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In this paper we develop an adaptive dual free Stochastic Dual Coordinate Ascent
(adfSDCA) algorithm for regularized empirical risk minimization problems. This is
motivated by the recent work on dual free SDCA of Shalev-Shwartz [1]. The novelty of our
approach is that the coordinates to update at each iteration are selected non-uniformly
from an adaptive probability distribution, and this extends the previously mentioned work
which only allowed for a uniform selection of “dual” coordinates from a fixed probability
distribution. We describe an efficient iterative procedure for generating the non-uniform
samples, where the scheme selects the coordinate with the greatest potential to
decrease the sub-optimality of the current iterate. We also propose a heuristic variant
of adfSDCA that is more aggressive than the standard approach. Furthermore, in order
to utilize multi-core machines we consider a mini-batch adfSDCA algorithm and develop
complexity results that guarantee the algorithm’s convergence. The work is concluded
with several numerical experiments to demonstrate the practical benefits of the proposed
approach.

Keywords: SDCA, importance sampling, non-uniform sampling, mini-batch, adaptive

1. INTRODUCTION

In this work we study the £,-regularized Empirical Risk Minimization (ERM) problem, which is
widely used in the field of machine learning. The problem can be stated as follows. Given training
examples (x1, y1), ..., (Xn, ¥n) € R? x R, loss functions @1,...,¢,:R — R and a regularization
parameter A > 0, £;-regularized ERM is an optimization problem of the form

- A
min P(): = ~ Y gitwTx) + S IwiP ®)

d
weR -1

where the first term in the objective function is a data fitting term and the second is a regularization
term that prevents over-fitting.

Many algorithms have been proposed to solve problem (P) over the past few years, including
SGD [2], SVRG and S2GD [3-5], and SAG/SAGA [6-8]. However, another very popular approach
to solving ¢,-regularized ERM problems is to consider the following dual formulation

1 Aol
D(@): = —~ () — = | —XTa|?, D
max D(a) ”;—1 ¢i' (i) =~ Xl (D)

aeR”
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where XT = [x1,...,x,] € R9" is the data matrix and o
denotes the Fenchel conjugate of ¢;, namely, ¢ (1) = max,(zu —
@i(2)). It is also known that P(w*) = D(a™), which implies that
for all w and «, we have P(w) > D(«), and hence the duality gap,
defined to be P(w(«)) — D(), can be regarded as an upper bound
on the primal sub-optimality P(w(«)) — P(w*). The structure of
the dual formulation (D) makes it well suited to a multicore or
distributed computational setting, and several algorithms have
been developed to take advantage of this including [9-16].

A popular method for solving (D) is Stochastic Dual
Coordinate Ascent (SDCA). The algorithm proceeds as follows.
At iteration t of SDCA a coordinate i € {l1,...,n} is chosen
uniformly at random and the current iterate «®) is updated to
o = o) 4 §5%e;, where 8* = arg maxscgr D(ar') 4 8¢;). Much
research has focused on analyzing the theoretical complexity of
SDCA under various assumptions imposed on the functions ¢,
including the pioneering work of Nesterov in Nesterov [17] and
others including [10, 13, 18-22].

A modification that has led to improvements in the practical
performance of SDCA is the use of importance sampling when
selecting the coordinate to update. That is, rather than using
uniform probabilities, instead coordinate i is sampled with an
arbitrary probability p;.

In many cases algorithms that employ non-uniform
coordinate sampling outperform naive uniform selection, and in
some cases help to decrease the number of iterations needed to
achieve a desired accuracy by several orders of magnitude, see
for example [15, 23].

Notation and Assumptions

In this work we use the notation [n] def {1,...,n}, as well as
the following assumption. For all i € [n], the loss function ¢;
is Li-smooth with L; > 0, i.e., for any given 8,8 € R, we have

l9;(B) — }/(B +8)| < Lil3]. (1)

In addition, it is simple to observe that the function
(Z)i(xl.T-) ‘R4 - RisL; smooth, i.e., Vw,w € R% and foralli € [n]
there exists a constant L; < ||x;]|2L; such that

IVix! w) — Vil W)l < Lillw — wll. (2)
We will use the notation

L = max L;, and L= max L. (3)

1<i<n 1<i<n

Throughout this work we let R} denote the set of nonnegative
real numbers and we let R’} denote the set of n-dimensional
vectors with all components being real and nonnegative.

1.1. Contributions
In this section the main contributions of this paper are
summarized (not in order of significance).

Adaptive SDCA We modify the dual free SDCA algorithm
proposed in Shalev-Shwartz [24] to allow for the adaptive
adjustment of probabilities and a non-uniform selection of
coordinates. Note that the method is dual free, and hence in
contrast to classical SDCA, where the update is defined by

maximizing the dual objective (D), here we define the update
slightly differently (see section 2 for details).

Allowing non-uniform selection of coordinates from an
adaptive probability distribution leads to improvements in
practical performance and the algorithm achieves a better
convergence rate than in Shalev-Shwartz [24]. In short, we show
that the error after T iterations is decreased by a factor of
]_[th1(1 —00) > (1-0%7T on average, where 6 is an uniformly
lower bound for all 6. Here 1 — 6 e (0,1) is a parameter
that depends on the current iterate «® and the nonuniform
probability distribution. By changing the coordinate selection
strategy from uniform selection to adaptive, each 1 —6® becomes
smaller, which leads to an improvement in the convergence rate.

Non-uniform Sampling Procedure Rather than using a
uniform sampling of coordinates, which is the commonly used
approach, here we propose the use of non-uniform sampling
from an adaptive probability distribution. With this novel
sampling strategy, we are able to generate non-uniform non-
overlapping and proper (see section 5) samplings for arbitrary
marginal distributions under only one mild assumptions. Indeed,
we show that without the assumption, there is no such non-
uniform sampling strategy. We also extend our sampling strategy
to allow the selection of mini-batches.

Better Convergence and Complexity Results By utilizing an
adaptive probabilities strategy, we can derive complexity results
for our new algorithm that, for the case when every loss function
is convex, depend only on the average of the Lipschitz constants
L;. This improves upon the complexity theory developed in
Shalev-Shwartz [24] (which uses a uniform sampling) and Csiba
and Richtarik [25] (which uses an arbitrary but fixed probability
distribution), because the results in those works depend on
the maximum Lipschitz constant. Furthermore, even though
adaptive probabilities are used here, we are still able to retain
the very nice feature of the work in Shalev-Shwartz [24], and
show that the variance of the update naturally goes to zero as
the iterates converge to the optimum without any additional
computational effort or storage costs. Our adaptive probabilities
SDCA method also comes with an improved bound on the
variance of the update in terms of the sub-optimality of the
current iterate.

