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Abstract

In the age of Big Data, one pressing challenge facing engineers is to perform reli-
ability analysis for a large fleet of heterogeneous repairable systems with covariates.
In addition to static covariates, which include time-invariant system attributes such as
nominal operating conditions, geo-locations, etc., the recent advances of sensing tech-
nologies have also made it possible to obtain dynamic sensor measurement of system
operating and environmental conditions. As a common practice in the Big Data envi-
ronment, the massive reliability data are typically stored in some distributed storage
systems. Leveraging the power of modern statistical learning, this paper investigates a
statistical approach which integrates the Random Forests algorithm and the classical
data analysis methodologies for repairable system reliability, such as the nonparametric
estimator for the Mean Cumulative Function and the parametric models based on the
Nonhomogeneous Poisson Process. We show that the proposed approach effectively ad-
dresses some common challenges arising from practice, including system heterogeneity,
covariate selection, model specification and data locality due to the distributed data
storage. The large sample properties as well as the uniform consistency of the proposed
estimator is established. Two numerical examples and a case study are presented to
illustrate the application of the proposed approach. The strengths of the proposed
approach are demonstrated by comparison studies.

Key words: Repairable Reliability Data Analysis, Recurrence Data, Random Forests, Mean
Cumulative Function, Nonhomogeneous Poisson Process.

1



1 Introduction

Advances in sensing technologies are re-shaping the landscape of statistical analysis for reli-

ability data. For example, a typical repairable system reliability data set contains the failure

times from a large fleet of systems as well as a set of covariates associated with each system.

Some covariates are static such as time-invariant system attributes, while some covariates are

dynamic such as sensor measurements of operating and environmental conditions (known as

the SOE data). SOE data represent one of the most significant trends in modern reliability

analysis in the age of Big Data (Meeker and Hong, 2014; Hong et al., 2018). To elaborate

the challenges lie ahead, a motivating example is firstly presented.

1.1 Motivating Example and Challenges

One million oil and natural gas wells are currently operating in the U.S. (USEIA, 2017).

Preventive maintenance of these complex engineering systems is managed by multinational

oil and gas service companies which collect and store massive field data sets. Our motivating

example is based on a data set which consists of the failure/repair data, system attributes,

and sensor measurement of 8232 oil and gas wells installed between 2007 and 2017.

For each well, the ages upon failures are recorded. Figure 1(a) shows the geo-locations

and the average annual number of failures of these wells. The longitude and latitude are

standardized to a unit square [0, 1]2 so as to keep the actual well locations confidential. Figure

1(b) shows the estimated MCF (Mean Cumulative Function) (Nelson, 1995) for systems over

four geo-regions: southwest (SW), southeast (SE), northwest (NW) and northeast (NE).

Systems in the southern area appear to have higher overall failure rates than those located

in the central and northern regions. Such a spatial trend is often due to system age, soil

type, environmental and operating conditions, and others.

In addition to the failure ages, a number of 15 covariates are available including eight

static covariates, x1 ∼ x8, and seven dynamic covariates, z1 ∼ z7 as follows: 1) (well at-

tributes) covariates x1 ∼ x6 are basic well attributes such as well size, nominal working
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Figure 1: Panel (a) shows the locations of the 8232 wells and the legend indicates the average
annual failures; Panel (b) shows the estimated MCF over four geo-regions.

conditions, etc.; 2) (geographical location) covariates x7 and x8 respectively specify the lati-

tude and longitude of each well. Neighboring wells share common environmental conditions

such as temperature-humidity variation, soil type, contamination, etc. Although these fac-

tors are not directly observed, they may lead to some important spatial patterns of the failure

processes; 3) (torque and load) covariates z1 ∼ z5 are related to various dynamic torque and

load of each well such as gear torque, load range, etc.; and 4) (stress) covariates z6 and z7

are respectively the gearbox and structural stress of each well monitored by sensors.

To analyze such a repairable system reliability data set, nonparametric graphical meth-

ods have been widely used for estimating the MCF which describes the average number of

failures for a population of systems up to a certain age (Nelson, 1995; Meeker and Escobar,

1998). However, nonparametric graphical methods are less effective in modeling the com-

plex relationship between failure processes and covariates. Parametric point and counting

processes have also been widely used to model the recurrence data (Fleming and Harrington,

1991; Anderson et al., 1993; Meeker and Escobar, 1998; Rigdon and Basu, 2000). Commonly

used models include the Nonhomogeneous Poisson Process (NHPP), renewal process, trend-
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renewal process, piecewise exponential model, bounded intensity model, etc. (Pulcini, 2001;

Lindqvist et al., 2003; Pan and Rigdon, 2009; Yang, et al., 2012; Ye, et al., 2013b; Mittman,

et al., 2018). However, as both the system fleet size and the number of covariates increase,

some fundamental challenges arise in the modern Big Data analytics environment:

• (Heterogeneity) It is no longer appropriate to ignore system heterogeneity among a large

fleet of field systems (Lindqvist et al., 2003; Stocker and Pena, 2007; Ye, et al., 2013; Xu,

et al., 2017). In the motivating example, it is impossible to assume that the 8232 wells are

from a homogeneous population. Subpopulations always exist due to a number of reasons

including the basic system attributes, variation in operating and environmental conditions,

maintenance history, etc. Although covariate information may be useful in explaining the

system-to-system variation, multiple subpopulations can be governed by fundamentally

different failure processes with distinctive dependence structure on covariates.

• (Model Specification) It is challenging to force and validate parametric assumptions that

adequately describe the link between failure processes and covariates, especially when inter-

actions and nonlinear effects exist among a large number of covariates. This issue is further

complicated due to system heterogeneity: both the effects of individual covariates and the

relationship between failure processes and covariates can vary across subpopulations.

• (Model Complexity and Interpretability) Although an increasingly larger number of covari-

ates has been made available due to the advances of sensing technologies, it is evident from

our industry practice that many covariates are in fact redundant from either the statistical

modeling or domain knowledge perspective. However, as many companies today have in-

vested tremendous resources in collecting and storing data, a common misconception arising

from industry is that a statistical model needs to utilize all data provided. Hence, efficient

selection of important covariates are particularly important in the Big Data environment,

as data-driving models are becoming more complex but seemingly less interpretable.
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• (Data Locality) In the Big Data environment, the ways data are stored determines how

statistical data analysis can be efficiently performed—a critical issue whose impact on re-

liability analysis has often been overlooked. A common practice in industry today is to

store the massive reliability data on distributed storage such as the Hadoop distributed file

system. This leads to a critical difference between traditional statistical analysis and sta-

tistical analysis in the age of Big Data: traditional data analysis moves data to algorithms,

while data analysis in the age of Big Data moves algorithms to data; as shown in Figure 2.

