
CardioCam: Leveraging Camera on Mobile Devices to
Verify Users While Their Heart is Pumping

ABSTRACT
With the increasing prevalence of mobile and IoT devices
(e.g., smartphones, tablets, smart-home appliances), mas-
sive private and sensitive information are stored on these
devices. To prevent unauthorized access on these devices,
existing user verification solutions either rely on the com-
plexity of user-defined secrets (e.g., password) or resort to
specialized biometric sensors (e.g., fingerprint reader), but
the users may still suffer from various attacks, such as pass-
word theft, shoulder surfing, smudge, and forged biomet-
rics attacks. In this paper, we propose, CardioCam, a low-
cost, general, hard-to-forge user verification system leverag-
ing the unique cardiac biometrics extracted from the readily
available built-in cameras in mobile and IoT devices. We
demonstrate that the unique cardiac features can be extracted
from the cardiac motion patterns in fingertips, by pressing
on the built-in camera. To mitigate the impacts of various
ambient lighting conditions and human movements under
practical scenarios, CardioCam develops a gradient-based
technique to optimize the camera configuration, and dynam-
ically selects the most sensitive pixels in a camera frame to
extract reliable cardiac motion patterns. Furthermore, the
morphological characteristic analysis is deployed to derive
user-specific cardiac features, and a feature transformation
scheme grounded on Principle Component Analysis (PCA)
is developed to enhance the robustness of cardiac biometrics
for effective user verification. With the prototyped system,
extensive experiments involving 25 subjects are conducted
to demonstrate that CardioCam can achieve effective and re-
liable user verification with over 99% average true positive
rate (TPR) while maintaining the false positive rate (FPR) as
low as 4%.

1. INTRODUCTION
The increasingly prevalent usage of mobile and IoT

devices (e.g., smartphones, tablets and smart-home ap-
pliances) inevitably contains private and sensitive infor-
mation (e.g., contact list, emails, credit card numbers
and merchandise ordering information). Unauthorized
access to such devices could put huge amounts of sen-
sitive information at the risks of misuse. Traditional
user verification solutions mainly rely on passwords or
graphical patterns [24, 45], which suffer from various
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Figure 1: Enabling cardiac-pattern based user
verification using device’s built-in camera.

attacks including password theft, shoulder surfing [46]
and smudge attacks [7]. Biometric-based user verifica-
tion opens up a new pathway to secure mobile devices,
especially fingerprint-based solutions [5, 26], which are
widely deployed in many premium smartphones (e.g.,
iPhones and Samsung phones) and offer a more secured
way to access mobile and smart devices. However, there
is still a large market for phones with 50 dollars and
less (e.g., BLU A4) in many developing regions around
the world where phones do not come with dedicated
fingerprint sensors [39]. Furthermore, some of these
low-cost markets heavily rely on mobile payments due
to the large distribution of geographic areas and the
lacking establishment of traditional banking and pay-
ments infrastructure [30]. Moreover, fingerprint-based
solutions are vulnerable to synthetic fingerprints cre-
ated through victims’ photographs [12, 35, 41]. These
lead to a renewed search of a low-cost, general, hard-to-
forge security solution, which could also facilitate the
usage of increasingly convenient mobile payment sys-
tems. Existing studies have demonstrated that using
either body-attached PPG/ECG sensors [6, 21, 36, 10]
or Doppler radar [25] is promising to perform user veri-
fication by capturing human cardiac biometrics. These
existing investigations usually require specialized equip-
ments (e.g., sensors or radar devices), which could add
extra cost and bring inconvenience the mobile users. To-
wards this direction, we propose CardioCam that does
not involve specialized equipments to extract unique
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cardiac biometrics to perform user verification. Cardio-
Cam makes use of the built-in camera which is readily
available in almost all kinds of mobile devices including
both premium and low-end devices (e.g., phones under
50 dollars).

Some researchers have shown that the built-in cam-
era on smartphone could be utilized to measure heart
rate and pulse volume [27, 44], but whether the camera
is able to extract unique cardiac biometrics for user ver-
ification remains an open issue. CardioCam takes one
step further to explore the limits of the built-in cam-
era and aims to achieve user verification leveraging the
unique cardiac biometrics extracted from the camera.
The system simply requires the user to press his/her fin-
gertip on the camera surface for cardiac feature extrac-
tion as shown in Figure 1. Therefore, it could be directly
applied to almost all the mobile devices to perform
user verification including unlocking the devices and au-
thorizing specific permissions. Furthermore, there is a
growing trend of deploying low-cost cameras on smart
appliances to support a broad range of emerging IoT
applications. For instance, FridgeCam [37] allows users
to stick a small camera to the inside of the refrigerator
for storage food monitoring. Amazon’s virtual assis-
tant Echo Look [3] is also equipped with a camera to
support its growing commands sets (e.g., asking for the
opinion on which outfit looks best). In addition, small
IoT devices, such as video doorbell [34], equipped with
low-cost cameras are serving for many home security
systems these days, and Amazon Dash Button [4] can
be easily integrated with a low-cost camera to enable
user verification for privacy protection. Therefore, the
large-scale deployment of the cameras on IoT devices
provides great opportunities for CardioCam to verify
users for various applications, such as entrance’s access
control, ordering food via the refrigerator with parental
control and purchasing clothes via the virtual assistant
without disclosing personal lifestyle.

Traditional Solutions. The built-in cameras on
mobile devices have been used to perform user verifica-
tion with biometric features including iris patterns [23],
facial features [13] and palm print [40]. These solutions
mainly rely on computer-vision based methods and usu-
ally suffer from spoofing attacks with forged biometrics.
For instance, the iris-based user verification system can
be deceived by the synthesized iris images with identical
iris texture as the legitimate user [42]. The TrueDepth
camera in iPhone X can capture the geometry and depth
of the user’s face [16] to verify user’s identity. It how-
ever requires high-end and expensive cameras and also
could be easily spoofed by the fabricated 3D synthetic
mask [14]. Additionally, these vision-based solutions
may result in privacy concerns induced by the rich in-
formation embedded in the visual content captured by
camera, and their performance could be degraded by

the surrounding lighting conditions.
Cardiac-pattern based User Verification Using

Built-in Camera. In this paper, we explore to ex-
tract cardiac biometrics from the built-in camera. It
has been demonstrated the cardiac feature is intrinsic,
unique and non-volitional among a large population [48,
1, 22, 28]. Instead of using PPG/ECG sensors, in this
work we search for the unique cardiac features extracted
from the cardiac motion patterns in fingertips, by press-
ing on the built-in camera. We hope the extracted car-
diac features from fingertips are distinguishable among
different individuals and could serve as a candidate for
effective user verification. The cardiac features are usu-
ally affected under practical scenarios: the extracted
cardiac motion patterns are impacted by the lighting
conditions; Heartbeats are varied under movements and
human emotion changes; the fingertip pressing position
and pressure also play a critical role in cardiac bio-
metric feature extraction. To address the above chal-
lenges, CardioCam adaptively updates camera configu-
ration and dynamically derives cardiac motion patterns
to suppress the effects caused by ambient light changes.
We also develop a mechanism that could handle differ-
ent fingertip pressing positions and pressure by choosing
the most sensitive pixels to derive cardiac motion pat-
terns from the video frames captured by the built-in
camera.