Practical Aggressive Variant Following from the work of
Csiba et al. [15], we propose an efficient heuristic variant of
adfSDCA. For adfSDCA the adaptive probabilities must be
computed at every iteration (i.e., once a single coordinate
has been selected), which can be computationally expensive.
However, for our heuristic adfSDCA variant the (exact/true)
adaptive probabilities are only computed once at the beginning
of each epoch (where an epoch is one pass over the data/n
coordinate updates), and during that epoch, once a coordinate
has been selected we simply reduce the probability associated
with that coordinate so it is not selected again during that epoch.
Intuitively this is reasonable because, after a coordinate has
been updated the dual residue associated with that coordinate
decreases and thus the probability of choosing this coordinate
should also reduce. We show that in practice this heuristic
adfSDCA variant converges and the computational effort
required by this algorithm is lower than adfSDCA (see sections 4
and 6).
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Mini-Batch Variant We extend the (serial) adfSDCA
algorithm to incorporate a mini-batch scheme. The motivation
for this approach is that there is a computational cost associated
with generating the adaptive probabilities, so it is important
to utilize them effectively. We develop a non-uniform mini-
batch strategy that allows us to update multiple coordinates
in one iteration, and the coordinates that are selected have
high potential to decrease the sub-optimality of the current
iterate. Further, we make use of ESO framework (Expected
Separable Overapproximation) [see for example [14, 26]] and
present theoretical complexity results for mini-batch adfSDCA.
In particular, for mini-batch adfSDCA used with batchsize b, we
derive the optimal probabilities to use at each iteration, as well as
the best step-size to use to guarantee speedup.

1.2. Outline

This paper is organized as follows. In section 2 we introduce
our new Adaptive Dual Free SDCA algorithm (adfSDCA), and
highlight its connection with a reduced variance SGD method.
In section 3 we provide theoretical convergence guarantees for
adfSDCA in the case when all loss functions ¢;(-) are convex, and
also in the case when individual loss functions are allowed to be
nonconvex but the average loss functions Y | ¢i(-) is convex.
Section 4 introduces a practical heuristic version of adfSDCA,
and in section 5 we present a mini-batch adfSDCA algorithm
and provide convergence guarantees for that method. Finally, we
present the results of our numerical experiments in section 6.
Note that the proofs for all the theoretical results developed in
this work are left to the Appendix.

2. THE ADAPTIVE DUAL FREE SDCA
ALGORITHM

In this section we describe the Adaptive Dual Free SDCA
(adfSDCA) algorithm, which is motivated by the dual free SDCA
algorithm proposed by Shalev-Shwartz [24]. Note that in dual
free SDCA two sequences of primal and dual iterates, {w(t)}?io
and {a(t)}fio, respectively, are maintained. At every iteration of
that algorithm, the variable updates are computed in such a way
that the well-known primal-dual relational mapping holds; for
every iteration t:

1 n
wt) = - Zizlai(t)xi' (4)

The dual residue is defined as follows.

Definition 1 (Dual residue, [15]). The dual residue « =
(Kft), kT € R™ associated with (w®, ®) is given by:

def
0 el

ozi(t) + ¢;(xfw(t)). (5)

The Adaptive Dual Free SDCA algorithm is outlined in
Algorithm 1 and is described briefly now; a more detailed
description (including a discussion of coordinate selection and
how to generate appropriate selection rules) will follow. An initial
solution «(? is chosen, and then w9 is defined via (4). In each

iteration of Algorithm 1 the dual residue x® is computed via
(5), and this is used to generate a probability distribution p®.
Next, a coordinate i € [n] is selected (sampled) according to the
generated probability distribution and a step of size 8©) € (0,1)
is taken by updating the ith coordinate of « via

Ol(H_l) — O[i(t) _ o(t)(pl(‘t))ill(i(t)- (6)

i
Finally, the vector w is also updated
WD — (0 9(‘)(nkp§t))‘1/<,-(”xi, ?)

and the process is repeated. Note that the updates to o and w
using the formulas (6) and (7) ensure that the equality (4) is
preserved.

Also note that the updates in (6) and (7) involve a step
size parameter #(*), which will play an important role in our
complexity results. The step size #®) should be large so that
good progress can be made, but it must also be small enough
to ensure that the algorithm is guaranteed to converge. Indeed,
in section 3.1 we will see that the choice of 8¢ depends on the
choice of probabilities used at iteration ¢, which in turn depend
upon a particular function that is related to the suboptimality at
iteration .

Algorithm 1 Adaptive Dual Free SDCA (adfSDCA)
1: Input: Data: {x;, ¢;}}_,
2: Initialization: Choose ¥ € R”
3 Set w® =Ly oci(o)xi
4 fort=0,1,2,... do
5. Calculate dual residual Ki(t) =
i€ [n]
Generate adaptive probability distribution p® ~ «®
Sample coordinate i according to p(*)
Set step-size #®) € (0,1) as in (18)
Update: otfH'l) = algt) — G(t)(pft))_llci(t)
10 Update: w1 = w(®) — O(t)(nkpft))_llcft)x,‘
11: end for

&I w®) + o, for all

R

The dual residue «® is informative and provides a useful way of
monitoring suboptimality of the current solution (w(®),a®). In
particular, note that if k; = 0 for some coordinate i, then by (5)
o = —¢; (wl'x;), and substituting «; into (6) and (7) shows that
aftﬂ) <« aft) and wYH) < w®, e, a and w remain unchanged
in that iteration. On the other hand, a large value of |«;| (at some
iteration f) indicates that a large step will be taken, which is
anticipated to lead to good progress in terms of improvement in
sub-optimality of current solution.

The probability distributions used in Algorithm 1 adhere to
the following definition.

Definition 2 (Coherence, [15]). Probability vector p € R”" is
coherent with dual residue x € R” if for any index i in the
support set of k, denoted by I, : = {i € [n]:«; # 0}, we have
pi > 0. When i ¢ I then p; = 0. We use p ~ « to represent this
coherent relation.
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2.1. Adaptive Dual Free SDCA as a
Reduced Variance SGD Method

Reduced variance SGD methods have became very popular in the
past few years, see for example [3, 7, 8, 27]. It is show in Shalev-
Shwartz [24] that uniform dual free SDCA is an instance of a
reduced variance SGD algorithm (the variance of the stochastic
gradient can be bounded by some measure of sub-optimality of
the current iterate) and a similar result applies to adfSDCA in
Algorithm 1. In particular, note that conditioned on o=V, we
have

@) 000 & pi (t=1)
E[w1o] @ = o 3L (96T W) + aff 7))

Ao i
(t=1) n
4 (4 6 1 T (- _
= =D — (V(; ;dy(xi wtt 1))) + 1))
i=
pt=1)
D -0 _ TVP(W“—“). (8)

Combining (7) and (8) and replace t — 1 by ¢ gives

: [ka’)m““)] = VP!, (©)
npi
!
VP(w®). Therefore, Algorithm 1 is eventually a variant of the
Stochastic Gradient Descent method. However, we can prove (see
Corollary 1 and Corollary 2) that the variance of the update goes
to zero as the iterates converge to an optimum, which is not true

for vanilla Stochastic Gradient Descent.

which implies that x; is an unbiased estimator of

3. CONVERGENCE ANALYSIS

In this section we state the main convergence results for adfSDCA
(Algorithm 1). The analysis is broken into two cases. In the first
case it is assumed that each of the loss functions ¢; is convex.
In the second case this assumption is relaxed slightly and it is
only assumed that the average of the ¢;s is convex, i.e., individual
functions ¢;(-) for some (several) i € [n] are allowed to be
nonconvesx, as long as % Y1 ¢i(:) is convex. The proofs for all

]
the results in this section can be found in the Appendix.

