
	

	

Corresponding	author:	Jianwu	Wang,	jianwu@umbc.edu		
1Department	 of	 Information	 Systems,	University	 of	Maryland,	
Baltimore	 County,	 2Department	 of	 Mathematics,	 Towson	
University,	 3NOAA	 NESDIS	 STAR,	 4Department	 of	 Physics,	
University	 of	 Maryland,	 Baltimore	 County,	 5Joint	 Center	 for	
Earth	Systems	Technology,	 University	 of	Maryland,	 Baltimore	
County.	

SPATIO-TEMPORAL CLIMATE DATA CAUSALITY ANALYTICS

SPATIO-TEMPORAL CLIMATE DATA CAUSALITY ANALYTICS – 
AN ANALYSIS OF ENSO’S GLOBAL IMPACTS 

Hua Song1, Jianwu Wang1, Jing Tian2, Jingfeng Huang3, Zhibo Zhang4,5 

Abstract—Numerous studies have indicated that 
El Niño and the Southern Oscillation (ENSO) could 
have determinant impacts on remote weather and 
climate using the conventional correlation-based 
methods, which however cannot identify cause-and-
effect of such linkage and ultimately determine a 
direction of causality. This study employs the 
Vector Auto-Regressive (VAR) model estimation 
method with the long-term observational data and 
reanalysis data to demonstrate that ENSO is the 
modulating factor that can result in abnormal 
surface temperature, pressure, precipitation and 
wind circulation remotely. We also carry out the 
sensitivity simulations using the Community 
Atmospheric Model (CAM) to further support the 
causality relations between ENSO and abnormal 
climate events in remote regions.  

I .  MOT IVAT ION 

El Niño and the Southern Oscillation (ENSO) is a 
local phenomenon of the variation in sea surface 
temperature (SST) and surface air pressure across the 
equatorial eastern Pacific Ocean. Numerous studies 
have indicated that ENSO could have determinant 
impacts on remote weather and climate through 
atmospheric “teleconnection” using the conventional 
correlation-based methods [1, 2, 3], which however 
cannot identify cause-and-effect of such linkage and 
ultimately determine a direction of causality.  Lagged 
linear regression is frequently used to infer causality 
between climate variables [4, 5, 6]. This method has 
weaknesses when one or more of the variables have 
high memory or autocorrelation [7, 8].   

Granger causality [9] method, which consists of a 
lagged autoregression and a lagged multiple linear 
regression, is suitable to determine the causality 
relations with high memory data [10]. Recently, the 

Granger causality (GC) approach has been applied to 
analyze the causality relationships between climate 
variables, such as between SST and hurricane strength 
[11], and between ENSO and Indian monsoon [12]. In 
this paper, we use the Vector Auto-Regressive (VAR) 
model estimation method to find the Granger causality 
relations between ENSO and some climate variables 
(surface air temperature, sea level pressure (SLP), 
precipitation and wind). We also use the climate model 
simulation to double confirm the causality relations 
between ENSO and climate variables from the 
observation-based analyses. 

This work is carried out in order to determine the 
spatiotemporal causality relationships between ENSO 
and abnormal extreme climate events (such as 
drought/flood) in remote regions, and provide some 
valuable insights for the prediction of some extreme 
weather/climate events under different ENSO 
backgrounds.   

I I .  M ET HOD,  DAT A AND MODEL 

Granger causality defines a causal relationship from 
one time series X to another time series Y if and only if 
the regression for Y based on past values of both X and 
Y is statistically significant than the regression only 
based on past values of Y. Granger causality could be 
calculated using different approaches such as VAR, 
LASSO and SIN [13]. We use the VAR method to 
determine the causality relation between ENSO and 
climate variables.  

Using VAR(p) to denote an autoregression model of 
the lag order p, then VAR(p) on two time series X and 
Y is defined as: 
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An F-test is applied to obtain a p-value and 

significance level to check the statistical significance 
for whether or not Y is Granger caused by X. 
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We also calculate the maximum lag correlation 
between ENSO index and climate variables, which 
provide the maximum correlation coefficients between 
ENSO and climate variables and the corresponding lag 
time.  

The monthly-mean observational data we use are the 
Hadley Centre Sea Ice and Sea Surface Temperature 
data (HadiSST) from 1870 to the present with 1° x 1° 
latitude-longitude resolution [14], and the Global 
Precipitation Climate Project Precipitation (GPCP) 
version 2.3 data from 1979 to the present at the 2.5° x 
2.5° latitude-longitude resolution [15]. We also use the 
NCEP/NCAR reanalysis I data from 1948 to present at 
the 2.5° x 2.5° latitude-longitude resolution with 17 
vertical levels [16]. The NCEP/NCAR monthly mean 
horizontal wind, vertical wind, SLP, and air 
temperature data are used.  