Statistical 
modeling and 
analysis based 
on data files

Distributed 
data storage

…

Data preparation:
loading, cleaning, 
transformation, aggregation, 
sampling, etc. 

Data files on 
local storage

Repeat the process 
when needed
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Driver/Master 
node
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algorithms

a
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local data

Statistical Analysis in Big Data Environment
(Algorithm  Data)

Figure 2: Traditional data analysis moves data to algorithms, while data analysis in the age
of Big Data moves algorithms to data.

To elaborate, traditional data analysis often starts with data preparation which pulls

data from a distributed storage with multiple servers. Then, through a series of data pre-

processing, data files (such as text files and Excel spreadsheet) are generated and saved to

a local storage. Only after such a time-consuming process can the modeling and statistical

data analysis be performed based on the data files generated. Whenever there is an update

on raw data sets in the distributed storage, or, there are new requirements arising from

the modeling point of view, the above lengthy data preparation process is repeated which

typically involves the transfer of a huge amount of data. Data analysis in the age of Big
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Data works in exactly the opposite direction. Instead of pulling data from different servers,

the statistical analysis procedures are assigned to different servers where data are stored in a

distributed manner. This is known as “Data Locality” which has tremendous advantages in

terms of reliability, scalability, efficiency and security (Apache Spark, 2018). The well-known

MapReduce programming model—originally referred to the proprietary Google technology—

is based on such an idea that any algorithms can be executed on smaller subsets of a larger

data set, and the outputs generated from smaller subsets are then merged to form the final

results. Through the idea of MapReduce, computations are parallelized on local nodes which

is critical when working with large data.

1.2 Overview and Literature Review

To tackle the challenges discussed above, this paper investigates an approach which inte-

grates two powerful methods respectively from the modern statistical learning and classical

repairable system reliability analysis, i.e., the Random Forests (RF) algorithm (Breiman,

2001) and the nonparametric MCF estimator (Nelson, 1995). The RF method, which con-

structs ensembles (forests) from de-correlated base learners (trees), is one of the most popular

ensemble methods which has gained tremendous success in practice. The randomness is in-

troduced into the RF through two mechanisms: 1) each tree is grown based on a bootstrap

sample (bagging), and 2) at each node of a tree, the optimum splitting variable and split

point are chosen from a randomly sampled candidate variable set. The nonparametric MCF

estimator, on the other hand, is one of the most successful methods for analyzing repairable

system reliability data (i.e., recurrence data) in industry (Nelson, 1995; Meeker and Esco-

bar, 1998; Doganaksoy et al., 2006; Zuo, et al., 2012). The theory behind the nonparametric

MCF estimator is deeply rooted in point processes (Fleming and Harrington, 1991).

In the literature, tree-based methods for analyzing survival data (i.e., time-to-event data)

with censoring have attracted much attention. A sum-of-trees (ensemble) model is essentially

an additive model with multivariate components that effectively handle the complex interac-
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tion effects among covariates (Chipman et al., 2010; Pratola, et al., 2016). For right-censored

data, Hothorn et al. (2006) introduced an RF algorithm and a generic gradient boosting al-

gorithm for predicting the survival times of patients suffering from acute myeloid leukemia

based on clinical and genetic covariates; also see Hothorn et al. (2004) for bagging survival

trees. Ishwaran et al. (2008) proposed the Random Survival Forests (RSF) algorithm that

integrates the classical Kaplan-Meier estimator into the framework of RF. Fan et al. (2006,

2009) investigated trees for correlated and multivariate survival data. Bacchetti and Segal

(1995) proposed an approach which decomposes a subject into multiple pseudo-subjects, and

the pseudo-subjects can be split across many nodes as a function of time. Bou-Hamad et

al. (2009) incorporated dynamic covariates in the tree-based survival analysis by allowing

subjects to be split across different nodes depending on the time windows. A review of

tree-based methods for analyzing time-to-failure data can be found in Bou-Hamad (2011).

This work focuses on the analysis of large recurrence data with both static and dynamic

covariates arising from repairable systems. We investigate the statistical properties of the

estimator and show how the proposed approach naturally fits into the modern Big Data

environment. To our best knowledge, such work has not yet been done in the literature. We

organize the paper as follows: Section 2 presents the proposed algorithm by only considering

static covariates. Technical details and some useful theoretical results (i.e., consistency and

large-sample variance) are presented. In Section 3, we extend the framework to handle both

static and dynamic covariates. Section 4 presents two numerical examples to demonstrate

the advantages of the proposed method over some conventional methods. Section 5 revisits

the motivating example and illustrates the application of the proposed approach.
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2 The RF-R Algorithm

2.1 Overview

Consider a typical repairable system reliability data set which consists of n systems. For any

system i (i = 1, 2, ..., n), we observe a vector yi = (yi,1, ..., yi,ri , ci) which contains a sequence

of ri failure ages, yi,1, ..., yi,ri , and the right censoring time ci. Associated with system i

there exists a number of p attributes, xi = (xi,1, xi,2, ..., xi,p). Without loss of generality, it

is assumed that all covariates are standardized on the unit interval [0, 1], and the covariate

space is hence a multi-dimensional cube [0, 1]p. Let Λ(t) denote the number of failures in

the time interval (0, t], then, the expectation of Λ(t) is the MCF which characterizes the

reliability of a population of repairable systems (Nelson, 1995; Meeker and Escobar, 1998).

Algorithm 1: The RF-R algorithm

Data: (xi,yi) for i = 1, 2, ..., n
Step 1 Draw B bootstrap samples from the original data.
Step 2 for b=1,...,B do

Grow a random MCF tree by recursively repeating the following steps at each
node of the tree:

2.1) Select m covariates at random from the p covariates.
2.2) Pick the best covariate and its split point among the m selected covariates
by maximizing the difference of the MCF between daughter nodes.

2.3) Grow the tree to full size under the condition that each terminal node
contains at least d0 systems with at least one failure.

Step 3 Obtain the ensemble MCF by averaging the MCF obtained from all trees.
Step 4 Compute the Out-of-Bag (OOB) prediction error for the ensemble MCF.

To tackle the challenges described in Section 1.1, an algorithm, called RF-R (Random

Forests for Repairable System Reliability Analysis), is proposed to integrate the nonpara-

metric MCF estimator into the framework of RF. The RF-R algorithm is described in Algo-

rithm 1, while the technical and theoretical details are presented in Sections 2.2 and 2.3.