To facilitate biometric extraction, CardioCam seg-
ments the cardiac measurements into different heart-
beat cycles and normalizes the duration/amplitude of
each cardiac cycle to mitigate the impact of heartbeat
rate/strength variations. The normalization process will
enhance the robustness of the derived cardiac biometrics
while preserving morphological distinctiveness embed-
ded in the cardiac motion pattern. We further extract
user-specific heartbeat features within each cardiac cy-
cle via morphological characteristic analysis. To ef-
fectively suppress the small-scale cardiac motion varia-
tions, a feature transformation scheme based on Princi-
pal Component Analysis (PCA) [20] is developed. These
feature abstractions are used to construct legitimate
user profiles during the system enrollment. During veri-
fication phase, CardioCam examines the Euclidean dis-
tance of the feature abstractions between new observa-
tions and the user profiles to authenticate the legitimate
user or reject adversaries. The main contributions of
our work are summarized as follows:

• To the best of our knowledge, CardioCam is the first
low-cost, general user verification system that uses
cardiac biometrics extracted from the built-in cam-
eras on mobile devices or IoT appliances.

• We demonstrate that the intrinsic, unique and non-
volitional cardiac properties can be preserved when
extracting the cardiac features from fingertips; the
cardiac biometrics are well captured by the reflected
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lights on the built-in camera when the user presses
her/his fingertip upon.

• We develop a gradient-based optimization technique
that adapts the configuration of camera to ambient
light changes and human movements variations and
derives high-quality cardiac measurements from a set
of dynamically selected image pixels. Given the se-
lected pixels that are sensitive to cardiac motion, the
impacts of fingertip position and pressure upon the
camera can be suppressed.

• With the proposed cardiac biometric feature extrac-
tion and the feature transformation scheme based on
PCA, we demonstrate that CardioCam can robustly
verify users and is resilient to the modeled attacks,
in which an adversary presses his/her own fingertip
upon the camera hoping to pass the system.

• We perform extensive experiments involving 25 sub-
jects under various data collection strategies and sys-
tem settings. The results demonstrate that Cardio-
Cam can achieve over 99% average true positive rate
(TPR) to verify users while maintaining less than 4%
false positive rate (FPR) to well reject adversaries.

2. RELATED WORK
Traditional user verification mechanisms rely on ei-

ther password [24] or graphic screen patterns [45], which
require users to memorize complicated text/graph se-
crets, to verify their identities. Since these solutions
only verify the secret itself instead of a user, they are
usually vulnerable to various attacks such as shoulder
surfing [46], and smudge attack [7].

As an alternative, many researchers resort to physio-
logical biometrics to perform user verification. In par-
ticular, fingerprint-based solutions [5, 26, 18, 19] have
become an essential specification on many premium smart-
phones such as iPhone and Samsung Galaxy S series.
However, such biometrics can be easily compromised
by the synthetic artifacts [12, 41], and the fingerprint
reader is still unavailable in most of the mid-range and
low-end mobile devices. Besides the fingerprints, other
human biometric features (e.g., iris [23], face [13], and
palmprint [40]) are also exploited to achieve user ver-
ification with the assistance of cameras, especially the
built-in camera on mobile devices, which has already
been used for device authentication [8]. However, they
are usually suffered from spoofing attacks with forged
biometrics. For instance, the iris-based user verification
system can be deceived by forged contact lens that have
the same iris texture as the authorized user [42, 15],
and 3D masks can also be fabricated through 3D print-
ing technologies to spoof facial recognition systems [14].
Additionally, the privacy concerns of such vision-based
solutions also prevent them from extensive use due to
the rich information embedded in the image/video cap-
tured by cameras. For instance, the surrounding back-
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Figure 2: Four phases of cardiac cycle and data
collection leveraging camera and flashlight.

ground scene may disclose the user’s location, living en-
vironment or any personal stuff.

To overcome the aforementioned weaknesses, some
studies rely on intrinsic cardiac biometrics (e.g., heart-
beat patterns) derived from electrocardiogram (ECG) [9,
17, 38, 48] and photoplethysmography (PPG) [21] sig-
nals. However, these methods require the users to at-
tach specialized sensors to their chest or fingertip, mak-
ing them hard to be applied to mobile users. Car-
diac Scan [25] recently proposes a non-obtrusive way to
extract distinct cardiac motion pattern with Doppler
radar for user authentication, but the involvement of
specialized devices also adds extra cost and brings in-
convenience to the mobile users.

In order to remove the limitation on involving spe-
cialized equipments, some studies explore to capture the
cardiac biometrics leveraging the readily available sen-
sors on commercial off-the-shelf devices. Specifically,
Matsumura et.al. [27] demonstrate that the heart rate
and pulse volume can be measured when the users put
their fingertips upon the built-in camera. Additionally,
Seismo [44] proposes to derive pulse transit time (PTT)
leveraging smartphone accelerometer and built-in cam-
era. Some researchers [11, 43] further make use of both
built-in camera to estimate blood oxygen level PhO2

and Hemoglobin level. Towards this direction, this pa-
per takes one step further to explore the feasibility of us-
ing built-in camera to extract non-volitional and hard-
to-forge cardiac biometrics to perform user verification.

