
A Deterministic Self-Organizing Map Approach and
its Application on Satellite Data based Cloud Type

Classification
Wenbin Zhang1, Jianwu Wang1, Daeho Jin2,3, Lazaros Oreopoulos3, Zhibo Zhang4

1Department of Information Systems, University of Maryland, Baltimore County, Baltimore, MD, USA
2University Space Research Association, Columbia, MD, USA
3NASA Goddard Space Flight Center, Greenbelt, MD, USA

4Department of Physics, University of Maryland, Baltimore County, Baltimore, MD, USA
{wenbinzhang, jianwu, zhibo.zhang}@umbc.edu, {daeho.jin, lazaros.oraiopoulos-1}@nasa.gov

Abstract— A self-organizing map (SOM) is a type of com-
petitive artificial neural network, which projects the high-
dimensional input space of the training samples into a low-
dimensional space with the topology relations preserved. This
makes SOMs supportive of organizing and visualizing complex
data sets and have been pervasively used among numerous
disciplines with different applications. Notwithstanding its wide
applications, the self-organizing map is perplexed by its inherent
randomness, which produces dissimilar SOM patterns even
when being trained on identical training samples with the same
parameters every time, and thus causes usability concerns for
other domain practitioners and precludes more potential users
from exploring SOM based applications in a broader spectrum.
Motivated by this practical concern, we propose a deterministic
approach as a supplement to the standard self-organizing map. In
accordance with the theoretical design, the experimental results
with satellite cloud data demonstrate the effective and efficient
organization as well as simplification capabilities of the proposed
approach.

Keywords—Self-organizing map, randomness, initialization
method, sample selection, deterministic approach, cloud classifi-
cation.

I. INTRODUCTION

The self-organizing map provides an automatic data anal-
ysis technique which helps to produce a low-dimensional
representation, called map, of the high-dimensional input
space without any external supervision [23]. Unlike in most
biologically inspired neural network models, SOM performs
competitive learning as opposed to error-correction learning by
having units compete for the current object, and in the sense
that it is topological preserving by having a neighborhood
function to adjust the weights of neighbors of the winning
unit concurrently. Various versions of the SOM models have
been investigated over the years with practical applications
across numerous disciplines, ranging from meteorology and
oceanography to finance analysis, bioinformatics and image
retrieval [9], [13]. In the pioneering work of the SOM-based
meteorology application, Malmgren et al. showed the potential
of such neural network system in identifying climate zones
by organizing climate data, seasonal averages of precipitation

and temperatures over the course of 30 years [16]. In [5],
the SOM was successfully applied to detect the dipole sea
surface temperature anomaly pattern for Indian Ocean. Oja
et al. used the SOM to study the mutual relationships of
the HERVs and their similarities to other associated DNA
elements [18]. A tree structured SOM was designed to reduce
the time complexity of search for the purpose of effective
image retrieval and user’s relevance feedback was interactively
incorporated [10]. Including the just mentioned applications,
the SOM-based approaches have gained their popularities as
a powerful data analysis technique and have achieved varying
degrees of success [26].

One of the shortcomings of these methods, however, is the
inherent randomness of SOM and the indeterministic arising
therefrom [13], which perplexes SOM, results in dissimilar
SOM patterns when being trained on the same training set with
identical parameters and remains it as a black box especially to
users without related background. As a result, dampening more
potential users’ interests in pursuing further SOM applications.
Efforts have been made in offering suggestions and guidelines
on how to handle the randomness of SOM, but it is desirable
that the inherent randomness could be eliminated or at least
minimized [14]. With this in mind, this paper proposes a
variant deterministic self-organizing map to eliminate the
randomness of standard self-organizing map approach. The
maximum iterations parameter that was once necessary also
becomes self-tuned as a byproduct of the random elimination
process. These random eliminators are designed based on self-
organizing map and are illustrated with an satellite cloud
classification application, but they are generalizable knowledge
in applications employing other learning algorithms.

In summary, the contributions of this paper are:
• A deterministic self-organizing map is proposed to elimi-

nate the randomness of the standard self-organizing map.
This deterministic network is invariant when the same
training set is used.