3.1. Case I: All Loss Functions Are Convex
Here we assume that ¢; is convex for all i € [#n]. Define the
following parameter

def

y = AL, (10)

where L is given in (3). It will also be convenient to define the

following potential function. For all iterations ¢t > 0,

() def 1, () _ %2 () _ 2

DY = gl = o [I" + y ™ =" (11)

The potential function (11) plays a central role in the convergence

theory presented in this work. It measures the distance from the

optimum in both the primal and (pseudo) dual variables. Thus,

our algorithm will generate iterates that reduce this suboptimality
and therefore push the potential function toward zero.

Also define

vi |12 for all i € [n]. (12)

We have the following result.
LEMMA 1. Let L, /ci(t), v, DY, and v; be as defined in (3), (5),
(10), (11), and (12), respectively. Suppose that ¢; is L-smooth and
convex for all i € [n] and let & € (0,1). Then at every iteration

t > 0 of Algorithm 1, a probability distribution p\¥) that satisfies
Definition 2 is generated and

0%v;y
i 0 (,Ci(t))z'
n?12p;

(13)

p

n
0 0
E[D VeV - (1 - 0DV < " <—<1 - @) +
n
i=1 i

Note that if the right hand side of (13) is negative, then the
potential function decreases (in expectation) in iteration f:

E[D"™a"] < (1 -0)D". (14)
The purpose of Algorithm 1 is to generate iterates (w"), () such
that the above holds. To guarantee negativity of the right hand
term in (13), or equivalently, to ensure that (14) holds, consider

the parameter 6. Specifically, any 6 that is less than the function
O(,-):RY x RY — R defined as

: ZieIK Ki2

Yier, (nA2 + viy)p; 'k}’

A
O,p "

(15)

will ensure negativity of the right hand term in (13). Moreover,
the larger the value of 6, the better progress Algorithm 1
will make in terms of the reduction in D). The function ®
depends on the dual residue « and the probability distribution
p. Maximizing this function w.r.t. p will ensure that the largest
possible value of 6 can be used in Algorithm 1. Thus, we consider
the following optimization problem:

., Ok, p).
PERYY e, Pi=1

One may naturally be wary of the additional computational cost
incurred by solving the optimization problem in (16) at every
iteration. Fortunately, it turns out that there is an (inexpensive)
closed form solution, as shown by the following Lemma.

LEMMA 2. Let O(«x,p) be defined in (15). The optimal solution
p(k) of (16) is

VViy + ni? kil
jer, A/ ViV + nA2k|

The corresponding 0 by using the optimal solution p* is

2 2
nA* Y ier Ki

Qier, VViv + na2ici])?

pi (k) = forall i=1,...,n. (17)

0 = 0Ok, p*) = (18)
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PROOF: This can be verified by deriving the KKT conditions
of the optimization problem in (16). The details are moved to
Appendix for brevity. O

The results in Csiba and Richtdrik [25] are weaker because
they require a fixed sampling distribution p throughout all
iterations. Here we allow adaptive sampling probabilities as in
(17), which enables the algorithm to utilize the data information
more effectively, and hence we have a better convergence rate.
Furthermore, the optimal probabilities found in Csiba et al. ([15]
can be only applied to a quadratic loss function, whereas our
results are more general because the optimal probabilities in
(17) can used whenever the loss functions are convex, or when
individual loss functions are non-convex but the average of the
loss functions is convex (see section 3.2).

Before proceeding with the convergence theory we define
several constants. Let

def 1,,(0)

Co = L@ —a* |2 + y |w® — w|%, (19)

where y is defined in (10). Note that Cp in (19) is equivalent to
the value of the potential function (11) at iteration ¢t = 0, ie.,
Co = D9, Moreover, let

M = def Q(l + ;—Q) where

Q! Zn 292 2 Z~

i=1
(20)
Now we have the following theorem.

THEOREM 1. LetL, Ki(t), ¥, DY, v;, Co and Q be as defined in (3),
(5), (10), (11), (12), (19), and (20), respectively. Suppose that ¢; is
L-smooth and convex foralli € [n], let 0® € (0,1) be decided
by (18) for all t > 0 and let p* be defined via (17). Then, setting
p® = p* at every iteration t > 0 of Algorithm 1, gives

E[D" V1] < (1 - 60"DY, (21)
where
o def ni? =
= ————— <90 22
Sy ) 22
Moreovet, for € > 0, if
L L+ L)C
T> <n + —Q> log (M) , (23)
A 2ALe

then E[P(w(D) — P(w*)] < e.

Similar to Shalev-Shwartz [24],
corollary which bounds the quantlty E[ ||

we have the following

K(t)x,ll ] in terms of

the sub-optimality of the points
probabilities.

and w®) by using optimal

COROLLARY 1. Let the conditions of Theorem 1 hold. Then at
every iteration t > 0 ofAlgorithm 1,

PR
;X

| (t-1)
np;i

< 2M(E[le"? — o[ V]

+LE[||w? — w*|?|a D)),

Note that Theorem 1 can be used to show that both E[[ja(? —
o*||?] and E[Ilw(t) w*[|2] go to zero as e ?"!. We can then
show that E[|| 5k 0% log(é)).
Furthermore, we achleve the same variance reduction rate as
shown in Shalev-Shwartz [24], i.e., E[|| niﬁx,.(‘)xinﬂ ~ Ol )?).

For the dual free SDCA algorithm in Shalev-Shwartz [24]
where uniform sampling is adopted, the parameter 6 should be

set to at most min );r 7> where L > max; v; - L. However, from

(t)x,|| ] < easlongast > O(

Corollary 1, we know that this 0 is smaller than 0%, so dual free
SDCA will have a slower convergence rate than our algorithm.
In Csiba and Richtdrik [25], where they use a fixed probability
distribution p; for sampling of coordinates, they must choose 6

less than or equal to min; L,-ijitk' This is consistent with Shalev-
Shwartz [24] where p; = 1/n for all i € [n]. With respect
to our adfSDCA Algorithm 1, at any iteration f, we have that
6 is greater than or equal to 6*, which again implies that our
convergence results are better.

3.2. Case lI: The Average of the Loss
Functions is Convex

Here we follow the analysis in Shalev-Shwartz [24] and consider
the case where individual loss functions ¢;(-) for i € [n] are
allowed to be nonconvex as long as the average % Z?:l @i(-) is
convex. First we define several parameters that are analogous to
the ones used in section 3.1. Let

yé%ZL

(249)

where L; is given in (2), and define the following potential
function. For all iterations ¢ > 0, let

- 1
DY E S a® a2+ 7w —wh Ik (29)
n
We also define the following constants
=, def 1 _
Co = —lla® — | + 7w ® — w2, (26)
and
def ¥Q
MEQ (1 + F) 27)
Then we have the following theoretical results.
LEMMA 3. Let L;, /c(t), v, D ), and v; be as defined in (2),

(5), (24), (25), and (12) respectzvely Suppose that every ¢;,i €
[n] is Li-smooth and that the average of the n loss functions
% Z?Zl di(wTx;) is convex. Let 6 € (0,1). Then at every iteration
t > 0 of Algorithm 1, a probability distribution p\¥) that satisfies
Definition 2 is generated and

(-2

E[D(t“)\am]

0%vip
i a (Ki(f) )2 .
n*12p;

(28)
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THEOREM 2. Let L, /(i(t), 7 DY, v;, and Cy be as defined in (3),
(5), (24), (25), (12), and (26), respectively. Suppose that every
@i, i € [n] is Li-smooth and that the average of the n loss functions
% S iwTx;) is convex. Let 00 € (0, 1) using (18) for all t > 0
and let p* be defined via (17). Then, setting p) = p* at every
iteration t > 0 of Algorithm 1, gives

E[D(t+l)|a(f)] (1-— D(f) (29)

where
nr2 <9
Z?zl(vi); + n)‘-z) - '

Furthermore, for € > 0, if

T> (n + B) log (M) , (30)
2y€

0* =

then E[P(w(D)) — P(w*)] < €

We remark that, L; < Lforalli € [n],s0 7 < L?, which means

that a conservative complexity bound is

2 _
T > <n+£>log(w>.
2ye

We conclude this section with the following corollary.