3. PRELIMINARIES
3.1 Kinetics of Cardiovascular System

The heart pumps the blood into the vessels through
alternative cardiac muscle contraction and relaxation,
which forms a periodic heartbeat pattern, called cardiac
cycle, while the vessels carry blood circulated through-
out the whole body, including the fingertips. The hu-
man heart contains four chambers (i.e., upper left and
right atria; and lower left and right ventricles), and a
typical cardiac cycle usually involves four major phases:
atrial systole, isovolumetric contraction, ventricular ejec-
tion and isovolumetric relaxation, as shown in Figure 2
(a). In the phase of atrial systole, the ventricles are
contracting, while the atria are relaxing and collecting
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blood. Then isvolumetric contraction occurs, and the
ventricles contract with no corresponding blood volume
change in all chambers. When the ventricles start eject-
ing blood (i.e., ventricular ejection), the atria contracts
to pump blood to the ventricles. Finally, a short inter-
val, called isovolumetric relaxation, begins and the atria
valve starts closing until the onset of another cardiac
cycle. Due to the existence of physiological differences
on cardiovascular systems (e.g., heart size, shape and
tissues, etc.), different people have different amplitudes
of cardiac muscle contraction and relaxation. Conse-
quently, the blood flow in the vessels follows a unique
variation trend within a cardiac cycle for different in-
dividuals. The veins in fingertips also belong to the
cardiovascular system and exhibit distinct physiological
structures among different people. The blood flow pass-
ing through the veins in fingertip will result in unique
cardiac motion pattern, which has been demonstrated
among a large population [32, 48]. Therefore, we are
inspired to extract effective biometric features from the
cardiac motion pattern to perform user verification.

3.2 Capturing Cardiac Motion
Given the intrinsic, unique and non-volitional prop-

erties of cardiac motion pattern, the next step is how to
effectively extract the biometric features. Unlike exist-
ing works that rely on specialized instruments to cap-
ture the cardiac motion, we seek to examine the blood
flow, which reflects the unique cardiac motion, through
the fingertips with commercial off-the-shelf devices. As
shown in Figure 2 (b), by illuminating the fingertip skin
with the flashlight on smartphone, the built-in camera
can continuously observe the variations on light absorp-
tion introduced by blood flow changes, where the unique
cardiac features are embedded.

Specifically, each pixel of the built-in camera acts as
an independent light sensor to detect the light changes
on fingertip. Due to the high resolution of current
smartphone cameras (e.g., 1280×720 pixels per frame),
fine-grained cardiac cycle monitoring can be achieved.
Besides, the three color channels (i.e., Red, Blue and
Green) of each pixel provide multiple dimensions for ef-
fective feature extraction. By contrast, traditional car-
diac monitors, such as photoplethysogram (PPG) sen-
sors, can only support up to 3 different photodiodes
(i.e., red, green, infrared photodiodes), which is equiv-
alent to three pixels, for cardiac dynamic detection [2].

Figure 3 shows light intensity changes of two different
color channels (i.e., red and green) across three cardiac
cycles of two different users. We normalized the time
scale of each cardiac cycle to remove the impacts of
fluctuating heartbeat rate. It is obvious to find that
the two users exhibit different cardiac motion patterns
for both color channels, which confirm that unique car-
diac features can be captured by smartphone camera.
Additionally, since human skin has different absorp-
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Figure 3: Cardiac cycles of two users extracted
from the camera’s red and green channels.

tion/reflection rate for the light of different colors, the
cardiac motion patterns revealed by red and green chan-
nels have slight differences, which instead provide some
redundancy for reliable cardiac feature extraction.

4. SYSTEM OVERVIEW
4.1 Challenges

In order to achieve effective user verification leverag-
ing unique cardiac biometrics with ubiquitous built-in
camera on mobile and smart devices, a number of chal-
lenges need to be addressed.

Reliable Cardiac Measurements. The success of
user verification is built upon reliable measurements on
cardiac motion pattern. However, various impacting
factors, such as ambient lighting condition, fingertip
pressing position, and human motion can impact the
reliability of the derived cardiac measurements under
practical scenarios. Thus, it is critical to mitigate these
impacts in cardiac measurements for the proposed sys-
tem.

Uniqueness of Cardiac Characteristics. Since
the cardiac motion pattern is indirectly obtained by
capturing the blood flow variation in fingertips with
built-in camera, it is a challenging task to convert the
recorded video frames to reliable cardiac biometrics as-
sociated with unique cardiac motion pattern. Further-
more, to facilitate effective user verification, it is im-
portant to extract and validate representative biometric
features from the raw cardiac measurements.

System Robustness. The cardiac measurements
are also affected by many random factors, such as the
emotion changes, heart and breath rate variations. The
system should be capable to eliminate such randomness
and derive robust biometric abstractions. It is necessary
to develop a transformation algorithm that can suppress
the small-scale cardiac motion variations.

4.2 Attack Model
We consider the attacking scenario where an adver-

sary attempts to access the sensitive information or
functionality (e.g., schedule, photos, and mobile pay-
ment) on the private mobile device that is left unat-
tended by legitimate users. The adversary does not
have any prior knowledge of the cardiac biometrics of
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Figure 4: System Overview of CardioCam.

the legitimate users. To spoof the device, the adver-
sary tries to pass the user verification process with the
adversary’s own cardiac biometrics by pressing his or
her fingertip upon the built-in camera. Furthermore,
the adversary can also shift the position of his fingertip
with respect to camera or adjust finger pressure, aim-
ing to yield similar cardiac biometrics as the legitimate
users.

4.3 System Overview
The basic idea of CardioCam is to verify the user’s

identity leveraging the intrinsic, unique, and non-volitional
cardiac biometrics with the assistance of ubiquitous built-
in camera/flashlight on mobile devices. As illustrated
in Figure 4, Data Acquisition is initialized with both
the build-in camera and flashlight turned on when de-
tecting the camera is covered by a fingertip. Under the
illumination of flashlight, the blood flow in fingertip,
which is associated with cardiac motion pattern, will
be captured by the built-in camera in the form of video
frames. Before cardiac motion derivation, we first de-
velop a gradient-based optimization technique to adapt
the camera configurations (i.e., flashlight intensity, ISO)
to complement ambient light changes. Next, the reli-
able cardiac motion pattern is derived via the module
Dynamic Cardiac Wave Extraction from the captured
video frames. Since the pressing position and pressure
of fingertip may keep slightly changing during the veri-
fication process, we propose Dynamic Pixel Selection to
merely include a subset of pixels that are most sensitive
to cardiac motion to boost the signal-to-noise ratio of
the cardiac measurements. In particular, the sensitive
pixels are determined within each individual cardiac cy-
cle, which is segmented by searching for subsequent lo-
cal minima in cardiac measurements. Then the video
stream of the selected pixels will be converted to three

cardiac waves with respect to red, green and blue chan-
nels, following with a bandpass filter and a normaliza-
tion process to mitigate the impacts caused by human
respiration and heart rate changes, respectively.