• The proposed random eliminators are generalizable
knowledge and are applicable for other learning al-



gorithms. The tuning required maximum iterations pa-
rameter also becomes self-tuned during the randomness
eliminating process.

• The utilization of proposed network on real world satellite
observation of clouds walks through the use of our
method in practical application, which addresses the
practical concerns of geoscientists and demonstrates the
effectiveness and efficiency of our method.

In the following sections, related studies will be firstly
reviewed in Section II. We propose our method in Section III.
Section IV presents the application and then the performance
will be analyzed and reasons for the results will be discussed
in Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

A. Deterministic Clustering

Clustering algorithms are to partition objects into groups
based on their similarity. Many clustering algorithms face
indeterministic issue. For instance, as one of the mostly used
clustering algorithm, the standard K-means algorithm [15],
[28] randomly choose its initial centroids. It causes the al-
gorithm to be very sensitive to its initial seed clusters and
often produce very different results when running the K-
means algorithm with the same parameter configuration. There
have been several studies on how to achieve deterministic
clustering [25], [4]. [4] studies how to reconcile clustering
results from different runs of the same algorithm and derive
a consensus among them. [25] proposes to use principal
component analysis (PCA) based divisive hierarchical ap-
proach for deterministic K-means initialization. This is also
the mainstream in achieving deterministic clustering using
SOM [1]. The high computational cost of determining the
data-dependent PCA transform, however, hinders its applica-
tions in high-dimensional situations such as the classification
of satellite cloud regimes.

B. Satellite Data based Cloud Type Classification

The study of clouds, including their frequency of occur-
rence, location and characteristics, plays a key role in the
understanding of climate change. Thick clouds in the lower
atmosphere primarily reflect the incoming solar radiation and
consequently cool the surface of the Earth. On the other hand,
thin clouds in upper atmosphere easily transmit the incoming
solar radiation and also trap some of the outgoing infrared
radiation emitted by the Earths surface and radiate it back
downward, consequently warming the atmosphere and surface
of the Earth.

There have been many studies on cloud type classifica-
tion. [11], [12] used maximum likelihood (ML) classification
method to classify cloud types. In recent years, K-means,
as one of the main approaches, has been widely used for
cloud type clustering while others started to employ SOM for
the cloud study. Our previous work [20], [19], [6] used K-
means approach to identify cloud regimes. As the pioneering
work, McDonald et al. [17] studied how to use SOM to

identify cloud regimes and reported more objective organi-
zation compared to k-means. Because neither approach is
deterministic, we still face usability challenges. This work is
motivated by this critical practical concern. Collaborating with
geoscientists, we aim to identify and interpret cloud regimes
deterministically.

III. THE DETERMINISTIC APPROACH

A. Standard Self Organizing Map

An SOM [8] is made up of a set of nodes. Each node holds a
representative feature vector called the prototype. The standard
SOM starts from randomly initializing the prototype feature
vector of each node in the map. From there a sample vector
is randomly selected and fed to the network, its Euclidean
distances to all prototype vectors are then computed in order
to find the neuron that most closely matches with the current
sample vector. The prototype vector that best represents that
sample becomes the winning unit and is called the Best Match
Unit (BMU). Next, the neurons belong to the neighborhood
set of BMU are also activated and the prototype vectors of all
activated neurons are adjusted towards the input vector at the
same time. From this step, the magnitude of the adjustment
decreases with time and with distance from the BMU in an
attempt to preserve topology relationships that exist within
the input data. This whole process iterates until the predefined
stopping condition is met. The common theme through the
following sections is to eliminate the randomness of standard
self-organizing map for the stable and efficient purpose, thus
simplify the use of SOM for cloud regimes identification
automata. A summary of notations used in this paper is given
in Table I.

Notation Description
~v(t) The prototype vector of each node in the map at time t
~f The current sample’s feature vector

BMU The node that best matches with current sample’s feature vector

L(0) Initial learning rate
L(t) Learning rate at time t
R(0) Initial neighborhood radius
R(t) Neighborhood radius at time t

TABLE I: Notation used for method description.