COROLLARY 2. Let the conditions of Theorem 2 hold and let M be
defined in (27). Then at every iteration t > 0 of Algorithm 1,

e[

+LE[|w”

ot ”} < 2M(E[[la®) — o* ]
—w [P 1)).

4. HEURISTIC ADFSDCA

One of the disadvantages of Algorithm 1 is that it is necessary
to update the entire probability distribution p ~ « at each
iteration, i.e., every time a single coordinate is updated the
probability distribution is also updated. Note that if the data
are sparse and coordinate i is sampled during iteration f, then,
one need only update probabilities p; for which ijx,- # 0
unfortunately for some datasets this can still be expensive. In
order to overcome this shortfall we follow the recent work
in Csiba et al. [15] and present a heuristic algorithm that
allows the probabilities to be updated less frequently and in a
computationally inexpensive way. The process works as follows.
At the beginning of each epoch the (full/exact) nonuniform
probability distribution is computed, and this remains fixed
for the next n coordinate updates, ie., it is fixed for the
rest of that epoch. During that same epoch, if coordinate i
is sampled (and thus updated) the probability p; associated
with that coordinate is reduced (it is shrunk by p; < p;i/s)
, where s is the shrinkage parameter. The intuition behind

this procedure is that, if coordinate i is updated then the
dual residue |«;| associated with that coordinate will decrease.
Thus, there will be little benefit (in terms of reducing the sub-
optimality of the current iterate) in sampling and updating that
same coordinate i again. To avoid choosing coordinate i in the
next iteration, we shrink the probability p; associated with it,
ie., we reduce the probability by a factor of 1/s. Moreover,
shrinking the coordinate is less computationally expensive
than recomputing the full adaptive probability distribution
from scratch, and so we anticipate a decrease in the overall
running time if we use this heuristic strategy, compared with
the standard adfSDCA algorithm. This procedure is stated
formally in Algorithm 2. Note that Algorithm 2 does not fit the
theory established in section 3. Nonetheless, we have observed
convergence in practice and a good numerical performance
when using this strategy (see the numerical experiments in
section 6).

Algorithm 2 Heuristic Adaptive Dual Free SDCA (adfSDCA+)
1: Input: Data: {x;, ¢;}]_,, probability shrink parameter s
2: Initialization: Choose «(® € R”
3 Set w® =Ly ozi(o)x,-
4 fort=0,1,2,... do
5. if mod (t,n) == 0 then
6: Calculate dual residue /c
i€ [n]
7: Generating adapted probabilities distribution p® ~ «®
8: endif
9. Select coordinate i from [n] according to p(*)
10:  Set step-size ) € (0 1) asin (18)
11:  Update: a(tH) - Q(t)(pl(-t))’1 ®
122 Update: w(t“) = w(t) — 0D (nap\)~ lx(t)xl
13:  Update: pEtH) :pgt)/s
14: end for

= ¢; (x w)) + a(t) for all

5. MINI-BATCH ADFSDCA

In this section we propose a mini-batch variant of Algorithm
1. Before doing so, we stress that sampling a mini-batch non-
uniformly is not easy. We first focus on the task of generating
non-uniform random samples and then we will present our
minibatch algorithm.

5.1. Efficient Single Coordinate Sampling
Before considering mini-batch sampling, we first show how to
sample a single coordinate from a non-uniform distribution.
Note that only discrete distributions are considered here.

There are multiple approaches that can be taken in this case.
One naive approach is to consider the Cumulative Distribution
Function (CDF) of p, because a CDF can be computing in O(n)
time complexity and it also takes O(n) time complexity to make
a decision. One can also use a better data structure (e.g., a
binary search tree) to reduce the decision cost to O(logn) time
complexity, although the cost to set up the tree is O(nlogn).
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Some more advanced approaches like the so-called alias method
of Kronmal and Peterson [28] can be used to sample a single
coordinate in only O(1), i.e., sampling a single coordinate can be
done in constant time but with a cost of O(n) setup time. The alias
method works based on the fact that any n-valued distribution
can be written as a mixture of #n Bernoulli distributions.

In this paper we choose two sampling update strategies, one
each for Algorithms 1 and 2. For adfSDCA in Algorithm 1 the
probability distribution must be recalculated at every iteration,
so we use the alias method, which is highly efficient. The
heuristic approach in Algorithm 2 is a strategy that only alters
the probability of a single coordinate (e.g., p; = pi/s) in each
iteration. In this second case it is relatively expensive to use
the alias method due to the linear time cost to update the alias
structure, so instead we build a binary tree when the algorithm is
initialized so that the update complexity reduces to O(log(#)).

5.2. Non-uniform Mini-Batch Sampling

Many randomized coordinate descent type algorithms utilize a
sampling scheme that assigns every subset of [#] a probability pg,
where S € 20", In this section, we consider a particular type of
sampling called a mini-batch sampling that is defined as follows.

Definition 3. A sampling Sis called a mini-batch sampling, with
batchsize b, consistent with the given marginal distribution q: =
(q1s - - .»qn) T, if the following conditions hold:

1. S| =b;
def .
2. qi = Y 5 PUS:i €S} = bpi,
where P({S:i € §}) represents the probability of mini-batch
sampling S containing the coordinate i.

Here we are going to derive a proper sampling strategy over
coordinate i such that i € $ € § and Definition 3 is satisfied. Note
that we study samplings S that are non-uniform since we allow
qi to vary with i. The motivation to design such samplings arises
from the fact that we wish to make use of the optimal probabilities
that were studied in section 3.

We make several remarks about non-uniform mini-batch
samplings below.

1. For a given probability distribution p, one can derive a
corresponding mini-batch sampling only if we have p; < %
for all i € [n]. This is obvious in the sense that g; = bp; =
D ses PUS:ie S <D s P(S) =1.

2. For a given probability distribution p and a batch size b, the
mini-batch sampling may not be unique and it may not be
proper, see for example Richtdrik and Takac¢ [26]. (A proper
sampling is a sampling for which any subset of size b must
have a positive probability of being sampled).

In Algorithm 3 we describe an approach that we used to generate

a non-uniform mini-batch sampling of batchsize b from a given

marginal distribution g. Without loss of generality, we assume

that the g; € (0, 1) for i € [n] are sorted from largest to smallest.
We now state several facts about Algorithm 3.