The RF-R integrates the nonparametric MCF estimator into the framework of RF, and

hence has the same computational complexity as RF, i.e., O(mn log n). The choice of m

is case-dependent; for example, m = bp/3c as recommended in Hastie et al. (2009). By
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integrating the nonparametric MCF estimator with RF, the RF-R algorithm achieves the

following advantages: 1) (heterogeneity) for each bootstrap sample, the algorithm uses a bi-

nary tree to divide the covariate space into a set of rectangular partitions represented by the

terminal nodes of a tree. In other words, heterogeneous systems are divided into sub-groups

based on their attributes. Then, separate reliability models, such as the MCF in this case,

are constructed to characterize the system reliability on different terminal nodes; 2) (model

specification) the nonparametric MCF estimator enables us to avoid the difficult specifi-

cation of the complicated relationship between failure processes and covariates. Complex

interaction structures in data can also be automatically captured by the tree-based methods

(Chipman et al., 2010). The sample size in the Big Data environment is large enough to

overcome the traditional limitations of nonparametric methods; and 3) (data locality) the

RF-R algorithm, which can be implemented in a modern distributed computing environ-

ment, does not require any transfer of the original data sets across the worker nodes and

satisfies the basic requirements for Big Data analytics as discussed in Section 1.1.

To elaborate, Step 1 involves generating bootstrap samples on local worker nodes. This

process can be done in parallel across worker nodes. In Step 2, a MCF tree is grown which

involves recursively splitting the tree nodes until the termination condition is met. For

each splitting, the driver node selects m covariates at random from the p covariates, and

creates the candidate split point for each of the selected m covariates. After receiving the

selected covariates and the candidate split points, the worker node, in parallel, performs

the splitting of the local bootstrap data into two sub-populations, and constructs the (local)

MCF respectively for both sub-populations. The constructed MCF, using the data stored

on the worker node, are returned to the driver node. After that, the driver node merges

the local MCF constructed from all worker nodes using the method to be discussed in 2.2.1.

Finally, the optimum splitting covariate and split-point are found on the driver node. The

tree structure is updated on the driver node until the algorithm terminates.
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2.2 Technical Details

Let T (x; Θ(b)) be a binary MCF tree based on the bootstrap sample b, b = 1, 2, ..., B. Here,

x is a vector of covariates and the parameter, Θ(b), fully specifies the tree in terms of splitting

covariates, split points, and the constructed MCF on terminal nodes. Let (h
(b)
1 , h

(b)
2 , ..., h

(b)
M )

be a set of M terminal nodes of the bth tree and each terminal node defines a binary partition

on the covariate space. Then, for a vector of covariates x ∈ h(b)j , the MCF is given by:

M̂CF
(b)

(t;x) =
M∑
j=1

M̂CF
h
(b)
j

(t)I{x ∈ h(b)j } (1)

where M̂CF
h
(b)
j

(t) is the MCF constructed on terminal node h
(b)
j . The bootstrap ensemble

MCF is computed by averaging over the B trees:

M̂CF
(∗)

(t;x) =
1

B

B∑
b=1

M̂CF
(b)

(t;x) =
1

B

B∑
b=1

M∑
j=1

M̂CF
h
(b)
j

(t)I{x ∈ h(b)j }. (2)

The greedy algorithm can be used in step 2 of Algorithm 1 which recursively decides on

the optimum splitting covariates, split points, and the tree topology (Hastie et al., 2009).

Given the candidate splitting covariate j and the split point x̃j, an intermediate node h̃

can be split into two daughter nodes. The greedy algorithm seeks the optimum splitting

covariate and the split point that maximize the difference between the two MCF, M̂CF
(−)
h̃ (t)

and M̂CF
(+)

h̃ (t), respectively constructed on the left and right daughter nodes:

max
j,x̃j

g(M̂CF
(−)
h̃ (t), M̂CF

(+)

h̃ (t)) (3)

where g is some distance measure between two MCF. Hence, two fundamental questions

need to be addressed: the construction of MCF on a given tree node for distributed data

(Section 2.2.1), and the choice of the splitting rule in (Section 2.2.2).

2.2.1 MCF for Large Distributed Data Sets

For distributed data sets, the MCF needs to be constructed in a distributed manner such

that each worker node constructs the MCF using the local data on that worker node and the
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driver node merges the MCF constructed from all worker nodes. By modifying algorithm

16.1 in Meeker and Escobar (1998), we obtain the following algorithm which constructs MCF

on a tree node using distributed data on worker nodes. This approach can be used to obtain

the MCF on both intermediate and terminal nodes, and the subscript h in (3) is suppressed.

Algorithm 2: Nonparametric MCF for Distributed Data Sets

Data: Prepare the data set Dw on each local worker node w (w = 1, 2, ...,W ) from
which a MCF is to be constructed.

Step 1 (Map phase) For each worker node w, the following steps are executed in
parallel, i.e., for w=1,...,W do

1.1. Find the ordered unique failure times, t1 < t2 < ... < tn(w) , where n(w) is the
number of unique failure times in Dw.

1.2. Compute the number of failure di(tk) for system i at time tk
(k = 1, 2, ..., n(w)) in Dw.

1.3. Let δi(tk) = 1 if system i is still being observed at tk; δi(tk) = 0 otherwise.
1.4. Compute the local MCF from the data set Dw for j = 1, 2, ..., n(w)

m̂cf
(w)

(tj) =

j∑
k=1

{∑n(w)

i=1 δi(t)di(tk)∑n(w)

i=1 δi(tk)

}
=

j∑
k=1

d.(w)(tk)

δ.(w)(tk)
=

j∑
k=1

d̄(w)(tk) (4)

where the estimate, m̂cf
(w)

(t), is a step function, with jumps at failure times,
but constant between the failure times.

Step 2 (Reduce phase) Merge the local MCF on the driver node:

M̂CF(t) =

∑W
m=1 m̂cf

(w)
(t)

W
(5)

From Nelson (1995) and Meeker and Escobar (1998), m̂cf
(w)

(tj) in (4) is unbiased for the

data on the worker node w and has the large-sample approximate variance as follows:

V̂ar(m̂cf
(w)

(t)) =
r(w)∑
i=1

{
j∑

k=1

δi(tk)

δ.(b)(tk)

(
di(tk)− d̄(b)(tk)

)}2

. (6)

Hence, assuming that individual systems are independent conditioning on the covariates,

M̂CF(t) in (5) is also unbiased with its variance estimated by:

V̂ar(M̂CF(t)) =

∑W
m=1 V̂ar(m̂cf

(w)
(t))

W 2
. (7)
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It is also possible to obtain the covariance of M̂CF(tj) and M̂CF(tp):

Cov(M̂CF(tj), M̂CF(tp)) =
1

W 2
Cov

(
W∑
w=1

j∑
k=1

d̄(w)(tk),
W∑
w=1

p∑
k=1

d̄(w)(tk)

)

= Cov(m̂cf
(w)

(tj), m̂cf
(w)

(tp)).