B. Update Procedure

The implementation of self-organizing map algorithm de-
mands the instantiation of its update procedure and there are
two key components involved in the procedure: neighborhood
radius and learning rate. The randomness roots in update
procedure arises from the tunable parameters of distinct update
functions as different parameters result in dissimilar SOM
patterns. It is desirable that the tuning process could be
eliminated or at least minimized [14]. Our approach therefore
employs the update functions in which maximum iterations
is the exclusive tunable parameter, and this parameter is self-
tuned in the devised staggered sample selection method to be
discussed in Section III-E.



The first component neighborhood radius comes in a variety
of flavors [26]. Any node that is inside the neighborhood radius
of a node that is to be updated also gets updated to a degree.
Our approach uses the circle neighborhood that has an initial
radius equal to half of the size of the smallest dimension of
the SOM. Formally put:

R(0) =
min(rows, colums)

2
(1)

The radius of the SOM needs to decay with time so that
the map will stabilize into its final organization. Here is the
decay function used:

R(t) = R(0) · b− t
λ (2)

where t = 0, 1, 2, · · · ,max(t), λ = time constant = max(t)
logb R(0)

and b = logarithmic base.
This decay function exponentially decays the original radius

to 1 when t reaches its maximum value, which is the maximum
number of iterations which is specified in Section III-C. If
the SOM is continued to be trained at a radius of 1 the
nodes immediately to the top, right, bottom, and left of the
BMU would still be affected but this is not the case because
the equation only becomes 1 when the maximum iteration
is reached, meaning training is finished. This neighborhood
function proves to work well as the amount that one node
changes those around it decreases with time as it should [3].

The learning rate is the amount of impact a sample that
matches best to a node should have on that node and its
neighbors. Like the neighborhood the learning rate similarly
decays with time. Here is its function:

L(t) = L(0) · b− t
λ (3)

where t = 0, 1, 2, · · · ,max(t), λ = time constant = max(t)
and b = logarithmic base.

This is the same exponential decay function as the neighbor-
hood radius except the time constant has changed to the given
maximum number of iterations. The conducted experiments
of this work show that speed and accuracy both increase as
the initial learning rate decreases to a point. An initial rate of
0.1 works well. This is due to the fact that a high rate causes
more oscillation in the prototype vectors of the SOM nodes
because as two or more samples may jockey for main position
in the same BMU. A high learning rate also causes the node
to swing more toward the most recently matching sample than
it should, meaning it “forgets” the impact of the other nodes
that matched to it before too quickly.

There is another factor that adjusts the learning rate of a
neighborhood node (i, j) of a BMU (k, l) by taking the actual
distance that the neighboring node is from the BMU into
account. Here is the mathematical definition of influence used
in our method, note that it also decays with time:

I(t) = b−
d(i,j)(k,l)

2R(t) (4)

where t = 0, 1, 2, · · · ,max(t), I(t) = influence on node (i,
j) by (k, l) at time t, d(i,j)(k,l) = distance from node (i, j) to
(k, l) and b = logarithmic base.

As is evident the influence exponentially decreases the
further the neighboring node is from the BMU using the ratio
between the distance between the two nodes and the current
neighborhood diameter.

All of the pieces are combined into a single vector update
equation, formally put:

~v(t+ 1) = ~v(t) + I(t)L(t)(~f − ~v(t)) (5)

C. Stopping Condition

Considering that the speed at which the SOM can be trained
hinges on the stopping condition, we consider the two types
of convergence mechanisms in our approach. The first type of
stopping condition simply uses a user specified maximum iter-
ations parameter as the upper bound on the training iterations.
An iteration is the whole training set being shown to the SOM.
The maximum number of training times is based on the given
parameter and then the training stops. The drawback to this
approach is that it does not take the map activity into account
therefore training may proceed through many iterations while
the SOM is actually producing no improvement [26]. In this
case if the system had some measurement of improvement
after each iteration it could stop earlier when it sees that there
was no improvement can be made.