1. Algorithm 3 will terminate in at most » iterations. This is
because the update rules for g; (which depend on r; at each

Algorithm 3 Non-uniform mini-batch sampling

1: Input: Marginal distribution g € R” with ¢; € (0,1) Vi € [#]
and batchsize b such that ) ', g; = b. Define g, 41 = 0

2: Output: A mini-batch sampling S (Definition 3)
3: Initialization: Index seti,j € N, and set k = 1.
4 fork=1,...,ndo
5. iF = mingdi: p; = qu),j¢ = maxifi:pi = g}
6:  Obtain ry:
ik ik _ ik .
e = min {J jk—-bH (Qikfl — Qh), ﬁ(Qb — qjk+1)}, zk > 1
(@b — dpir), k=1
(31
7. Update g;:
, &
qi — Tk ie[0,i*—1],
= _jk ik (32)
I P R

8: Terminate if g = 0,and set m = k

9: end for

10: Select K €
(5.5 Tm)

11: Choose b — iX + 1 coordinates uniformly at random from i
to /X, denote it by W

122 S={1,...,iK-—13uw

[m] randomly with discrete distribution

K

iteration), ensure that at least one g; will reduce to become
equal to some g; < g; (i.e., either g1 _; = g or Qi1 = qv)
and since there are n coordinates in total, after at most n
iteration it must hold that g; = g; for all i,j € [n]. Note
that if the algorithm begins with q; = g; for all i,j € [#],
which implies a uniform marginal distribution, the algorithm
will terminated in a single step.

2. For Algorithm 3 we must have Y /| r; = 1, where we assume
that the algorithm terminates at iteration m € [1,n], since
overall we have 1" bri =>"" | g; = b.

3. Algorithm 3 will always generate a proper sampling because
when it terminates, the situation p; = p; > 0, for all i # j,
will always hold. Thus, any subset of size b has a positive
probability of being sampled.

4. Tt can be shown that this algorithm works on an arbitrary
given marginal probabilities as long as ¢; € (0, 1), for all
i€ [n].

Figure 1 is a sample illustration of Algorithm 3, where we
have a marginal distribution for 4 coordinates given by
(0.8,0.6,0.4,0.2)T and we set the batchsize to be b = 2. Then,
the algorithm is run and finds r to be (0.2, 0.4, 0.4)T. Afterwards,
with probability r; = 0.2, we will sample 2-coordinates from
(1,2). With probability r, = 0.4, we will sample 2-coordinates
which has (1) for sure and the other coordinate is chosen from
(2,3) uniformly at random and with probability r; = 0.4, we will
sample 2-coordinates from (1, 2, 3, 4) uniformly at random.
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rn =02 n
r
12 =0.4 r2
r2/2 r2/2
r3=0.4 r3/2 r3/2 r3/2 r3/2
q1=0.8 q2=0.6 q3=0.4 qs=0.2

FIGURE 1 | Toy demo illustrating how to obtain a non-uniform mini-batch
sampling with batch size b = 2 from n = 4 coordinates.

Note that, here we only need to perform two kinds of
operations. The first one is to sample a single coordinate from
distribution d (see section 5.1), and the second is to sample
batches from a uniform distribution [see for example [26]].

5.3. Mini-Batch adfSDCA Algorithm

Here we describe a new adfSDCA algorithm that uses a mini-
batch scheme. The algorithm is called mini-batch adfSDCA and
is presented below as Algorithm 4.

Algorithm 4 Mini-Batch adfSDCA
1: Input: Data: {x;, ¢;}7,
2: Initialization: Choose «(® € R” and set batchsize b
3 fort=0,1,2,... do
4:  Calculate dual residue /cl-(t) = ¢/(xIw) + ot,gt), for all
i€ [n]
Generate the adaptive probability distribution p® ~ «®
6: Choose mini-batch S C [n] of size b according to
probabilities distribution p{*)
7. Set step-size ) € (0, 1) as in (76)
8. forie Sdo
o Update:a™ = o — g0(pp0) 1
10:  end for
11:  Update: w( D = w(®) — Yics G(t)(n)\bpgt))_let)xi
12: end for

o

Briefly, Algorithm 4 works as follows. At iteration t, adaptive
probabilities are generated in the same way as for Algorithm 1.
Then, instead of updating only one coordinate, a mini-batch S
of size b > 1 is chosen that is consistent with the adaptive
probabilities. Next, the dual variables otft),i € S are updated,
and finally the primal variable w is updated according to the
primal-dual relation (4).

In the next section we will provide a convergence guarantee
for Algorithm 4. As was discussed in section 3, theoretical results
are detailed under two different assumptions on the type of loss
function: (i) all loss function are convex; and (ii) individual
loss functions may be non-convex but the average over all loss
functions is convex.

5.4. Expected Separable

Overapproximation

Here we make use of the Expected Separable Overapproximation
(ESO) theory introduced in [26] and further extended, for
example, in Richtarik and Taka¢ [29]. The ESO definition is stated
below.

Definition 4 (Expected Separable Overapproximation, [29]).
Let § be a sampling with marginal distribution g = (g1, - - - ,gn)".
Then we say that the function f admits a v-ESO with
respect to the sampling S if Vx,h € R", we have
V,...»vy > 0, such that the following inequality holds
E[f(x + hig)] = f00) + Y0y ai(Vif (b + Lvihd).

REMARK 1. Note that, here we do not assume that S is a uniform
sampling, i.e., we do not assume that q; = gj for all i,j € [n].

The ESO inequality is useful in this work because the
parameter v plays an important role when setting a suitable
stepsize 6 in our algorithm. Consequently, this also influences
our complexity result, which depends on the sampling S. For the
proof of Theorem 4 (which will be stated in next subsection), the
following is useful. Let f(x) = %IleIIZ, where A = (x1,...,%p).
We say that f(x) admits a v-ESO if the following inequality holds

n
E[[|ARg|*] < > vigih}. (33)
i=1

To derive the parameter v we will make use of the following
theorem.

THEOREM 3 ([29]). Let f satisfy the following assumption f(x +
h) < f(x) + (Vf(x),h) + %hTATAhT, where A is some matrix.
Then, for a given sampling S, f admits a v-ESO, where v is defined
by vi = min{/(P($), ' (ATA)} XL, A%, i € [n].

Here P(8) is called a sampling matrix [see [26]] where element
pij is defined to be p; = Z{i,j}eS,SeSP(S)' For any matrix M,
A'(M) denotes the maximal regularized eigenvalue of M, i.e.,
V(M) = maxp=1{h"Mh: """ M;;h? < 1}. We may now apply
Theorem 3 because f(x) = %||Ax||2 satisfies its assumption. Note
that in our mini-batch setting, we have P¢_s(|S| = b) = 1, so we
obtain A’ (P(S)) < b [Theorem 4.1 in [29]]. In terms of /(AT A),
note that '(ATA) = A'(31, xx) < maxj A/ (xxf) = max; |Jj,
where |Jj| is number of non-zero elements of x; for each j. Then,
a conservative choice from Theorem 3 that satisfies (33) is

(34)

v; = min{b, max |J;|}|lx[|, i€ [n).
J

Now we are ready to give our complexity result for mini-batch
adfSDCA (Algorithm 4). Note that we use the same notation as
that established in section 3 and we also define

1 n
Q - > v (35)

i=1
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THEOREM 4. Let L, Kl-(t), y DY, Vi, Co, and Q' be as defined in (3),
(5), (10), (11), (34), (19), and (35), respectively. Suppose that ¢; is
L-smooth and convex for all i € [n]. Then, at every iteration t > 0
of Algorithm 4, run with batchsize b we have

E[D*V1a] < (1 —0%)D1, (36)

* __ na2b
where 0% = ST Wy )

n LQ (r+L)Co
r= (E ) )log (T)

we have that E[P(w(T) — P(w*))] < e.