In the Cardiac Biometric Extraction module, Car-
dioCam extracts 30 systolic-diastolic features directly
from the cardiac measurements and 36 non-fiducial fea-
tures after further processing. The systolic and diastolic
features are represented as normalized distances/slopes
between four fiducial points (i.e., Diastolic Point (DP),
Systolic Point (SP), Dicrotic Notch (DN), Dicrotic Wave
(DW) [2]) within each cardiac cycle. The four fidu-
cial points are used to characterize the four phases of
cardiac contraction and relaxation. The fiducial point
positions can be localized through recursively finding
the local maxima and minima within a cardiac cycle.
To further extend feature space, CardioCam also passes
the cardiac measurements through two high-pass filters
to reveal cardiac uniqueness via overall signal morphol-
ogy and extract more fine-grained non-fiducial features.
The non-fiducial features, which are denoted as the nor-
malized distance between local maximums and mini-
mums of the processed measurements, are also unique
among different users.

Finally, User Verification Model facilitates user ver-
ification by matching new cardiac observations to the
predefined user profile. Instead of directly building user
profile with the aforementioned morphological features,
the system performs profile construction by convert-
ing these features into a set of robust feature abstracts
through principal component analysis (PCA). PCA trans-
formation preserves the key characteristics that are ef-
fective to discriminate different users while eliminates
the impact of unpredictable interferences. The verifi-
cation succeeds if the featured abstracts are within a
certain Euclidean distance from the user profile. Oth-
erwise, it fails and denies the access request.

5. FINGERTIP TOUCH DETECTION & CAM-
ERA PARAMETER OPTIMIZATION

5.1 Fingertip Touch Detection
Under the illumination of the built-in flashlight, the

captured video frames have the color dominated by red
channel (i.e., color of blood) if the camera is fully cov-
ered by a fingertip.When the camera is fully covered, the
red color show extreme high intensity, otherwise gives
relatively low intensity. We thus examine the propor-
tion of red channel component in the overall light in-
tensity across all the pixels (x, y) in each frame t ∈ T
as follows:

Pr(x, y) =
r(x,y)(t)

r(x,y)(t) + g(x,y)(t) + b(x,y)(t)
,

(x ∈ X, y ∈ Y, t ∈ T ),

(1)

where r(x,y), g(x,y), b(x,y) denote the light intensity in
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Figure 5: Illustration of the assessment score S
of cardiac waves under various conditions.

red, green, and blue channel at pixel (x, y), respectively.
X and Y represent the frame width and height, and T
is the total number of frames in the captured video.
By comparing Pr with a predefined threshold (i.e., τ
= 0.85), we can determine the pixels that are covered,
and the cardiac motion derivation starts up only when
over 95% of the pixels are dominated by red channel.

5.2 Camera Parameter Optimization
Our preliminary study finds that the reliable cardiac

motion patterns can only be obtained under appropriate
camera configurations with adequate amount of light
entering the camera. Extremely low or high flashlight
illumination would degrade the pixel sensitivity on cap-
turing the cardiac motion patterns from the camera.
Due to the various ambient lighting conditions, Car-
dioCamera needs to adapt the camera configurations
to complement the light introduced by ambient sources
(e.g., sun, artificial light). We thus design a gradient-
based optimization scheme on camera/flashlight config-
uration to mitigate the impacts of ambient light.

Cardiac Cycle Segmentation. To capture the car-
diac biometrics, it is essential to separate each cardiac
cycle for both biometric sensitivity assessment and fea-
ture extraction. Since we find that the red channel could
capture the most significant response to blood volume
changes, we perform cardiac cycle segmentation using
the average value of the red channel crossing all the
pixels. Particularly, we enable reliable cardiac cycle seg-
mentation by recursively selecting local minimums with
a pre-defined threshold along the video stream. Note
that the above segmentation algorithm will also be used
for both Dynamic Cardiac Wave Extraction (Section 6)
and Biometric Extraction (Section 7).

Biometric Sensitivity Assessment. We study the
pixel sensitivity by evaluating the light intensity changes
(i.e., absolute pixel value changes in frames) during each
cardiac cycle. Specifically, we calculate the max-to-min
light intensity difference Diff(r(x,y)) in red channel as:

Diff(r(x,y)) = Max(
∑
x,y

r(x,y)(t))−Min(
∑
x,y

r(x,y)(t)),

(x ∈ X, y ∈ Y ),
(2)
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Figure 6: Comparison of the cardiac waves de-
rived under dim and bright ambient light condi-
tions, respectively.

Then, we indicate the distribution of Diff(r(x,y)) with
a histogram H with k bins, and then derive the assess-
ment score as below:

S =

k∑
i=1

i2 × |Hi|
X × Y

, (3)

where |Hi| denotes the number of the pixels falling into
ith bin. Figure 5(a) shows the average light intensity in
red channel of two video streams including the four car-
diac cycles. It is obvious to observe that higher assess-
ment score (i.e., S=8.5) indicates larger average max-
to-min difference, and thus confirms the effectiveness
of the proposed assessment scheme on assessing pixel
sensitivity.

Gradient-based Configuration Update. As il-
lustrated in Figure 5 (b), either high or low camera
ISO/flashlight illumination cannot achieve satisfied frame
quality on detecting cardiac motion pattern. Particu-
larly, the maximum assessment score can be found at
flashlight intensity of 0.2, 0.2, 0.3 when ISO is 300, 400,
and 500, respectively. This observation motivates us to
search for an optimal camera and flashlight configura-
tion (i.e., ISO and flashlight intensity) that maximizes
the pixel sensitivity (i.e., assessment score S). Specifi-
cally, we develop an iterative searching method, where
the next configuration adjustment is based on the feed-
back from current one. The flashlight/ISO offset of each
iteration is calculated as follows:

an+1 = an + γ 5 S(an), (4)

where an denotes either flashlight intensity or camera
ISO configuration at n-th cardiac cycle and the corre-
sponding assessment score is represented as S(an). At
each cardiac cycle, an is updated following the gradi-
ent ascent direction 5S(an) with fixed step values (i.e.,
γFL = 0.05 and γISO = 5) until the satisfactory pixel
sensitivity is reached (i.e., beyond an empirical thresh-
old). The optimization procedures are summarized in
Algorithm 1.