The second type stopping condition, namely No Moves,
defines “no improvement” in SOM’s status as no training
samples changing their best match unit in a complete iteration
of the training set [26]. Using this condition the training
process is stopped as soon as it sees no improvement. While
this stopping condition could be used alone in some SOMs our
approach uses it in conjunction with the maximum iterations
condition described above. It is because, as described in
Section III-B on the proposed method’s updating procedure,
the learning rate and neighborhood radius update equations
require maximum number iterations to be known. In any
event, using this condition alone could also result in infinite
training if update factors are not set up to decay correctly. For
this reason the maximum iterations condition can be think of
hidden in the background as a safety net that will rarely being
need, but it is nice to have there just in case. It has to be
said that while this stopping condition, as a proxy for the true
goal, might not be fully optimized just like other heuristic
strategies, a local optimum returned by simple greedy search
may be better than the global optimum [2]. The study of the
SOM’s behavior from this work also has shown that the point
where the samples stop changing their BMU is the point where
map configuration has often peaked. On the occasion beyond
“often”, it is the chance that it has not and as such user runs
the risk when using this method that user may miss out on
a slightly better map organization, it is really matter whether
user wants to wait through the maximum number iterations
or not for a little improvement, if any. There is another small
caveat that developed through this study’s observing of the



SOM’s activities. If this stopping condition is used and the
training usually halts before the specified maximum iterations
is reached. Although samples are distributed correctly the
actual prototype vector of the node may not reflect the samples
as well as it should. Recall that a SOM works on the “best
match principle” and so although the prototype vector may not
represent the samples in its node well it can still be the best
match for those samples when compared with the rest of the
nodes in the map. A figured out way to cope with this is to turn
the initial learning rate up a little. Although this flies in the
face of what is found to work best in the general case in the
learning rate section above, it tends to produce slightly better
map configuration in some cases if the map does converge too
fast under this condition. The reason for this is that if the map
converges too fast the number of iterations is small and as such
given that the training samples are only shown to the SOM
a short few times they need to impact their best match unit’s
prototype vector fast so that any sample shown to the SOM
will find the prototype vectors containing the other samples it
usually should.

D. Initialization Method

Initializing a node refers to setting the values in the pro-
totype vector of that node before training begins. Random
initialization is the common technique used to initialize the
nodes. It simply means to run through every value in the
nodes’ vectors that need to be initialized and set them to a
random value. It was found that this technique is good for
producing an even distribution but because of the randomness
a random distribution will be produced every time [1]. Even
though the cloud data samples will organize nicely once there
has been enough iteration chances are they will be in different
cloud type nodes when the training completes. The layout
of these different nodes may be better or worse than the
other times, there is no guarantee due to the randomness.
To eliminate the initialization randomness of standard SOM
method, we set up the nodes with a smooth transition from the
top left to the bottom right corner. The gradient initialization
computes the initial values of the prototype vector of any node
(a, b) in the following way:

vi =
d(1,1)(a,b)

d(1,1)(m,n)
(6)

where d(1,1)(m,n) is the maximum distance possible of the
map, that is the distance from the top left node to the bottom
right node.

E. Sample Selection

It is important with most, if not all, neural networks that
during the training process the samples are not fed to the
network sequentially in the same order every time. Doing
this may cause a bias for either the beginning or the ending
input samples, depending on the type of network [27]. Ran-
dom selection is the commonly used technique. As its name
suggests, available samples are randomly selected from the
training set during sample selection step of standard SOM.

The consequences of this randomness are that while a good
distribution should be achieved it may not always be, and not
only that, it is hard to tell one training run from another since
nodes’ sets of samples, while normally similar, will be shifted
around. The organization will thus be randomly produced
each time with this method [26]. To come up with consistent
results a staggered selection method that tries to maintain the
good characteristics of randomness and eliminate the actual
randomness is devised. The staggered approach gives all of the
training samples equal opportunity to start an iteration at some
point during the training. As well as giving the samples this
equal opportunity it ensures that the samples are not shown to
the learning algorithm in the same order during each training
iteration. The idea is detailed in Algorithm 1.