. Moreover, it follows that whenever

(37)

It is also possible to derive a complexity result in the case when
the average of the n loss functions is convex. The theorem is stated
now.

THEOREM 5. LetL, Ki(t), 7 DY), Vi, Co, and Q' be as defined in (3),
(5), (24), (25), (34), (26), and (35), respectively. Suppose that every
@i, i € [n] is Li-smooth and that the average of the n loss functions
% Z?:l oi(wT'x;) is convex. Then, at every iteration t > 0 of

Algorithm 4, run with batchsize b, we have

E[D*V)a] < (1 - 67D, (38)

where 6™ = %. Moreover, it follows that whenever
i=1\"
n o QXL (- + L)Co
T=|(~— L , 39
(55 )m(50) o

we have that E[P(w()) — P(w*)] < e.

These theorems show that in worst case (by setting b = 1),
this mini-batch scheme shares the same complexity performance
as the serial adfSDCA approach (recall section 2). However,
when the batch-size b is larger, Algorithm 4 converges in fewer
iterations. This behavior will be confirmed computationally in the
numerical results given in section 6.

6. NUMERICAL EXPERIMENTS

Here we present numerical experiments to demonstrate the
practical performance of the adfSDCA algorithm. Throughout
these experiments we used two loss functions, quadratic loss
diwlx) = %(wa,- — y1)? and logistic loss oiwlx) =
log(1 + exp(—y,-wai)). Note that these two losses have
Lipschitz gradient. The regularization parameter A in (P)
is set to be 1/4/n, where n is the number of samples
of the dataset. The experiments were run using datasets
from the standard library of test problems [see [30] and
http://www.csie.ntu.edu.tw/~cjlin/libsvm], as summarized in
Table 1.

6.1. Comparison for a Variety of adfSDCA

Approaches

In this section we compare the adfSDCA algorithm (Algorithm 1)
with both dfSCDA, which is a uniform variant of adfSDCA
described in Shalev-Shwartz [24], and also with Prox-SDCA from
Shalev-Shwartz and Zhang [31]. We also report results using
Algorithm 2, which is a heuristic version of adfSDCA, used with
several different shrinkage parameters.

Figure 2 compares the evolution of the duality gap for the
standard and heuristic variant of our adfSDCA algorithm with
the two state-of-the-art algorithms dfSDCA and Prox-SDCA.
For these problems both our algorithm variants out-perform the
dfSDCA and Prox-SDCA algorithms. Note that this is consistent
with our convergence analysis (recall section 3). Now consider
the adfSDCA + algorithm, which was tested using the parameter
values s = 1,10,20. It is clear that adfSDCA+ with s = 1
shows the worst performance, which is reasonable because in
this case the algorithm only updates the sampling probabilities
after each epochy; it is still better than dfSDCA since it utilizes
the sub-optimality at the beginning of each epoch. On the
other hand, there does not appear to be an obvious difference
between adfSDCA+ used with s = 10 or s = 20 with both
variants performing similarly. We see that adfSDCA performs
the best overall in terms of the number of passes through
the data. However, in practice, even though adfSDCA+ may
need more passes through the data to obtain the same sub-
optimality as adfSDCA, it requires less computational effort than
adfSDCA.

In Figure 3, we compare SGD, SVRG, dfSDCA, and our
proposed adfSDCA(+) algorithm in terms of the number of
passes through the data and total running time. For the SGD
and SVRG algorithms, the duality gap is not directly computable.
Hence, in this numerical experiment, the relative primal objective
value P(w) — P(w) is used as the stopping condition, where w is
the optimal weight given by the best run among all algorithms.
The SGD algorithm is implemented using the same set-up as in
Shalev-Shwartz and Zhang [32], where a diminishing step-size is
used, and SVRG is implemented following Johnson and Zhang
[3].

We remark that for the SVRG algorithm, the user must
tune its two hyper-parameters, namely, the number of iterations
in the inner loop, and the step-size. Proper tuning of these
hyper-parameters is essential to get the best performance from
the SVRG algorithm. In this experiment, we tuned the hyper-
parameters for SVRG, and we used SVRG+ to denote the
best performing SVRG variant, and we use m to denote the

TABLE 1 | The datasets used in the numerical experiments, see Chang and Lin

[30].

Dataset #Samples #Features #Classes Sparsity (%)
mushrooms 8,124 112 2 18.8
ijcnn 49,990 22 2 59.1
rcvi 20,242 47,237 2 0.16
news20 19,996 1,355,191 2 0.034
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FIGURE 2 | A comparison of the number of epochs vs. the duality gap for the various algorithms.
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corresponding “best” number of inner loop iterations. As a
means of comparison, we also plot the performance of the SVRG
algorithm using m/2 and 2 m inner loop iterations (i.e., SVRG
without optimal tuning).

Figure 3 shows that, for the rcv1 dataset with a quadratic
loss, adfSDCA is the best performing algorithm in terms of the
number of passes through the data; it is even better than the
“best” tuned SVRG algorithm. For the i jcnnl dataset with a
quadratic loss, SVRG+, the optimally tuned SVRG algorithm,
performs better than the adfSDCA algorithm. However, tuning
the hyper-parameters for SVRG is not free, and this is a
computational cost that is not required for adfSDCA. This
highlights one of the benefits of adfSDCA, which does not require
parameter tuning, and the specific step-size needed is given
explicitly in Theorem 1.

We also present plots showing the total running time for these
algorithms. We follow the set up in Csiba et al. [15], and present
the running time results using the heuristic algorithm adfSDCA+
with the shrinkage parameter set to s = 5 (see section 4). Recall
that the rcvl dataset has n = 20,242 and d = 47,237, so
the number of samples is comparable to the number of features.
For this experiment, Figure 3 shows that the total running time
needed for adfSDCA+ is much less than SVRG. However, for
the 1 jenn1 dataset, SVRG outperforms adfSDCA+ in terms of

running time. To gain some insight into why this is happening,
recall that the i jcnnl dataset has n = 49,990 and d = 22,
so the number of samples is much more than the number of
features. Note that adfSDCA+ must compute the residuals for
each coordinate at every iteration, and because the number of
samples is far greater than the number of feature, there is a
high running time overhead for this non-uniform sampling of
coordinates for adfSDCA+. This suggests that it is beneficial to
use adfSDCA when the number of features is comparable with
the number of samples.