Figure 6 shows an example of the derived cardiac
waves from a user when the surrounding environment
is in two different ambient lighting conditions (i.e., dim
and bright ambient light), respectively. As CardioCam-
era adaptively adjusts the camera flashlight and ISO
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Algorithm 1 Video Biometric Optimization
function CameraAdjustment

2: FL = 0.1, ISO = 550, Sprev = 0, FLprev

while S < Threshold do
4: FL = Camera.flashlight

S = Score(Framepeak, F ramevalley)
6: Feedback = (S − Sprev)

if FL− FLprev > τ then
8: Offsetfl = Feedback ∗ γFL

FL = FL+Offsetfl
10: Camera.flashlight = FL

else
12: Offsetiso = Feedback ∗ γiso

ISO = ISO +Offsetiso
14: Camera.ISO = ISO

end if
16: Sprev = S

FLprev = FL
18: end while

end function

configuration to complement the ambient light varia-
tions, we observe that the cardiac waves collected un-
der the two different lighting environments exhibit sim-
ilar morphological characteristics. The results indicate
that the proposed camera parameter optimization is
a promising and reliable approach to ensure the high-
quality cardiac motion pattern derivation.

6. DYNAMIC CARDIAC WAVE EXTRACTION
6.1 Dynamic Pixel Selection

Our preliminary studies find that the light intensity
sensed by different pixels on camera are subject to the
differences of fingertip thickness, pressing position and
pressure. Therefore, a pixel selection strategy is re-
quired to dynamically exclude ineffective camera pixels
for cardiac wave extraction.

Specifically, we first calculate the light intensity aver-
age of each frame (e.g., t) in the red channel for peak/valley
detection as follows:

P (t) =

∑
x,y r(x,y)(t)

X × Y
, (5)

and identify the frames with maximum and minimum
light intensity average. We then evaluate the pixel sen-
sitivity within each cardiac cycle as Equation 2, and se-
lect the effective pixels with a mask matrix, Mk(x, y),
defined as follows:

Mk(x, y) =

{
1, Diffkr (x, y) > γ

0, Diffkr (x, y) ≤ γ,
(6)

where Diffkr (x, y) is the max-to-min difference of pixel
(x, y) in the kth cardiac cycle. Based on our experiments
with different subjects, we empirically determine γ =
15 to ensure fiducial features (i.e., systolic and dicrotic
points) can be correctly derived. The mask matrix has
the same size as the video frames and is applied to all
the frames for pixel selection.

6.2 Cardiac Wave Derivation
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Figure 7: Two different fingertip pressing posi-
tions and the corresponding cardiac motion pat-
terns.

Although blood flow variation can be captured by
all sensitive pixels, deriving cardiac measurements from
all individual pixels will incur significant computational
overhead. Additionally, cardiac motion patterns de-
rived from different camera pixels may exhibit extremely
high similarity aross different color channels (i.e., red,
green, blue. Thus we use the pixel average over the
three color channels (i.e., red, green, blue) to derive
three cardiac waves. In particular, the cardiac waves
are derived based on the selected pixels, which are adap-
tively updated for each cardiac cycle. To simplify the
cardiac wave derivation, the derived cardiac wave seg-
ment of the kth cardiac cycle can be obtained as:

W k
c (t) =

∑
x,yM

k(x, y)× ck(x,y)(t)∑
x,yM

k(x, y)
, (7)

where W k
c (t) and ck(x,y)(t) denote the derived cardiac

wave and light intensity respectively at tth frame in
the channel c (i.e., r, g, b). As shown in Equation 7,
only the sensitive pixel values are involved in cardiac
wave generation through multiplying the pixel matrix
by the mask. Figure 7 (a) give an example that two dif-
ferent fingertip-touch positions from the same person,
respectively. And Figure 7 (b) shows the corresponding
cardiac waves derived from the selected pixels. We can
observe that the two cardiac waves are surprisingly sim-
ilar to each other even the fingertip touch positions are
different. The results validate that our dynamic cardiac
wave derivation algorithm is robust to the impact from
the position changes of fingertip touch.

6.3 Data Calibration and Normalization
According to our empirical study, the cardiac wave

derivation is also affected by the user’s respiration and
inherent defects of camera. Previous study [29] found
that the impacts of respiration on cardiac measurement
normally appear at the frequency band less than 0.3Hz.
To further mitigate the above interferences, a band-
pass Butterworth filter [33] with the passing frequency
band 0.3Hz ∼ 10Hz is adopted to further calibrate the
cardiac wave. Additionally, there are several intrinsic
factors related to human emotion (e.g., exercising or
resting) that may also affect human heartbeat rate and

7



(a) Systolic-diastolic features (b) Non-fiducial features

Figure 8: Systolic-diastolic features extracted
from a cardiac wave and non-fiducial features de-
rived from the decomposed wave passing a 2Hz
high-pass filter.

strength, so the cardiac wave duration and amplitude
will be either stretched or shrunk. To ensure the ro-
bustness of the cardiac biometrics, we normalize both
the duration and amplitude of one cardiac cycle into a
common scale [0, 1] to mitigate the impact of heartbeat
rate/strength fluctuation.

7. BIOMETRIC EXTRACTION
7.1 Systolic-Diastolic Features

In our proposed system, we first extract 30 systolic-
diastolic features (i.e., fiducial features) directly from
the cardiac wave to characterize cardiac motion. The
fiducial features contain the biometric characteristics
that are unique and non-volatile with respect to differ-
ent individuals, and these features are invariant to the
emotional state, such as anxiety, nervousness or excite-
ment [17]. As shown in Figure 8 (a), the four cardiac
phases in a cardiac cycle are separated by three fiducial
points: diastolic peak (DP), dicrotic notch (DN) and
systolic peak (SP). We locate these fiducial points by
searching for the local maximums and minimums within
each cardiac cycle. Specifically, the normalized time
intervals t1, t2, t3 and t4 characterize the duration of
ventricular ejection, isovolumetric relaxation, atrial sys-
tole and isovolumetric contraction, respectively, while
the normalized amplitude values h1 and h2 represents
the blood flow volumes in corresponding cardiac phases.
Note that h3 is excluded as a feature since it keeps con-
stant (i.e., 1) after normalization. Additionally, we also
explore the normalized slopes s1, s2, s3 and s4 to de-
pict the gradient of blood flow changes in each phase
as: sj = |hj

tj
|, j = 1, 2, 3, 4. We extract a set of 10

systolic-diastolic features from each color channel and
obtain 30 features in total. As depicted in Figure 9 (a),
the pairwise Pearson correlation of the systolic-diastolic
features from the same user present higher correlation
than those of different users, which validates the effec-
tiveness of this feature-set.