Algorithm 1: Staggered sample selection algorithm
Input: Training samples’ index.
Output: Training order list;

Maximum iterations of SOM.
1 while frontIndex ≤ backIndex do
2 if reverse then
3 startIndex = backIndex;
4 else
5 startIndex = frontIndex;
6 end
7 curretIndex = startIndex;
8 do
9 Train the network on the sample at

currentIndex;
10 if reverse then
11 currentIndex =

(currentIndex− 1 + Ssample) % Ssample;
12 else
13 currentIndex =

(currentIndex+ 1 + Ssample) % Ssample;
14 end
15 while currentIndex ! = startIndex;
16 if reverse then
17 backIndex−−;
18 else
19 frontIndex++;
20 end
21 reverse =! reverse;
22 maxIteration++;
23 end

In Algorithm 1, a front index (frontIndex) and a back
index (backIndex) that point to the first element and last
element in the list of training samples are initialized re-
spectively. The current direction (reverse) is initialized as
false, which means the current direction is set to forward.
Another two indexes, start index (startIndex) and current
index (currentIndex) refer to the initial element and the
current element respectively. The staggered sample selection
first (lines 2-6) determines the sample that bootstraps each



iteration during the training. If the current direction is forward
the start index (startIndex) is set equal to the front index,
otherwise, i.e., when reverse is true, set the start index equal
to the back index. Lines 8-15 complete one whole training
iteration. The network is first trained on the sample that the
current index points to. Next, if the current direction is forward
increment the current index until the current index is equal to
the front index. In the meanwhile, any change in the current
index that goes outside the range of the training list wraps
around to the other side. The same scheme applies when the
current direction is reverse but the current index works in
decrement fashion until the current index is equal to the back
index. Lines 16-20 update the front index or back index after
each iteration depending on the current direction. If the current
direction is forward increment the front index, otherwise
decrement the back index. Finally the current direction is
reversed per iteration as well, that is to say if the current
direction is forward then set it to reverse, otherwise set the
current direction to forward. The algorithm ceases when the
front index is greater than the back index.

This staggered method of selection produces equivalent
results to its random counterpart every time. This equivalence
is guaranteed because the results are not random and there-
fore have the same performance every time. In addition, by
changing the start sample and reversing the order of input
after each iteration, this method has the effect of evening out
the influence of a single training sample because right after
a sample is used the first becomes the last, and then second,
and then second last, and so on. Another convenience of this
method is that the maximum number of iterations is chosen
by the size of the training list alone making the maximum
iterations parameter that was once necessary obsolete. In
summary, this staggered method of selection is relatively fast,
consistent, and tunes the maximum iterations parameter, which
is required in the update equations and stopping condition.

F. Towards Self-tuned

Despite its gained popularity as a powerful data analysis
technique in a variety of communities, the self-organizing map
remains as a black box especially to users without related
background due to its parameter choices. Although efforts
have been made in providing guidelines on how to tune the
SOM, the distinct choices of tunable parameters may result
in dissimilar SOM patterns. It is thus anticipated that the
parameter choices could towards self-tuned in order to further
streamline the usage of self-organizing map based approaches
[14]. In our proposed approach, an SOM can be produced by
supplying just two parameters, the average samples per node
desired (from which the SOM dimension can be derived) and
the initial learning rate of the SOM. The initial neighborhood
radius, radius decay function, learning rate function as well as
the maximum iterations parameter are self-tuned during the
randomness eliminating process, which minimize the tuning
effort thus simplify the use of SOM for geoscience as well as
other domain practitioners.

IV. APPLICATION

The study of clouds, including their frequency of occur-
rence, location and characteristics, plays a key role in the un-
derstanding of climate variability and climate change. Clouds
have complex impacts on the Earths climate since they interact
with both the incoming solar radiation and outgoing infrared
radiation, with the interactions depending strongly on cloud
altitude and thickness. In this sense, cloud optical thickness
(COT) and cloud top pressure (CTP) are key variables for
describing both the solar and infrared radiative effects of
cloud. A data set of passive cloud retrievals, the International
Satellite Cloud Climatology Project (ISCCP) employed these
two variables to build a 2-D joint histogram [24], shown
in Figure 1, to distinguish among different cloud types with
distinct radiative effects.

Fig. 1: Assignment of traditional cloud types to 2-D joint
histogram of COT and CTP (so-called ISCCP-like 2-D his-
togram) [24].

The 2-D joint histograms of satellite cloud retrievals have
proven to be a useful dataset to perform and study cloud
classification. Because both optical thickness and top pressure
of cloud may vary significantly in the scale of O(100km),
a rather expansive 2-D COT-CTP joint histogram is required
to describe co-variation of COT and CTP. The ISCCP-like
MODIS 2-D joint histogram consists of 42 elements (= 6
classes of COT × 7 classes of CTP), with each element rep-
resenting the occurrence of a specific COT-CTP combination
as cloud fraction (CF) ranging from 0 to 1. A big scientific
challenge is to group the satellite images represented by the
2-D joint histograms into different clusters, one example of
which is the “Cloud Regime” (CR) [19], [6].