(8)

Here, Cov(m̂cf
(w)

(tj), m̂cf
(w)

(tp)) =
∑j

k=1

∑p
k′=1 Cov(d̄(w)(tk), d̄

(w)(tk′)) and

Cov(d̄(w)(tk), d̄
(w)(tk′)) =



Cov(d(w)(tk),d
(w)(tk′ ))

δ.(w)(tk)
k < k′

Cov(d(w)(tk),d
(w)(tk′ ))

δ.(w)(tk′ )
k > k′

Var(d(w)(tk))

δ.(w)(tk)
k = k′

(9)

where Var(d(w)(tk)) and Cov(d(w)(tk), d
(w)(tk′)) are estimated by (Meeker and Escobar, 1998):

V̂ar(d(w)(tk)) =
n(w)∑
i=1

δi(tk)

δ.(w)(tk)
(di(tk)− d̄(w)(tk))2, tk < tk′ , (10)

Ĉov(d(w)(tk), d
(w)(tk′)) =

n(w)∑
i=1

δi(tk′)

δ.(w)(tk′)
(di(tk′)− d̄(w)(tk′))di(tk), tk < tk′ . (11)

2.2.2 The Splitting Rule

The splitting rule for a node maximizes the difference between the MCF constructed on the

two daughter nodes; see (3). The RF-R algorithm adopts the following splitting approaches.

• (Splitting based on the log-rank test). For any parent node which contains a number of k

pooled failure times, t1 < t2 < ... < tk, let

Z(ti) = M̂CF
(−)

(ti)− M̂CF
(+)

(ti), i = 1, 2, ..., k (12)

be the difference of the MCF estimates at time ti between the left and right daughter

nodes. It follows from (7) that Var(Z(ti)) = Var(M̂CF
(−)

(ti)) + Var(M̂CF
(+)

(ti)) and

Cov(Z(ti), Z(tj)) = Cov(M̂CF
(−)

(ti), M̂CF
(−)

(tj))+Cov(M̂CF
(+)

(ti), M̂CF
(+)

(tj)) for i, j =

1, 2, ..., k and i 6= j. Let Σ be the covariance matrix of Z = (Z(t1), Z(t2), ..., Z(tk)), the

test statistic is given by the quadratic form ZΣZT (Klein and Moeschberger, 2005). Since
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the MCF estimate is asymptotically normal (Meeker and Escobar, 1998), the test statistic

has a chi-squared distribution for large samples with k − 1 degree of freedom, under the

null hypothesis that M̂CF
(−)

(t) = M̂CF
(+)

(t).

• (Splitting based on the L2 distance). The optimum splitting essentially maximizes some

distance between M̂CF
(−)

(t) and M̂CF
(+)

(t) on the two daughter nodes. Hence, a natural

distance measure between two real-valued functions in the L2 space is given by:

||M̂CF
(−)

(t)− M̂CF
(+)

(t)||2 =

(∫ tk

0

(
M̂CF

(−)
(t)− M̂CF

(+)
(t)

)2

dt

) 1
2

≈

(
k∑
i=1

Z2(ti)

) 1
2

.

(13)

The square root of the log-rank test statistic reduces to (13) when Σ becomes an identify

matrix. Our numerical experiment shows that the two rules generate comparable perfor-

mance in terms of accuracy. However, the splitting based on the L2 distance is much faster

as it does not require the evaluation of the covariance matrix in the log-rank test statistic.

2.2.3 Out-of-Bag (OOB) Error

The use of OOB samples is an important feature under the framework of RF. The MCF of

an OOB system is constructed by only averaging those trees in which this particular system

does not appear, thus the OOB prediction error is close to that of a cross-validation. The

stabilization of the OOB error also helps to determine the number of trees in a forest.

Let γi(b) = 1 if system i is not contained in the bootstrap sample b, otherwise, γi(b) = 0.

Then, the OOB ensemble MCF for system i can be calculated as:

M̂CF
(OOB)

(t;x) =

∑B
b=1 γi(b)

∑M
j=1 M̂CF

h
(b)
j

(t)I{x ∈ h(b)j }∑B
b=1 γi(b)

. (14)

The quantification of prediction error depends on specific applications. For example, if

the MCF at a particular time is of interest, the prediction error can be measured by the

Mean Squared Error of the predicted MCF at that time. In this paper, we follow the idea

of Ishwaran et al. (2008) and choose a more general error measure, known as the Harrell’s
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concordance index (or, C-index). The C-index was firstly proposed in Harrell et al. (1982) for

evaluating the amount of information a medical test provides about individual patients; also

see Brentnall and Cuzick (2018). For the problem considered in this paper, the C-index can

be interpreted as the empirical probability of correctly ranking any two systems in terms of

their reliability, and can be calculated in the following way: 1) form all pairs of systems from

the OOB sample, and the total number of system pairs is
(
nOOB

2

)
with nOOB =

∑B
b=1 γi(b)

being the total number of OOB samples; 2) for each pair i, rank the two systems based

on some reliability measures, such as the mean intensity, the cumulative number of failures

up to a given time, etc. These reliability measures can be calculated from the observed

failure times; 3) for each pair i, rank the two systems based on the same reliability measure,

which is calculated from the predicted MCF. If the predicted rankings are consistent with

the observed rankings, let Ci = 1 for pair i, otherwise Ci = 0; and 4) the C-index for an

OOB sample is given by
(
OOB
2

)−1∑
Ci.

2.3 Theoretical Results

Some useful properties of the RF-R estimator can be obtained by extending the existing

work (Fleming and Harrington, 1991; Anderson et al., 1993; Ishwaran and Kogalur, 2010).