Sensitivity simulations with global climate model 
forced by different SST patterns are carried out to 
investigate the responses of atmospheric fields to 
different ENSO phases and further support the 
causality relations between ENSO and abnormal 
climate events in remote regions. We use the 
Community Atmospheric Model (version 5.3, 
CAM5.3) with the CAM5 standard parameterization 
schemes [17]. The CAM5.3 uses the finite volume 
dynamical core at 1.9° latitude × 2.5° longitude 
resolution with 30 vertical levels and 1800-s time step. 
The simulation is run using MPI with 32 processors at 
the UMBC Maya cluster [18]. Three sensitivity 
simulations include: the CAM5.3-Control run forced 
by climatological SST; the CAM5.3-p2K run forced by 
climatological SST + 2K at the Nino3.4 region to 
mimic ENSO warm phase; the CAM5.3-n2K run is 
forced by climatological SST – 2K at the Nino3.4 
region to mimic ENSO cold phase. We compare the 
simulated wind, SLP, precipitation and temperature 
fields from three simulations. 

I I I .  EVAL UAT ION 

Following [10], we first determine the causality 
relation between ENSO and surface air temperature on 
the global land using the VAR method. As the 
significant differences between Figure 3(a) and Figure 
3(b), the changes in ENSO clearly leads the changes in 
surface air temperature in Figure 3(a), but not vice 
versa in Figure 3(b). This indicates that ENSO is a 
driver of surface temperature anomalies in remote 
regions such as South America, northwest North 

America, equatorial South Africa, and northern 
Australia; while ENSO variation is not caused by 
surface temperature over land. This result is consistent 
with the study of McGraw and Barnes [10]. The global 
distribution of the maximum lag correlation between 
ENSO index and surface temperature (Figure 2) shows 
that ENSO has strong positive relationship with surface 
temperature in South America and equatorial South 
Africa, which indicates that El Niño events (i.e., ENSO 
warm phase) are most likely accompanied with higher 
surface temperature over these lands. Results of the 
climate model sensitivity simulations (Figure 3) are 
consistent with the observational-based analyses. In the 
ENSO warm phase (Figure 3(b)), there are positive 
anomalies in surface temperature over South America, 
northwest North America while in the ENSO cold 
phase (Figure 3(c)) there are negative anomalies in 
surface temperature over these regions.  
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To explore the relationship between extreme 
drought/flood events with ENSO, we analyze the 
causality relation between ENSO and global surface 
precipitation. As the comparison between Figure 4(a) 
and 4(b) shows, ENSO changes is leading the changes 
in surface precipitation anomalies in many regions 
such as Tropical Ocean and Tropical Land, with 
significant Granger causality correlation over broad 
area in Figure 4(a), but not vice versa in Figure 4(b). 

 

 
 

The global distribution of the maximum lag 
correlation between ENSO index and surface 
precipitation (Figure 5) shows that ENSO has strong 
negative relationship with surface precipitation in 
Tropical Western Pacific and Tropical South 
American, indicating ENSO’s remote impact on 
extreme drought events. Figure 5 also shows ENSO 
has strong positive relationship with surface 
precipitation in Tropical Central and Eastern Pacific, 
which means ENSO may potentially result in extreme 
flooding events over these regions. Similarly, the 

climate model sensitivity simulations (Figure 6) 
indicate that in the ENSO warm-phase events (Figure 
6(b)), there are positive anomalies (floods) in surface 
precipitation over Tropical Central and Eastern Pacific, 
and negative anomalies (droughts) in surface 
precipitation over Tropical Western Pacific, consistent 
to what we found from the observations. The patterns 
of precipitation anomalies in the ENSO cold-phase 
events (Figure 6(c)) are clearly different from those in 
the ENSO warm-phase events.   

 

 
 

   
IV.  C ONCLUS IONS 

In this study, we analyzed different observational 
data, reanalysis data and model data to 
comprehensively investigate the global impacts of 
ENSO using statistical methods, namely the VAR GC 
method, maximum lag correlation, and global climate 
model simulations. Results show that the VAR method 
is able to clearly show ENSO as a cause instead of an 
effect to influence the remote climate variables and 
thus cause extreme weather events such as flooding, 
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drought, extreme heat and cold, etc. Our model 
simulations using the CAM5.3 also successfully 
simulated ENSO’s remote impacts on other weather 
variables, consistent to the findings from observational 
evidence. More details of our causality analysis of the 
ENSO’s global impacts can be found in [19]. 
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