The “Cloud Regime” is a concept of dominant mixtures of
cloud types represented by the means of similar co-variations
of 2-D joint histogram. Our previous works in [20], [19]
obtained CR from K-means clustering analysis [15]. Figure 2
shows one of optimal centroid of K-means clustering using



Fig. 2: The cloud regime (CR) centroids of daily ISCCP joint
histograms. The cloud fraction (CF) of each regime, namely
sum of 42 bin CF values, is also provided.

the same data set at the same region (tropics; see Section V-A
for details of data set). It shows that tropical cloud variability
can be explained by 5 high cloud regimes, 4 low cloud
regimes, and 1 semi-clear regime with quite low CF. The
relative frequency of occurrence (RFO) map indicates that the
high cloud regimes usually occur over the tropical warm pool
area, intertropical convergence zone (ITCZ), and land area,
while low and thick clouds crowds eastern side of oceans (not
shown). The semi-clear regime is very popular all over the
tropics.

V. EXPERIMENTS

This section analyzes how specific details of the proposed
deterministic network affects its map configuration and run-
ning time when it is applied for satellite cloud classification.

A. Dataset

In this experiment, we used 2-D joint histogram of COT
and CTP from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) instrument aboard the Aqua satellite.
The MODIS cloud data set (MYD08 D3 [7], [21]) provides
Level-3 cloud products at daily timescales with 1◦ × 1◦

horizontal resolution. We used the latest version of the MODIS
atmospheric data sets, “Collection 6” [22]. Specifically, we
used Level-3 2-D joint histogram in the tropics (15◦S - 15◦N)

for one year (2005). Thus the input dimension is 42 array
elements, 360 × 30 spatial elements (grid cells), and 365
days. For the clustering analysis, missing data and completely
cloud-free data (all 42 values are zero) are excluded. There
are 3,445,612 records in total.

B. Cloud Classification Result

We first investigate the map configuration of our proposed
network w.r.t. determinateness and cloud regimes classifica-
tion. A 4×3 SOM was selected as suggested by [17] and initial
learning rate was set as 0.1 for all map experimentation. Fig-
ure 3 and Figure 4 show the CR joint histograms and the asso-
ciated relative frequency of occurrence (RFO) map associated
with each node in the SOM from multiple executions of the
same standard SOM with the same parameter configurations.
It clearly shows that the standard SOM produces different
CR histograms when trained with the same training set and
identical parameters. On the contrary, using the proposed
algorithm, the results, shown in Figure 5 and Figure 6, are
invariant when the same training set and dimension are used.
This confirms that our proposed method of random eliminators
produces consistent and predictable results in terms of physical
sense.

Compared to the K-means results shown in Figure 2, the
SOM results produce reasonable CRs despite the different
configuration of total number of CRs. For example, the CR
histograms of deterministic SOM result (Figure 5) contain all
of CR histogram characteristics shown in Figure 2. In the
case of standard SOM results (Figure 3), the CR output is
slightly unsatisfactory because CR2 and CR3 here shares large
similarity in both histogram and RFO map patterns, correlation
coefficients of which are 0.60 and 0.74, respectively. This
result shows that our deterministic SOM algorithm produces
quality CRs.

C. Execution Time

The running time of the satellite cloud classification task is
mainly dominant by the time for training and classifying. Spe-
cific to SOM, after the training is complete, each processing
cloud data is labeled with associated cloud type. The training
speed is therefore responsible for the main execution time
difference. In this experiment, we verify the efficiency of two
proposed random eliminators in determinizing SOM. These
two eliminators include (1) the use of gradient initialization
to compute the initial values of the prototype vector of cloud
type node (denoted as GI); (2) staggered sample selection to
feed cloud data for training (denoted as SSS). The performance
difference of adding each eliminator is shown in Table II.

Eliminators SOM SOM+GI SOM+GI+SSS
Time 41 36 35

TABLE II: Running time (minutes) comparison of adding
each eliminator for satellite cloud classification (GI: gradient
initialization, SSS: staggered sample selection, SOM: standard
SOM).