As discussed in Section 2, this paper considers the standardized covariate space X which is a

multi-dimensional cube [0, 1]p. Ishwaran and Kogalur (2010) showed the uniform consistency

of RSF for right-censored time-to-failure data under the assumption that the covariate space

X has finite cardinality and the covariate X for any system is randomly sampled from a dis-

crete covariate space X according to the marginal distribution µ, i.e., µ(A) = P(X ∈ A) for

some subset A of X. Adopting the same assumption and for any covariate j, j = 1, 2, ..., p,

the continuous covariate space [0, 1] is discretized to a large number of Lj equal-width bins

in order to ensure high granularity. In numerical computation, even if the covariate is con-

tinuous, discretizing covariates is always needed when splitting a tree node. The proposition

below shows the uniform consistency of the ensemble RF-R estimator.
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Proposition 1 (uniform consistency). Let v(·;x) be the strictly positive recurrence rate

given the covariate x, and let τ = min(τ(x) : x ∈ X) with τ(x) = sup{t :
∫ t
0
v(s;x)ds <∞}.

If P{C > c} > 0 for c ∈ [0, τ), then, for t ∈ (0, τ) and all ε > 0 we have

lim
N→∞

P

{
sup
s∈[0,t]

∣∣∣∣EX(M̂CF
(∗)

(s;X))− EX(MCF(s;X))

∣∣∣∣ > ε

}
= 0. (15)

The proof is provided in the Appendix. Recall that, the fundamental idea behind RF is

to reduce the variance through bagging and de-correlating trees. For a given covariate x, it

is well-known that the variance of the ensemble trees is given by (Hastie et al., 2009)

ρ(x)Var(M̂CF(t;x)) +B−1(1− ρ(x))Var(M̂CF(t;x))

where Var(M̂CF(t;x)) is the sampling variance of any single randomly drawn tree, and ρ(x)

is the correlation between a pair of randomly chosen trees for a given covariate x. Hence,

when B →∞, the variance of the ensemble trees becomes ρ(x)Var(M̂CF(t;x)).

In Hastie et al. (2009) (page 599), the authors provided a simple approach which allows

us to numerically investigate the correlation ρ(x) between pairs of trees drawn from a forest,

while Proposition 2 below gives the asymptotic variance of a single randomly drawn tree.

Proposition 2. Let δx(t) = 1 if there is at least one system which is still under observation

at time t with covariate x, and δx(t) = 0 otherwise, and let M̃CF(t;x) =
∫ t
0
I{δx(t) >

0}dMCF(t;x) and M̃CF(t;X) =
∑

x∈X M̃CF(t;x). Then, for t ∈ (0, τ) with τ being defined

in Proposition 1, the asymptotic variance of a randomly drawn tree M̂CF(t;X) is given by:

Var
(√

n(M̂CF(t;X)− M̃CF(t;X))
)

=
∑
x

φ(x, t) (16)

where φ(x, t) =
∫ t
0
π−1(s)(1−∆MCF(s;x))dMCF(s;x)), and π(·) is the density function of

the random censoring time, and ∆MCF(t;x) ≡ MCF(s;x)− lims↑t MCF(s;x).

The proof is available in the Appendix.
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3 Extended RF-R to Incorporate Dynamic Covariates

In this section, we show that the RF-R algorithm can be extended to handle both static

system attributes and dynamic sensor measurements. For any system i, in addition to the

event times yi and a vector of static covariates xi, we also observe a q-dimensional time

series, zi(t) = (zi,1(t), zi,2(t), ..., zi,q(t)), where zi,j(t) can be the jth sensor measurement of

some operating and environmental condition at time t.

Incorporating dynamic covariates into a tree-based method is challenging. As shown

in Section 5, systems in the field can experience distinctive operating and environmental

conditions, which typically have cumulative effects on the failure process. Hence, we extend

the RF-R algorithm to include dynamic covariates based on the following strategy: the split

of a tree node is based on the static system attributes, while the data on each node are

modeled by a parametric model incorporating the dynamic covariates. In other words, we

consider the scenario where the subpopulations among a large fleet of systems are mainly

characterized by the static system attributes, while the dynamic sensor measurement is used

for explaining the system-to-system variation of the failure processes among systems sharing

similar attributes. In particular, for a vector of covariates x ∈ h
(b)
j , the corresponding

intensity function of the failure process is given by:

λ̂(b)(t;x) =
M∑
j=1

λ̂
h
(b)
j

(t)I{x ∈ h(b)j }, (17)

where λ̂
h
(b)
j

(t) is the intensity function estimated using data from the terminal node h
(b)
j , and

the ensemble intensity, λ̂(∗)(t;x), is computed by averaging over the B trees:

λ̂(∗)(t;x) =
1

B

B∑
b=1

λ̂(b)(t;x) =
1

B

B∑
b=1

M∑
j=1

λ̂
h
(b)
j

(t)I{x ∈ h(b)j }. (18)

Hence, when the dynamic covariates are incorporated, the intensity functions need to be

estimated on a tree node instead of estimating MCF. Let h̃ denote either an intermediate

or terminal node, we assume that the failure process on node h̃ can be modeled by a NHPP
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with the intensity function λh̃(t) being parameterized by a vector (βh̃0 , β
h̃
1 , ..., β

h̃
q )T through a

log-linear specification:

log λh̃(t) = β
(h̃)
0 +

q∑
j=1

zj(t)β
(h̃)
j . (19)

Then, λh̃(t) can be estimated by minimizing the negative log-likelihood function with the

L1 penalty (Lasso):

− logL(βh̃0 ,β
h̃) + ω||βh̃||1 (20)

where βh̃ = (βh̃1 , β
h̃
2 , ..., β

h̃
q )T and logL(βh̃0 ,β

h̃) =
∑n(h̃)

i=1 (−
∫
λh̃(s)ds +

∑k
j=1 λh̃(tj)). Here,

n(h̃) and k are respectively the number of systems and pooled failure times on node h̃. The L1

regularization shrinks some coefficients to be exactly zero. Although an increasingly larger

number of covariates has been made available by the advances of sensing technologies, it is

evident from our industry practice that many covariates are in fact redundant from either

the statistical modeling or domain knowledge perspectives. Also note that, the likelihood

(20) can be evaluated in parallel for distributed datasets as the contribution to the total

likelihood from each system can be calculated independently.

The extended RF-R algorithm is summarized in Algorithm 3. The computational com-

plexity of the extended RF-R algorithm depends on the dimension, q, of the dynamic covari-

ates as well as the optimization methods used for maximizing the likelihood (20). For exam-

ple, the quasi-Newton method (the variable metric algorithm) is used in our numerical exam-

ples, and the computational complexity of the extended RF-R algorithm is O(mnq2 log n),

where O(q2) is the cost associated with the quasi-Newton method.

