known instances. Hierarchies of relax-
ations, where one can show generically global conver-
gence [17], [21], [22], [36], [37], are computationally more
challenging. Our approach preserves the guarantees associated
with whichever convexification is used.

Another important direction for futher study are the rates
of local convergence of the variants of Newton’s method used
in power systems practice. In theory [23], it is clear that the
quadratic rate of local convergence can be obtained when the
full Newton step is applied to the Lagrangian of equality-
constrained optimization problems, or after inequalities in the
active set are converted to equalities and the remainder of
inequalities are dropped. In practice, however, one may wish
to use projection for the inequalities and block-wise updates,
or even more complicated numerical methods [48], whose
rates of convergence are not clear. Although it may remain
unclear whether certain methods used in practical power sys-
tems analysis are actually locally quadratically convergent,
our test applies to the cross-over to any locally quadratically
convergent method.

Finally, one should like to extend the applicability of the
approach to real-time applications with possibly time-varying
constraints [1]. In the spirit of robust optimization, one could
pre-compute a μ-like bound, which would allow for the vari-
ation of some of the coefficients in some of the constraints
within specified uncertainty sets. The corresponding eigen-
value optimization problem could possibly also be cast as a
semidefinite program. Alternatively, one could aim to update
the bound based on the update to the coefficients, where the
stability of eigenvalues is a well-studied subject in random
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matrix theory. In this respect, we have taken only the very
first step.
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Jakub Mareček received the first two degrees from
Masaryk University, Brno, Czech Republic, and the
Ph.D. degree from the University of Nottingham,
Nottingham, U.K., in 2006, 2009, and 2012, respec-
tively, all in computer science, with a focus on
mathematical optimization. In 2012, he joined IBM
Research—Ireland, as a Research Staff Member. His
research interests include polynomial optimization
problems in power systems, in particular, and the
design and development of solvers for real-world
optimization and control problems, in general.
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