(a) Standard SOM execution result 1.

(b) Standard SOM execution result 2.

(c) Standard SOM execution result 3.

Fig. 3: The SOM cloud type vectors displayed as joint his-
tograms by three standard SOM execution results using the
same parameter configuration.

(a) Standard SOM execution result 1.

(b) Standard SOM execution result 2.

(c) Standard SOM execution result 3.

Fig. 4: The relative frequency of occurrence (RFO) corre-
sponding to Figure 3.

Fig. 5: The SOM cloud type vectors displayed as joint his-
tograms using proposed deterministic SOM.

Fig. 6: The relative frequency of occurrence (RFO) corre-
sponding to Figure 5.



Table II shows our proposed network, other than the desired
deterministic property, also produces its results in a more
efficient manner as a bonus. Sufficed to say, this is because
after initializing the network gradiently, a pattern is already
present so the nodes organize around it more quickly than
having to jostle randomly initialized ones into a pattern while
they organize themselves. The further inclusion of staggered
sample selection incurs no extra runtime costs but guarantees
the map configuration is not random and maintains the good
characteristics of random selection at the same time.

VI. CONCLUSION AND FUTURE WORK

This work is motivated by the usability concern caused
by inherent randomness of SOM. To address this practical
concern, we propose a deterministic self-organizing map with
effective satellite cloud type organization and execution capa-
bilities. The improvements by including the concocted random
eliminators are that not only both the speed and clustering of
the training improved but by running with identical training
samples the same resultant SOM will be produced every time.
These random eliminators are generalizable knowledge and
can be used as supplements to other iterative methods of learn-
ing neural networks. We successfully applied our deterministic
SOM to a real-world scientific application to demonstrate its
effectiveness and efficiency. It is anticipated that the proposed
deterministic SOM could simplify the usage of self-organizing
map based approaches and stimulate more potential user’s
interests in pursuing further SOM applications. In the future,
we plan to extend the proposed network in conjunction with
our previous work [29] for streaming scenarios.

VII. ACKNOWLEDGMENT

This work is supported by the grant CyberTraining: DSE:
Cross-Training of Researchers in Computing, Applied Math-
ematics and Atmospheric Sciences using Advanced Cyberin-
frastructure Resources from the National Science Foundation
(grant no. OAC–1730250).

REFERENCES

[1] A. A. Akinduko, E. M. Mirkes, and A. N. Gorban. Som: Stochastic ini-
tialization versus principal components. Information Sciences, 364:213–
221, 2016.

[2] P. Domingos. A few useful things to know about machine learning.
Communications of the ACM, 55(10):78–87, 2012.

[3] A. Flexer. On the use of self-organizing maps for clustering and
visualization. Intelligent Data Analysis, 5(5):373–384, 2001.

[4] A. Goder and V. Filkov. Consensus clustering algorithms: Comparison
and refinement. In Proceedings of the Meeting on Algorithm Engineering
& Expermiments, pages 109–117. Society for Industrial and Applied
Mathematics, 2008.

[5] I. Iskandar, T. Tozuka, Y. Masumoto, and T. Yamagata. Impact of indian
ocean dipole on intraseasonal zonal currents at 90 e on the equator as
revealed by self-organizing map. Geophysical Research Letters, 35(14),
2008.

[6] D. Jin, L. Oreopoulos, and D. Lee. Regime-based evaluation of
cloudiness in cmip5 models. Climate Dynamics, 48(1):89–112, Jan
2017.

[7] M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanré, B.-C. Gao,
S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A.
Hubanks. Cloud and aerosol properties, precipitable water, and profiles
of temperature and water vapor from modis. IEEE Transactions on
Geoscience and Remote Sensing, 41(2):442–458, 2003.

[8] T. Kohonen. The self-organizing map. Proceedings of the IEEE,
78(9):1464–1480, 1990.

[9] T. Kohonen. Essentials of the self-organizing map. Neural networks,
37:52–65, 2013.

[10] J. Laaksonen, M. Koskela, and E. Oja. Picsom: Self-organizing maps
for content-based image retrieval. In Neural Networks, 1999. IJCNN’99.
International Joint Conference on, volume 4, pages 2470–2473. IEEE,
1999.