7.2 Non-fiducial Feature Derivation
The data calibration process (i.e. bandpass filter with

U1

U2

U3

U1 U2 U3

U1

U2

U3

U1 U2 U3

(a) Systolic-diastolic features (b) Non-fiducial features

Figure 9: Pairwise Pearson Correlation of
systolic-diastolic and non-fiducial features ex-
tracted from 30 cardiac cycles for three different
users (i.e., U1, U2, and U3): the features of same
user are highly correlated while the features of
different users present lower correlation.

cutoff frequency 0.3 − 10Hz) removes the impacts of
human respiration, but the subtle movement of finger-
tip still introduces the interferences beyond 0.3Hz and
thereby distorts the biometrics embedded in the car-
diac wave. We are thus motivated to utilize high-pass
filter to mitigate the interferences caused by the fin-
gertip movement and then extract distinct non-fiducial
features. Specifically, the cardiac waves pass through
two high-pass filters with the cut-off frequencies of 1Hz
and 2Hz to obtain two non-fiducial cardiac waves Wd1

and Wd2, respectively. The normalized distances be-
tween the local maximums and minimums of Wd1 and
Wd2 are unique to each individual and together serve as
non-fiducial features for characterizing cardiac motion.
As shown in Figure 8 (b), 6 features {x1, x3, x4, |y1 −
y2|, |y3−y4|, |y5|} are extracted from each color channel
of one non-fiducial cardiac wave, so there are 36 non-
fiducial features in total. As shown in Figure 9 (b),
the high correlation between the non-fiducial features
from the same user demonstrates the effectiveness of
this feature-set.

8. USER VERIFICATION MODEL
8.1 Feature Transformation grounded on PCA

Cardiac waves may have small-scale variations from
day to day, thus we propose a feature transformation
scheme to construct reliable user profile and perform
user verification ground on PCA [20]. Specifically, PCA
transforms cardiac features into a set of orthogonal prin-
cipal components in a low dimensional space, where the
first few ones are the most representative and robust
to signal disturbances. The principle components can
be derived through applying singular value decompo-
sition (SVD) to the biometric matrix, which consists
cardiac features of n cardiac cycle observations, and de-
rive the principle components as W = {w1, w2, ..., wp},
where wj , j = 1, · · · , p, represents a n-by-1 principle
component vector. Next, we select the top k principal
components, called cardiac abstracts, with the largest
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Figure 11: Performance of CardioCam on verifying individual
user leveraging 1 cycle, 3 cycles, and 5 cycles, respectively.

normalized variances. Particularly, we find that all the
cardiac cycles share similar first several principal com-
ponents, which describe the morphological outline of the
derived cardiac wave, and the remaining components
could better discriminate different individuals. There-
fore, we discard the first two principal components and
start the principal component selection process from
the third component. The principal component selec-
tion process satisfies the following objective function:
argmin{k|

∑k
j=3

wj∑p
i=1 wi

< τ, k < p}, where k is the

number of selected principal components and τ = 0.9 is
a pre-defined threshold, which is empirically determined
to balance the tradeoff between verification performance
and computational complexity.

8.2 Profile Matching
Given that the cardiac abstracts derived from fea-

ture transformation, we conduct the user verification
through measuring the similarity between the newly
captured cardiac abstracts and the profiled cardiac ab-
stracts. Intuitively, the cardiac signs from the legiti-
mate user should have small distance from his/her pro-
file, whereas an unauthorized user should have a rel-
atively large distance. Given the profiled cardiac ab-
stracts as F = {f1, ..., fn} (i.e., n = 70 in our system),
each newly captured cardiac wave that requests verifi-
cation will undergo feature transformation grounded on
PCA to obtain a cardiac abstract vector s. Then, we
compute the average Euclidean distance between each
s and F as below:

Dist(s) =

∑n
i=1 ‖fi − s‖

n
. (8)

Subsequently, a threshold η is then applied to perform
profile matching through a hypothesis test as: the user
verification successes if Dist(s) ≤ η; otherwise the ver-
ification fails, indicating an adversary or unauthorized
user is detected. In order to obtain an optimized thresh-
old, our system needs both legitimate samples and also
some adversarial samples from simulated spoofing at-
tacks to examine and score a set of pre-defined thresh-
olds. Particularly, we recursively score the thresholds
leveraging Youden’s J statistic [47], which is a single
statistic that characterizes performance on identifying
both the attacker and the legitimate user, and choose

the threshold with the maximum Youden’s J statistic.
Specifically, the optimized threshold ηu for the user
u is derived via the following optimization function:
argmaxJ(ηu) = {ηu|ηu ∈ S ∧ ηy ∈ S : J(ηy) ≤ J(ηu)},
where S denotes the set of distances for threshold selec-
tion.

9. PERFORMANCE EVALUATION
9.1 Experimental Methodology

Devices. We implement CardioCam on iPhone 7
with AVFoundation framework which provides various
image processing and camera configuration functions.
iPhone 7 is equipped with a built-in high-definition rear
camera with 12 megapixel, which enables video frame
rate of 60fps with a resolution of 720p/1080p. Although
iPhone 7 supports slow-motion video recording with
120fps/240fps, we choose the frame rate of 60fps that
is available on most of the mobile devices, especially the
mid-range/low-end smartphones. In addition, we fur-
ther adjust the frame rate (i.e., 30/40/50/60fps) and
video resolution (i.e., 240/360/480/720p) programmat-
ically by calling the built-in AVCaptureDevice.Format
class to test the generality of our system, which is pre-
sented in Section 9.5. Note that CardioCam only ad-
justs flashlight intensity and camera ISO for better cap-
turing cardiac motion pattern, and the other camera
parameters, such as focus distance, shutter speed, and
white balance, are locked in the proposed system.

Cardiac Data Collection. The cardiac dataset is
collected from 25 participants (19 males and 6 females)
aging from 25 to 33. Particularly, we construct a main
dataset, which contains three trails for each participant,
and each trail lasts 60 seconds including around 60-75
cardiac cycles. In total, we collect 5, 583 cardiac cy-
cle samples from the 25 participants. During the data
collection, there is no restriction on the postures of par-
ticipant (e.g., standing or sitting) and surrounding en-
vironments (e.g., indoor or outdoor). In addition, we
further construct four separated datasets involving 8
participants to investigate the impacts of biometric vari-
ations, different fingers, various fingertip pressing posi-
tions, and emotion state changes. We will elaborate the
data collection details in section 9.4.