The extended RF-R algorithm also satisfies the basic scalability, reliability and security

requirements for big data analytics and no transfer of the raw data is required during the

analysis; see Section 2. In Step 1, the data included in a bootstrap sample are generated

locally on each worker node in parallel. In Step 2, a tree is grown until the termination

condition is met. At each node and for each splitting, the driver node generates m covariates

at random from the p covariates, and creates the candidate split point for each of the selected
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m covariates. The worker node performs the splitting of the local bootstrap data into two

subpopulations, and computes the total likelihood for both subpopulations. The computed

total likelihood, using data stored on the worker node, is returned to the driver node. Then,

the driver node aggregates the local likelihood constructed from all worker nodes, and the

optimum splitting covariate and split-point is carried out on the driver node. The tree

structure is updated and recorded on the driver node until the termination condition is met.

Algorithm 3: The extended RF-R algorithm with static and dynamic covariates

Data: yi, xi and zi(t) for all i
Step 1 Draw B bootstrap samples from the original data.
Step 2 for b=1,...,B do

Grow a random tree by recursively repeating the following steps at each node of
the tree:

2.1) Select m covariates at random from the p covariates.
2.2) Pick the best covariate and its split-point among the m selected covariates
by maximizing the L2 distance of the intensity functions between the two
daughter nodes; see (21). At each daughter node, the intensity function, which
depends on the dynamic covariates, is estimated by minimizing the negative
log-likelihood function with the L1 penalty (20)

2.3) Grow the tree to full size under the condition that each terminal node
contains at least d0 systems with at least one failure.

Step 3 Obtain the ensemble estimator by averaging all trees.
Step 4 Compute the prediction error using the OOB data.

Based on the same idea described in Section 2.2.2, the splitting rule for a node maximizes

distance between two real-valued intensity functions in the L2 space:

||λ̂(−)(t)− λ̂(+)(t)||2 =

(∫ tk

0

(
λ̂(−)(t)− λ̂(+)(t)

)2
dt

) 1
2

(21)

where λ̂(−)(t) and λ̂(+)(t) respectively denote the estimated intensity functions on the two

daughter nodes. The OOB ensemble intensity can also be calculated as:

λ̂(OOB)(t;x) =

∑B
b=1 γi(b)

∑M
j=1 λ̂h(b)j

(t)I{x ∈ h(b)j }∑B
b=1 γi(b)

(22)

where γi(b) = 1 if system i is not contained in the bootstrap sample b, otherwise, γi(b) = 0.

The OOB error can be measured using the C-index as described in Section 2.2.3.
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Figure 3: Covariate importance based on DATASET A and DATASET B

4 Numerical Examples

Section 4 investigates two illustrative examples in order to generate some critical insights and

demonstrate the key advantages of the proposed RF-R. The motivating example is re-visited

in Section 5 to illustrate the application of RF-R on a real industrial problem. All data sets

and computer code are available on Github (https://github.com/dnncode/RF-R).

4.1 Numerical Example 1

We start with a simple numerical example involving 200 systems. For each system, a number

of 10 system attributes are respectively sampled from the unit interval [0, 1]. Let xi,j represent

the value of covariate j associated with system i (i = 1, 2, ..., 200, j = 1, 2, ..., 10), the failure

data of system i are simulated from a Homogeneous Poisson Process (HPP) with the following

intensity: λi = 0.01 if ≤ xi,1, xi,2 ≤ 0.5, λi = 0.1 if 0.5 < xi,1, xi,2 ≤ 1, otherwise λi = 0.05.

This data set is referred to as DATASET A. Note that, covariates x3, ..., x10 are purposely made

redundant in this example.

Following the classical idea of identifying variable importance under the framework of RF,

Figure 3(a) shows the covariate importance as the average decrease of the OOB prediction

C-index after the values of a particular covariate have been randomly permuted. A larger

decrease of the OOB prediction C-index naturally indicates a stronger impact of a particular
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covariate on the prediction performance. It is immediately seen that, the algorithm success-

fully identifies covariates x1 and x2 as important covariates, while covariates x3, x4, ..., x10

have little impact on the OOB prediction C-index and need to be excluded from the model.

We re-run the RF-R algorithm retaining only covariates x1 and x2. Since the space of

the two covariates, x1 and x2, is a unit square [0, 1]2, it is possible to visualize the binary

partition of the covariate space by each tree. Figure 4 shows the binary partition of the

covariate space [0, 1]2 by eight randomly selected trees from the ensemble forests (with 500

trees). Note that, each tree divides the covariate space into a number of partitions, and each

partition is represented by a terminal node. Hence, for each partition of a tree, the MCF is

estimated using the data within that partition and is also shown in Figure 4.

For DATASET A, the intensity of the HPP falls into three classes depending on the values

of x1 and x2. All trees in Figure 4 perform good binary partitions of the covariate space

[0, 1]2. For example, tree #84 partitions [0, 1]2 into 13 partitions (i.e., 13 terminal nodes).

The first class, x1, x2 ∈ [0, 0.5], is captured by terminal nodes 1 and 2; the second class,

x1, x2 ∈ (0.5, 1], is reasonably represented by terminal nodes 11 ∼ 13; while the third class

is captured by the remaining terminal nodes. For another example, tree #351 contains 12

terminal nodes. The first class, x1, x2 ∈ [0, 0.5], is captured by terminal nodes 1 ∼ 3, and

the second class, x1, x2 ∈ (0.5, 1], is almost perfectly represented by terminal nodes 10 ∼ 12.

Interestingly, Figure 4 may suggest the necessity to control the depth of the tree by

combining some of the terminal nodes (Huo et al., 2006). For tree #351, for example, the

ideal case is to combine terminal nodes 1 ∼ 3 to form one bigger node. Note that, if the RF-

R algorithm chooses the optimum splitting covariate and split point based on the log-rank

test, one possible way to prune the tree is to stop further splitting a node if the minimum

p-value is larger than a certain threshold, say, 0.05 or 0.1. This strategy effectively stops the

tree from growing too deep. Alternatively, one might use a larger value of d0 in the RF-R

algorithm, which is the minimum number of systems with failures in a node. Fortunately,
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Figure 4: Columns 1 and 3 show the binary partitions of the covariate space [0, 1]2 by eight
randomly selected trees from the ensemble forests with the red dash lines indicating the true
classification of the failure intensity. Columns 2 and 4 show the estimated MCF associated
with each terminal node for the eight randomly chosen trees.

using full-grown trees seldom costs much in terms of model performance (Hastie et al., 2009).

When trees are grown deep, each individual tree usually has low bias with high variance.

Then, the idea of bagging (averaging full-grown trees) effectively reduces the variance of the

ensemble estimator, and high model accuracy can thus be achieved.