[11] J. Li, W. P. Menzel, Z. Yang, R. A. Frey, and S. A. Ackerman.
High-spatial-resolution surface and cloud-type classification from modis
multispectral band measurements. Journal of Applied Meteorology,
42(2):204–226, 2003.

[12] Z. Li, J. Li, W. P. Menzel, T. J. Schmit, and S. A. Ackerman. Comparison
between current and future environmental satellite imagers on cloud
classification using modis. Remote Sensing of Environment, 108(3):311–
326, 2007.

[13] Y. Liu and R. H. Weisberg. A review of self-organizing map applications
in meteorology and oceanography. In Self Organizing Maps-Applications
and Novel Algorithm Design. InTech, 2011.

[14] Y. Liu, R. H. Weisberg, and C. N. Mooers. Performance evaluation of
the self-organizing map for feature extraction. Journal of Geophysical
Research: Oceans, 111(C5), 2006.

[15] J. MacQueen et al. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium
on mathematical statistics and probability, volume 1, pages 281–297.
Oakland, CA, USA, 1967.

[16] B. A. Malmgren and A. Winter. Climate zonation in puerto rico based on
principal components analysis and an artificial neural network. Journal
of climate, 12(4):977–985, 1999.

[17] A. J. McDonald, J. J. Cassano, B. Jolly, S. Parsons, and A. Schud-
deboom. An automated satellite cloud classification scheme using
self-organizing maps: Alternative isccp weather states. Journal of
Geophysical Research: Atmospheres, 121(21), 2016.

[18] M. Oja, P. Somervuo, S. Kaski, and T. Kohonen. Clustering of human
endogenous retrovirus sequences with median self-organizing map. In
Proc. WSOM, volume 3, 2003.

[19] L. Oreopoulos, N. Cho, D. Lee, and S. Kato. Radiative effects of global
modis cloud regimes. Journal of Geophysical Research: Atmospheres,
121(5):2299–2317, 2016.

[20] L. Oreopoulos, N. Cho, D. Lee, S. Kato, and G. J. Huffman. An
examination of the nature of global modis cloud regimes. Journal of
Geophysical Research: Atmospheres, 119(13):8362–8383, 2014.

[21] S. Platnick, M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum,
J. C. Riédi, and R. A. Frey. The modis cloud products: Algorithms and
examples from terra. IEEE Transactions on Geoscience and Remote
Sensing, 41(2):459–473, 2003.

[22] S. Platnick, K. G. Meyer, M. D. King, G. Wind, N. Amarasinghe,
B. Marchant, G. T. Arnold, Z. Zhang, P. A. Hubanks, R. E. Holz,
et al. The modis cloud optical and microphysical products: Collection
6 updates and examples from terra and aqua. IEEE Transactions on
Geoscience and Remote Sensing, 55(1):502–525, 2017.

[23] G. Pölzlbauer. Survey and comparison of quality measures for self-
organizing maps. na, 2004.

[24] W. B. Rossow and R. A. Schiffer. Advances in understanding
clouds from isccp. Bulletin of the American Meteorological Society,
80(11):2261–2288, 1999.

[25] T. Su and J. Dy. A deterministic method for initializing k-means
clustering. In Tools with Artificial Intelligence, 2004. ICTAI 2004. 16th
IEEE International Conference on, pages 784–786. IEEE, 2004.

[26] H. Yin. The self-organizing maps: background, theories, extensions and
applications. In Computational intelligence: A compendium, pages 715–
762. Springer, 2008.

[27] B. Zadrozny. Learning and evaluating classifiers under sample selection
bias. In Proceedings of the twenty-first international conference on
Machine learning, page 114. ACM, 2004.

[28] W. Zhang, J. Tang, and N. Wang. Using the machine learning ap-
proach to predict patient survival from high-dimensional survival data.
In Bioinformatics and Biomedicine (BIBM), 2016 IEEE International
Conference on, pages 1234–1238. IEEE, 2016.

[29] W. Zhang and J. Wang. A hybrid learning framework for imbalanced
stream classification. In Big Data (BigData Congress), 2017 IEEE
International Congress on, pages 480–487. IEEE, 2017.