Figure 4 shows the estimated density function of the dual
residue || after 1,2,3,4, and 5 epochs for both uniform
dfSDCA and our adaptive adfSDCA. One observes that the
adaptive scheme is pushing the large residuals toward zero much
faster than uniform dfSDCA. For example, notice that after 2
epochs, almost all residuals are below 0.03 for adfSDCA, whereas
for uniform dfSDCA there are still many residuals larger than
0.06. This is evidence that, by using adaptive probabilities we are
able to update the coordinate with a high dual residue more often
and therefore reduce the sub-optimality much more efficiently.

6.2. Mini-Batch adfSDCA
Here we investigate the behavior of the mini-batch adfSDCA
algorithm (Algorithm 4). In particular, we compare the practical
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FIGURE 3 | A comparison of the number of epochs versus the relative primal object value for SGD, dfSDCA, adfSDCA(+) and SVRG. SVRG+ denotes the
parameter-tuned, best performing SVRG algorithm, where m denotes the corresponding number of inner loop iterations. We also show results for the SVRG agorithm
using both m/2 and 2m inner loop iterations, to demonstrate the performance of SVRG without optimal tuning.

performance of mini-batch adfSDCA using different mini-batch
sizes b varying from 1 to 32. Note that if b = 1, then Algorithm
4 is equivalent to the adfSDCA algorithm (Algorithm 1).
Figure 5 shows that, with respect to the different batch sizes,
the mini-batch algorithm with each batch size needs roughly the
same number of passes through the data to achieve the same
sub-optimality. However, when considering the computational
time, the larger the batch size is, the faster the convergence will
be. Recall that the results in section 5 show that the number of
iterations needed by Algorithm 4 used with a batch size of b is
roughly 1/b times the number of iterations needed by adfSDCA.
Here we compute the adaptive probabilities every b samples,
which leads to roughly the same number of passes through the
data to achieve the same sub-optimality.

6.3. adfSDCA for Non-convex Losses
Here we investigate the behavior of adfSDCA when applied
to problems that involve some nonconvex loss functions.

We describe the experimental set-up now. Suppose that
we have convex loss functions ¢; (xiTw), where i € [n].
Then, it is possible to construct nonconvex loss functions by
subtracting a quadratic from each of the convex losses as
follows:

$ilxi w) = ¢i(xi w) = Cillwl. (40)
Note that if C; > 0 is large enough (up to the Lipschitz gradient
constant of ¢; (xiTw)), the new loss ¢; (xiTw) derived by (40) will be
nonconvex. On the other hand, if C; < 0, we will have the new
loss being strongly convex.

Now, functions of the form (40) will satisfy the requirements
of Case Il in section 3.2 (i.e., that the individual loss functions can
be nonconvex, but that the average over all the losses is convex) as
long as some of the hyperparameters C; are large enough to make
(40) nonconvex and ) 7| C; = 0. Using this set-up, we present
a numerical experiment to show the practical performance of
adfSDCA. The quadratic loss is applied in this experiment due to
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FIGURE 5 | Plots showing the performance of adfSDCA in terms of the number of passes through the data and running time, on different loss functions, as the batch
size varies.
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FIGURE 6 | Investigating the performance of adfSDCA when every loss function is convex, and when only the average of the loss functions is convex.

that the new loss (40) would be nonconvex when C; > 0, since the
Hessian of each quadratic loss of x; has the smallest eigenvalue 0.
In particular, we let C; = 0.01 x (—1)!, where i € [n]. We use the
mushrooms and ijcnnl datasets for this experiment, and because
these datasets both have an even number of samples, the property
that Y7 | C; = 0 will hold. The results of this experiment
are shown in Figure 6, where we compare the performance of
adfSDCA with respect to the running time and number of passes
over the data. Figure 6 shows that adfSDCA performs well on
such problems and is able to find an accurate solution (where
the duality gap is less than 1071) in less than 20 passes over the
data.

7. CONCLUSION

In this work, we present dual free SDCA variants with adaptive
probabilities for Empirical Risk Minimization problems. The
theoretical complexity of the proposed methods is analyzed in
two cases: when the individual loss functions are all convex and
when the average over the losses is convex but individual loss
functions may be nonconvex. A heuristic variant of adfSDCA
is proposed to reduce the computational effort required and
its practical convergence performance is demonstrated via
a numerical experiment. We also extend our convergence
theory to cover a mini-batch adfSDCA variant and a novel
nonuniform sampling strategy for mini-batches is developed.

REFERENCES

1. Shalev-Shwartz, S (2016). “SDCA without duality, regularization, and
individual convexity,” in Proceedings of The 33rd International Conference on
Machine Learning, Proceedings of Machine Learning Research, Vol. 48, eds
M. F. Balcan and K. Q. Weinberger (New York, NY: PMLR), 747-54.

Our experimental results show speedups in terms of the number
of passes through the data and/or running time of the proposed
methods, when compared with the original dual free SDCA,
as well as other state-of-art primal methods. The numerical
experiments related to the use of mini-batches match our
theoretical analysis and suggest that using mini-batches is
beneficial in practice.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

ACKNOWLEDGMENTS

We would like to thank Professor Alexander L. Stolyar for
his insightful help with Algorithm 3. The material is based
upon work supported by the U.S. National Science Foundation,
under award number NSF:CCF:1618717, NSF:CMMI:1663256
and NSF:CCF:1 740796.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fams.
2018.00033/full#supplementary-material

2. Shalev-Shwartz S, Singer Y, Srebro N, Cotter A. Pegasos: Primal estimated
sub-gradient solver for SVM. Math Programm. (2011) 127:3-30. doi: 10.1007/
510107-010-0420-4

3. Johnson R, Zhang T. Accelerating stochastic gradient descent using predictive
variance reduction. In: Advances in Neural Information Processing Systems.
Lake Tahoe, NV (2013). p. 315-23.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org

13

July 2018 | Volume 4 | Article 33


https://www.frontiersin.org/articles/10.3389/fams.2018.00033/full#supplementary-material
https://doi.org/10.1007/s10107-010-0420-4
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

He et al.

Adaptive Minibatch dfSDCA for ERM

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Nitanda A. Stochastic proximal gradient descent with acceleration techniques.

In: Advances in Neural Information Processing Systems. Montréal, QC (2014).
p. 1574-82.

. Kone¢ny J, Liu J, Richtdrik P, Taka¢ M. Mini-batch semi-stochastic gradient

descent in the proximal setting. IEEE ] Select Top Signal Process. (2016)
10:242-55. doi: 10.1109/JSTSP.2015.2505682

. Schmidt M, Roux NL, Bach F. Minimizing finite sums with the

stochastic average gradient. 162:83-112.

doi: 10.1007/s10107-016-1030-6

Math  Programm. (2017)

. Defazio A, Bach F, Lacoste-Julien S. SAGA: a fast incremental gradient method

with support for non-strongly convex composite objectives. In: Advances in
Neural Information Processing Systems. Montréal, QC (2014). p. 1646-54.

. Roux NL, Schmidt M, Bach FR. A stochastic gradient method with an

exponential convergence rate for finite training sets. In: Advances in Neural
Information Processing Systems. Lake Tahoe, NV (2012). p. 2663-71.

. Hsieh CJ, Chang KW, Lin CJ, Keerthi SS, Sundararajan S. A dual coordinate

descent method for large-scale linear SVM. In: Proceedings of the 25th
International Conference on Machine Learning. Helsinki: ACM (2008).
p. 408-15.