Verification Strategies. To test the performance of
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Figure 12: Performance of Individual system components.

our system, we alternatively set each participant as the
legitimate user and the remaining 24 participants act
as attackers. During the process of user enrollment, the
first 70 pre-collected cardiac cycles of each legitimate
user is used for PCA coefficient derivation and profile
construction, and the rest of the cardiac cycles are for
system validation.

Evaluation Metrics. To evaluate our system per-
formance, we define five different metrics: true positive
rate (TPR) and false positive rate (FPR); balanced ac-
curacy (BAC); receiver operating characteristic (ROC)
curve; area under the ROC curve (AUC). Particularly,
TPR is the percentage of users that are correctly ver-
ified as legitimate users, and FPR is the percentage of
attackers that are mistakenly identified as legitimate
users. BAC is the equal-weight combination of TPR
and true negative rate (TNR), i.e., TNR = 1 − FPR.
The ROC curve is created by plotting the TPR against
the FPR under various threshold settings (i.e., η from 0
to 400). AUC is a measurement of how well the verifica-
tion model can distinguish between the legitimate and
spoofing samples. Note that AUC is usually between
0.5 (random guess) and 1 (perfect verification).

9.2 Performance of User Verification
Figure 10 depicts the average ROC curves of verifying

25 participants leveraging different numbers of cardiac
cycles (i.e., 1, 3 and 5) in each verification. Specif-
ically, the AUC for each ROC curve is calculated as
0.958, 0.974, 0.987 for verification with 1 cycle, 3 cy-
cles and 5 cycles, respectively. It is easy to find that 5
cardiac cycles give the best performance. The results
demonstrate the effectiveness of CardiaoCam on user
verification even with only 3 cardiac cycles per user.
Furthermore, in Figure 11, we also present BAC of ver-
ifying all 25 participants. We can find that CardioCam
achieves 95.5%, 97.9% and 98.6% average BAC with the
corresponding standard deviation (STD) of 3.8%, 2.7%,
2.2% for 1 cycle, 3 cycles and 5 cycles, respectively. The
above results confirm that CardioCam is highly reliable
on verifying all the legitimate users while rejecting the
adversaries.

9.3 Effectiveness of Each System Component
Systolic-Diastolic/non-fiducial Features. To an-

alyze the effectiveness of the extracted systolic-diastolic/non-
fiducial features, we evaluate CardioCam under three
different feature sets: systolic-diastolic feature only, non-
fiducial feature only, and the combined feature set. Fig-
ure 12(a) shows BAC of verifying 25 users leveraging the
three feature sets under 1 cycle, 3 cycles, and 5 cycles.
Given 5 cardiac cycles, our system can achieve aver-
age BAC of 89.8%, 85.3%, 98.6%, with only systolic-
diastolic, only non-fiducial, and the combined feature
set, respectively. We observe that systolic-diastolic fea-
ture set helps to achieve better verification performance
than that of the non-fiducial feature set. This is because
the fiducial features, which describe the four stages of a
cardiac cycle, are more unique for each individual than
the overall morphology of cardiac wave. Additionally,
the combined feature set achieves the best BAC, in-
dicating that the combination of systolic-diastolic and
non-fiducial feature sets can further enhance the user
verification accuracy.

Dynamic Cardiac Wave Extraction. Figure 12(b)
the impact of dynamic cardiac wave extraction on the
user verification performance. We find that CardioCam
is more effective in verifying user with dynamic wave
extraction. In particular, when using only 1 cardiac cy-
cle for user verification, CardioCam is improved by 7%
BAC using dynamic cardiac wave extraction. This is
because the proposed dynamic cardiac wave extraction
mechanism can effectively select sensitive pixels and
suppress the impacts of ambient noises introduced by
small scale variations of fingertip pressing position and
pressure.

Feature Transformation grounded on PCA. Next
we study the effectiveness of the proposed feature trans-
formation scheme grounded on PCA method. Figure 12(c)
depicts the BAC of user verification with and without
feature transformation leveraging 1, 3, and 5 cycles. We
find that the feature transformation scheme can greatly
improve the user verification accuracy, especially when
only 1 cardiac cycle is used for user verification. This
is because the proposed feature transformation method
suppresses the biometric variations in the cardiac bio-
metrics, making the system more robust.

9.4 Evaluation of System Robustness
Biometric Permanence. The cardiac motion pat-
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Figure 13: Performance evaluation of collecting cardiac cycles from different days, different emotion
states, different fingers, and different fingertip placements.

terns always experience small-scale disturbance from
day to day, so we further study the robustness of Car-
dioCam by examining the biometric permanence of car-
diac motion. Specifically, we take 70 cardiac cycles
from the samples collected on the first day to construct
the profile for each of the 8 participants, and then the
data collected in the following three months are used
for testing. Figure 13(a) shows the BAC of user veri-
fication with 1, 3, and 5 cycles. We find that Cardio-
Cam shows very robust performance on user verification
even though the cardiac cycles are collected on differ-
ent days. Specifically, we can observe that CardioCam
achieves 90.8%, 94.4%, 95.7% average BAC with stan-
dard deviation of 3.1%, 2.6%, 2.2% for 1 cycle, 3 cycles
and 5 cycles, respectively. Therefore, we can conclude
that there is no significant performance decreasing with
the cardiac samples collected from different days, which
demonstrates the robustness of CardioCam in a long
term.

Impacts of Emotion State. We also study the ro-
bustness of CardioCam under various human emotional
states. We design a set of emotional tasks involving
different levels of stress, and each participant is asked
to perform two low-stress tasks (i.e., sitting, listening to
music) and two high-stress tasks (i.e., reading, exercise).
Particularly, we construct user profile with 70 cardiac
cycles when the participant is sitting. Then, we evalu-
ate CardioCam when the 8 participants are performing
one of the four emotional tasks. Figure 13(b) shows the
user verification accuracy with respect to four different
emotional tasks in terms of TPR and FPR. We find
that CardioCam achieves high TPR while maintaining
low FPR for all the four tasks. Even for the high-stress
task of exercise, which can significantly raise heartbeat
rate, CardioCam can still achieve over 94% TPR and
less than 4% FPR. This is because the cardiac normal-
ization process and the proposed feature transformation
mechanism greatly suppress the interferences caused by
human emotion changes.