To demonstrate the advantages of the proposed approach, a cross-validation-based com-

parison study is performed considering the following four candidate approaches: 1) RF-R:

the proposed RF-R approach; 2) MCF : the nonparametric estimation for MCF without

utilizing any system attributes; 3) MCF-K : the nonparametric estimation for MCF using
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only the data from the K nearest “neighboring” a system. Here, the distance between two

systems is given by the Euclidean distance based on their covariates; and 4) HPP : the HPP

model with a log-linear intensity, log(λi) = β0 +
∑p

j=1 xi,jβj and p = 10.

Figure 5(a) shows the cross-validation-based comparison of the prediction C-index for the

four approaches above. A number of 500 iterations are performed. Within each iteration,

the training and testing data sets are randomly split according to a 75%-25% ratio. We

see that the proposed RF-R approach generates the highest prediction C-index. Note that,

C-index is an evaluation metric based on pairwise ranking: 1) firstly, we rank the reliability

of two systems based on the model; 2) then, we look at the observed reliability ranking of

two systems, which is subject to uncertainty and may not always reflect the true reliability

ranking of the two systems. In this sense, the C-index depends not only on the methods

but also on the data itself. The comparison presented in Figure 5 is fair because different

methods are applied to the same data set.
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Figure 5: Cross-validation-based comparison of the prediction C-index based on DATASET A

and DATASET B.

One might argue that the assumption of HPP with a log-linear intensity function is

not appropriate given how DATASET A is simulated. Hence, we regenerate the failure data

exactly from a HPP with the log-linear intensity function log(λi) = β0 + β1xi,1 + β2xi,2,

where β0 = 0.01, β1 = 2 and β2 = 0.5. This data set is referred to as DATASET B. Here, the
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covariates, x3, ..., x10, are still treated as redundant variables. The comparison results based

on DATASET B are shown in Figure 5(b). We see that not only the RF-R method but also

the two MCF-based methods outperform the parametric approach assuming HPP, even if

the data are simulated exactly from a HPP. The performance of the parametric approach

clearly suffers from the presence of eight redundant covariates.

Based on DATASET B, Figure 3(b) shows the covariate importance as the average decrease

of the OOB prediction C-index. It is interesting to see that, since β1 is set to be four times

larger than β2 when DATASET B is generated, the algorithm successfully identifies x1 to be

the most important covariate (all covariates are standardized). We also see that, although

the importance of x2 is much lower than that of x1, x2 is still obviously more important than

the remaining eight redundant covariates, x3, ..., x10, as shown in Figure 3(b).

4.2 Numerical Example 2

We consider both static and dynamic covariates in the second numerical example. For each

system, in addition to a number of 10 static covariates which are randomly sampled from the

unit interval [0, 1], a dynamic time-varying covariate z(t) is also simulated from a Brownian

motion process σBt where Bt is a standard Brownian motion and σ = 0.1. The failure

data for 200 systems are generated. For any system i, its failure times are simulated from

a NHPP using the thinning method (Lewis and Shedler, 1979) with the intensity function,

λi(t) = exp{βi,0 + βi,1zi(t)}, where exp{βi,0} = 0.01 and βi,1 = 0.5 if 0 ≤ xi,1, xi,2 ≤ 0.5,

exp{βi,0} = βi,1 = 0.1 if 0.5 < xi,1, xi,2 ≤ 1, and exp{βi,0} = 0.05 and βi,1 = 0 otherwise.

This data set is referred to as DATASET C, and the failure process depends only on the first

two attributes, x1 and x2, as well as the time-varying covariate z(t).

Figure 6 shows the importance of the ten system attributes, x1, x2,...,x10, measured by

the decrease of the OOB prediction C-index after the values of a particular attribute has

been permuted. The algorithm successfully identifies the first two attributes, x1 and x2.

Similar to Figure 4 in Example 1, Figure 7 shows how the binary partitions of the space
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[0, 1]2 are performed by eight randomly chosen trees. For tree #3, for example, the first class,

x1, x2 ∈ [0, 0.5], is captured by terminal nodes 1 and 4; the second class, x1, x2 ∈ (0.5, 1], is

reasonably well represented by terminal nodes 10 ∼ 13; while the third class is captured by

remaining terminal nodes. Also note that, for an ensemble approach like RF, we generally

do not expect all trees performs equally good, and some “weak learners” always exist.

 1  2  3  4  5  6  7  8  9  10

covariates

D
ec

re
as

e 
of

 th
e 

O
O

B 
C

−i
nd

ex
 (%

)

0

1

2

3

4

5

6

Figure 6: Covariates importance based on DATASET C.
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Figure 7: Binary partitions of the covariate space by eight randomly chosen trees. The red
dash lines indicate the true classification of failure intensity for DATASET C
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Figure 8: Left panel: an aggregated view of the estimated effect β̂1 of the dynamic covariate
for different x1 and x2; Right panel: the true effect β1 for DATASET C.

More interestingly, to show how the RF-R effectively captures the interactions between

the static covariates, x1 and x2, and the dynamic covariate, z(t), Figure 8 provides an

aggregated view of the effect β̂1 from the ensemble trees over the domain [0, 1]2 (note that,

each tree partitions the space [0, 1]2 into a number of rectangular areas and the effects β1 are

estimated for each area). In this figure, the panel on the left shows how the estimated effect

β̂1 interacts with the static covariates, while the panel on the right shows the actual effect

of β1 (recall that the true effect β1 of the dynamic covariate is much stronger when x1 and

x2 are below 0.5 for DATASET C). We see from this figure that the proposed RF-R algorithm

successfully captures the interaction between the dynamic and static covariates, which can

be extremely challenging for conventional approach.

A cross-validation-based comparison of the C-index is performed for RF-R, MCF, MCF-

K and NHPP which refers to the MLE assuming a NHPP model with a log-linear intensity

function, λi(t) = exp{βi,0+
∑10

j=1 βi,jxi,j+βi,11zi(t)}. Figure 9(a) shows the comparison based

on DATASET C. We see that the RF-R again outperforms in terms of the prediction C-index.

Note that, since the NHPP model is not appropriate given how DATASET C is simulated, we

re-generate the data using the intensity function, λi(t) = exp {β0 + β1xi,1 + β2xi,2 + β3zi(t)}
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where β0 = log(0.01), β1 = 2, and β2 = β3 = 0.5. This dataset is referred to as Dataset

D. Based on Dataset D, we regenerate the comparison results as shown in Figure 9(b). The

proposed RF-R still outperforms. This figure also indicates that the presence of redundant

covariates x3 ∼ x10 has a significant detrimental impact on the prediction accuracy of the

NHPP model. However, the proposed RF-R algorithm appears to be much more robust

against redundant covariates, which is a salient advantage of the proposed method in modern

Big Data environment where the presence of redundant covariates is almost inevitable.