Takd¢ M, Bijral A, Richtarik P, Srebro N. Mini-batch primal and dual
methods for SVMs. In: Proceedings of the 30th International Conference on
Machine Learning. Atlanta, GA (2013). p. 1022-30. Available online at: http://
proceedings.mlr.press/v28/

Jaggi M, Smith V, Takda¢ M, Terhorst J, Krishnan S, Hofmann T, et al.
Communication-efficient distributed dual coordinate ascent. In: Advances in
Neural Information Processing Systems. Montréal, QC (2014). p. 3068-76.

Ma C, Smith V, Jaggi M, Jordan MI, Richtarik P, Taka¢ M. Adding vs. averaging
in distributed primal-dual optimization. In: 32th International Conference on
Machine Learning, ICML 2015. Lille (2015). 37:1973-82 Available online at:
http://proceedings.mlr.press/v37/

Takd¢ M, Richtarik P, Srebro N. Distributed Mini-Batch SDCA.
arXiv:150708322 [preprint]. (2015).

Qu Z, Richtérik P, Zhang T. Quartz: randomized dual coordinate ascent with
arbitrary sampling. In: Advances in Neural Information Processing Systems.
Montréal, QC (2015). p. 865-73.

Csiba D, Qu Z, Richtdrik P. Stochastic dual coordinate ascent with adaptive
probabilities. In: Proceedings of the 32nd International Conference on Machine
Learning (ICML-15). Lille (2015). p. 674-83. Available online at: http://
proceedings.mlr.press/v37/

Zhang Y, Xiao L, JMLR. org. DiSCO: distributed optimization
for self-concordant empirical loss. In: Proceedings of the 32nd
International Conference on International Conference on Machine Learning
(ICML-15). Lille (2015). p. 362-70 Available online at: http://proceedings.mlr.
press/v37/

Nesterov Y. Efficiency of coordinate descent methods
scale optimization problems. SIAM ] Optim. (2012)
doi: 10.1137/100802001

Richtarik P, Takd¢ M. Iteration complexity of randomized block-coordinate
descent methods for minimizing a composite function. Math Programm.
(2014) 144:1-38. doi: 10.1007/s10107-012-0614-z

Tappenden R, Takd¢ M, Richtarik P. On the complexity of parallel
coordinate  descent. Optim  Methods ~ Softw.  (2017)  33:372-95.
doi: 10.1080/10556788.2017.1392517

on huge-
22:341-62.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Necoara I, Clipici D. Efficient parallel coordinate descent algorithm for convex
optimization problems with separable constraints: application to distributed
MPC. ] Process Control (2013) 23:243-53. doi: 10.1016/j.jprocont.2012.
12.012

Necoara I, Clipici D. Parallel random coordinate descent method
for composite minimization. SIAM ] Optim. (2016) 26:197-226.
doi: 10.1137/130950288

Liu J, Wright SJ. Asynchronous stochastic coordinate descent: parallelism
and convergence properties. SIAM ] Optim. (2015) 25:351-76.
doi: 10.1137/140961134

Zhao P, Zhang T. Stochastic optimization with importance sampling for
regularized loss minimization. In: Proceedings of the 32nd International
Conference on Machine Learning (ICML-15) . Lille (2015). p. 1-9. Available
online at: http://proceedings.mlr.press/v37/
Shalev-Shwartz S. SDCA Without Duality.
(2015).

Csiba D, Richtarik P. Primal method for ERM with flexible mini-batching
schemes and non-convex losses. arXiv:150602227 [preprint]. (2015).
Richtarik P, Taka¢ M. Parallel coordinate descent methods for
big data optimization. ~Math  Programm. (2016)  156:443-84.
doi: 10.1007/s10107-015-0901-6

Konecny J, Richtérik P. Semi-stochastic gradient descent methods. Front Appl
Math Stat. (2017) 3:9. doi: 10.3389/fams.2017.00009

Kronmal RA, Peterson AV Jr. On the alias method for generating
random variables Am  Stat. (1979)
33:214-8.

Qu Z, Richtarik P. Coordinate descent with arbitrary sampling II: expected
separable overapproximation. Optim Methods Softw. (2016) 31:858-84.
doi: 10.1080/10556788.2016.1190361

Chang CC, Lin CJ. LIBSVM: a library for support vector machines.
ACM Trans Intell Syst Technol. (2011) 2:27. doi: 10.1145/1961189.19
61199

Shalev-Shwartz S, Zhang T. Accelerated proximal stochastic dual coordinate
ascent for regularized loss minimization. Math Programm. (2016) 155:105-45.
doi: 10.1007/s10107-014-0839-0

Shalev-Shwartz S, Zhang T. Stochastic dual coordinate ascent methods for
regularized loss. ] Mach Learn Res. (2013) 14:567-99. Available online at:
http://www.jmlr.org/papers/v14/shalev-shwartz13a.html

Shalev-Shwartz S, Ben-David S. Understanding Machine Learning: From
Theory to Algorithms. New York, NY: Cambridge University Press
(2014).

arXiv:150206177 [preprint].

from a discrete distribution.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 He, Tappenden and Takdc. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org

14

July 2018 | Volume 4 | Article 33


https://doi.org/10.1109/JSTSP.2015.2505682
https://doi.org/10.1007/s10107-016-1030-6
http://proceedings.mlr.press/v28/
http://proceedings.mlr.press/v28/
http://proceedings.mlr.press/v37/
http://proceedings.mlr.press/v37/
http://proceedings.mlr.press/v37/
http://proceedings.mlr.press/v37/
http://proceedings.mlr.press/v37/
https://doi.org/10.1137/100802001
https://doi.org/10.1007/s10107-012-0614-z
https://doi.org/10.1080/10556788.2017.1392517
https://doi.org/10.1016/j.jprocont.2012.12.012
https://doi.org/10.1137/130950288
https://doi.org/10.1137/140961134
http://proceedings.mlr.press/v37/
https://doi.org/10.1007/s10107-015-0901-6
https://doi.org/10.3389/fams.2017.00009
https://doi.org/10.1080/10556788.2016.1190361
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1007/s10107-014-0839-0
http://www.jmlr.org/papers/v14/shalev-shwartz13a.html
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	Dual Free Adaptive Minibatch SDCA for Empirical Risk Minimization
	1. Introduction
	Notation and Assumptions
	1.1. Contributions
	1.2. Outline

	2. The Adaptive Dual Free SDCA Algorithm
	2.1. Adaptive Dual Free SDCA as a Reduced Variance SGD Method

	3. Convergence Analysis
	3.1. Case I: All Loss Functions Are Convex
	3.2. Case II: The Average of the Loss Functions is Convex

	4. Heuristic adfSDCA
	5. Mini-Batch adfSDCA
	5.1. Efficient Single Coordinate Sampling
	5.2. Non-uniform Mini-Batch Sampling
	5.3. Mini-Batch adfSDCA Algorithm
	5.4. Expected Separable Overapproximation

	6. Numerical Experiments
	6.1. Comparison for a Variety of adfSDCA Approaches
	6.2. Mini-Batch adfSDCA
	6.3. adfSDCA for Non-convex Losses

	7. Conclusion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