Impact of Different Fingers. We next examine
the performance of CardioCam with different fingers of
the same user applied for user verification. Since the
blood circulating in the five fingers are supplied by the
same artery, the blood flow pattern should be consis-

tent across different fingertips. For each person among
the 8 participants, we collect around 180 cardiac cycles
from both index and middle fingers. The user profile
is constructed with 70 cardiac cycles collected from ei-
ther index finger or middle finger, and the remaining
cardiac cycles are used for system validation. In order
to test the worst case performance of CardioCam, only
1 cardiac cycle is used to verify each individual user.
As shown in Figure 13(c), CardioCam achieves simi-
lar ROC curves no matter the training set is collected
based on index or middle finger. Specifically, both two
ROC curves achieve high AUC around 0.953, which val-
idate the effectiveness of our system regardless of which
fingertip pressing upon the camera surface.

Impact of Different Fingertip Pressing Posi-
tions. To validate the effectiveness of CardioCam on
mitigating the impact of varying fingertip pressing po-
sitions, we conduct a set of experiments involving 8
participants with their fingertips pressing at different
positions upon the camera. Specifically, each subject
is required to collect two sets of cardiac motion pat-
terns, and each set includes around 180 cardiac cycles
with two different fingertip pressing positions the par-
ticipant is accustomed to. Specifically, the user profile
is constructed with the first 70 cardiac cycles collected
from one of the two pressing positions, and the proposed
system is then evaluated with the rest of the cardiac
samples. Figure 13(d) depicts the average ROC curves
of verifying the 8 users leveraging only 1 cardiac cycle
in each verification. CardioCam has similar verification
performance for both pressing positions, which imply
the effectiveness of the proposed method on suppress-
ing the impacts of different fingertip pressing positions.

9.5 Impact of Video Quality
Impact of Camera Sampling Frame Rates. Car-

dioCam infers cardiac motion pattern from the light in-
tensity changes of recorded video stream, so the quality
of caridac features is easily affected by the video frame
rate. To evaluate the impact of frame rate, the car-
diac samples from 25 participants are collected under
the frame rates of 30, 40, 50, 60 frames per second(fps)
to verify the user identity with 5 cardiac cycles. As the
average AUC for user verification shown in Figure 14
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Figure 14: Performance evaluation under differ-
ent video qualities.

(a), we can observe that the higher the frame rate is,
the more the verification accuracy improves. This is be-
cause the high frame rate mitigates the motion blur in
the cardiac wave derivation and ensures a high resolu-
tion on the cardiac motion pattern estimation. The
above results show that our system has consistently
good performance regardless of different frame rates.

Impact of Camera Resolution. At last, to fur-
ther study the impact of the video quality on captur-
ing unique cardiac biometrics. We configure the cam-
era with different resolutions as 320 × 240, 640 × 360,
854 × 480, 1280 × 720 to verify 25 users’ identity with
5 cardiac cycles. The AUC for the four different cam-
era resolutions are shown in Figure 14 (b). We can
find that CardioCam achieves over 0.98 AUC for all of
the four resolutions. And the verification performance
is highly consistent across different camera resolutions.
This is primarily because CardioCam leverages the aver-
age light intensity changes of the whole frame, instead
of individual or portions of pixels, to capture cardiac
biometrics. It is easy to conclude that video resolution
has little impact on the user verification performance.

10. DISCUSSION
Deployment Feasibility. CardioCam has a mini-

mum hardware requirement (i.e., camera and flashlight)
to facilitate user verification leveraging cardiac biomet-
rics. Specifically, the camera and flashlight are readily
available in most mobile devices and IoT appliances, so
it will not bring extra cost and inconvenience to the
mobile users. Furthermore, as illustrated in section 9,
the proposed CardioCam system can still achieves high
verification accuracy of 0.953 and 0.98 even under low
frame rate (i.e., 30fps) and a low camera resolution (i.e.,
240p). Therefore, we believe CardioCam can be applied
to a broad range of mobile and IoT devices with the
need of reliable user verification.

Memory and Energy Consumption. Our system
is a lightweight user verification system with low compu-
tational complexity and memory/energy overhead. The
most memory and power-intensive task in CardioCam
is data acquisition, which captures user cardiac pattern
with the built-in camera. The recorded video lasts for
2 seconds and takes up only 0.2MB of the memory, and

the corresponding power consumption is as low as 4.6J.
Given the captured cardiac pattern, CardioCam only
takes around 0.5 seconds to complete one-time user ver-
ification due to its low complexity design, affordable for
most mobile and IoT devices without imposing much
overhead.

Authentication Delay. CardioCam achieves reli-
able verification accuracy with 99% true positive rate
while maintaining the false positive rate as low as 4%.
However, in contrast to other user verification scheme,
such as fingerprint and face ID, CardioCam normally
takes longer time to complete the verification process
(i.e., at least 2.5 seconds depending on individual heart
rate). We further find that a large proportion of the
time cost is spent on optimizing the camera configura-
tion instead of cardiac sign collection. To reduce the
time cost, we will conduct in-depth study on the re-
lationship between pixel sensitivity and ambient light
intensity, so that the optimization process can be com-
pleted in prior to the cardiac sign collection.

Robustness under Cardiac Illnesses. Currently,
our work mainly focuses on verifying the identifies of
health people, who do not have heart diseases such as
arrhythmia and congenital heart failure. But the car-
diac abnormalities could have considerable impacts on
the cardiac motion pattern and thus affect the stability
of cardiac biometrics. In the future, we plan to apply
CardioCam to the people with cardiovascular diseases
and develop more general user verification mechanisms.

11. CONCLUSION
In this paper, we propose CardioCam, the first low-

cost, general and hard-to-forge cardiac biometric based
user verification system. Unlike existing user verifica-
tion systems, CardioCam extracts unique cardiac bio-
metrics for verifying the user’s identity leveraging the
readily available built-in camera in mobile devices and
IoT appliances. To enable highly reliable cardiac mo-
tion derivation, we devise a gradient-based camera con-
figuration optimization technique together with dynamic
pixel selection to mitigate the impact from ever-changing
ambient light and fingertip touch pressure/positions.
To facilitate accurate user verification, CardioCam takes
two types of biometrics, morphological and non-fiducial
features, into consideration. A prototype system is im-
plemented to evaluate the performance of CardioCam
through extensive experiments involving 25 subjects.
The results demonstrate that CardioCam can achieve
remarkable accuracy and robustness on verifying legiti-
mate user while denying unauthorized users under vari-
ous camera settings and data collection modes. While it
is not yet clear whether cardiac features are sufficiently
distinctive in a large user population, these results show
promise, at least as an additional signal used in conjunc-
tion with other existing techniques.
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