●

●

●

●

●

RF_R MCF MCF_K NHPP

0.
3

0.
4

0.
5

0.
6

0.
7

Pr
ed

ic
tio

n 
C

−i
nd

ex

(a)

●

●

●●

●

●

●

●

RF_R MCF MCF_K NHPP

0.
3

0.
4

0.
5

0.
6

Pr
ed

ic
tio

n 
C

−i
nd

ex

(b)

Figure 9: Cross-validation-based comparison of the prediction C-index for four different
approaches. Panel (a) on the left shows the comparison results based on Dataset C, and
panel (b) on the right shows the results based on Dataset D.

5 Case Study: The Motivating Example Revisited

The motivating example in Section 1.1 is re-visited in this section to demonstrate the ap-

plication of the proposed approach on a real problem arising from industry. This case

study is based on a modified data set which consists of 8232 oil and gas wells installed over

2007∼2017. More details can be found in Section 1.1 and the data is available from the

GitHub (https://github.com/dnncode/RF-R).

A number of eight well attributes x1 ∼ x8 are available and all covariates are standardized
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on the unit interval [0, 1]. In particular, the geo-locations of these wells are given by covariates

x7 (latitude) and x8 (longitude); see Figure 1. Covariates x1 ∼ x6 are static attributes

that contain basic well characteristics. Figure 10 shows the standardized values of the six

attributes for all 8232 systems, and the heterogeneity among systems is clearly shown.
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Figure 10: Standardized values of x1 ∼ x6 for all 8232 systems.
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Figure 11: Sensor measurement in terms of torque, load and stress, z1 ∼ z7, for three selected
systems: system #1, system #4000, and system #8000.

In addition to the static covariates x1 ∼ x8, seven dynamic sensor measurement of system

operating conditions, z1(t) ∼ z7(t), are also available. In particular, z1(t) ∼ z5(t) are related
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to the dynamic torque and load measurement of each well including gear torque, load range,

and so on, while z6(t) and z7(t) are respectively the monitored gearbox and structural stress.

The sensor data are aggregated on daily basis. For illustrative purposes, Figure 11 plots

the values of z1(t) ∼ z7(t) for three systems: system #1, #4000, and #8000. We see that,

different well systems experience very different operating conditions in terms of torque, load

and stress, further increasing the heterogeneity among these systems.
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Figure 12: Panel (a) shows the OOB ensemble prediction C-index against the number of
trees in a forest for the first 100 trees, and panel (b) shows the importance of the eight static
system attributes measured by the average decrease of the OOB prediction C-index

We run the RF-R algorithm, and Figure 12(a) shows the OOB ensemble prediction C-

index against the number of trees in a forest for the first 100 trees. It is seen that, the OOB

prediction C-index quickly increases as the number of trees increases, and is stabilized ap-

proximated after 50 trees have been grown. Figure 12(b) shows the importance of the eight

static system attributes as the average decrease of the OOB prediction C-index after the

values of a particular covariate has been randomly permuted. Interestingly, the algorithm

identifies x7 and x8, the geo-locations, as the two most important system attributes. Because

wells at similar geographical locations share common, but unknown, environmental condi-

tions (e.g., temperature and humidity variation, soil type, contamination, etc), geo-locations

may serve as important proxies in capturing those unknown environmental factors which may
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lead to some important spatial patterns such as trend and clustering. The results shown in

Figure 12(b) confirm that these unknown environmental factors significantly influence the

system failure processes, causing distinctive failure patterns among well systems. One might

also note that the importance of latitude, x7, is slightly higher than that of longitude, x8,

indicating a stronger spatial trend along the south-north direction. This is consistent with

our initial observations from Figures 1.
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Figure 13: Binary partition of the spatial domain by two chosen trees: tree #1 and #59.

To generate more insights on how the RF-R performs, we re-run the analysis by only

retaining the geo-location information, x7 and x8, and the sensor measurement, z1(t) ∼ z7(t).

For illustrative purposes, Figure 13 shows the binary partition of the spatial domain from

two chosen trees: tree #1 and #59. Tree #1 divides the spatial domain into 32 rectangular

regions, while tree #59 divides the spatial domain into 33 rectangular regions. At each

terminal node of a tree, the intensity function of the NHPP, which depends on the dynamic

conditions measured by sensors, is estimated by minimizing the negative log-likelihood with

the L1 penalty in (20). Note that, not all sensor measurement are relevant in terms of

estimating the failure process. As an illustrative example, Figure 14 shows the estimated

values, β̂1 ∼ β̂7, on every terminal node of tree #1 and tree #59. This figure is presented
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in the stacked view in the sense that, for each terminal node, the heights of the colored bars

respectively indicate the sizes of the estimated values. It is seen that, the Lasso penalty

successfully imposes sparsity on the terminal nodes of a tree: at each terminal node, only a

small subset of z1(t) ∼ z7(t) is included in the estimated intensity function, which describes

the failure process of the systems on that terminal node. This result also suggests that

the intensity functions of systems from different geo-regions may have different dependence

structures on system operational and environmental conditions, indicating a high level of

heterogeneity among the 8232 systems in this case study.
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Figure 14: The estimated values, β̂1 ∼ β̂7, on each terminal node of tree #1 and tree #59.

To further elaborate the interactions between geo-locations and system operating con-

ditions, Figure 15 provides a spatially aggregated view of the averaged β̂1 ∼ β̂7 from the

ensemble trees over the spatial domain. Note that, each tree partitions the spatial domain

[0, 1]2 into a number of rectangular areas and the estimates β̂1 ∼ β̂7 are obtained for each

area. It is immediately seen that the failure intensities at different geo-locations are dom-

inated by different operational and environmental conditions. For example, z1 appears to

have a positive effect on the intensity function for systems located in the area where x7 > 0.7

and x8 > 0.4 (i.e., the top right area of the first subplot on the first row), z2 generally has a

negative effect on the intensity function for systems located to the area where x7 > 0.9 (i.e.,
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the top area of the second subplot on the first row), and so on. Some sensor measurements

may have particularly strong local effect on the failure intensity. For example, z4 has a strong

effect on the intensity function for those systems in the area where x7 and x8 are respectively

close to 0.4 and 0.6 (i.e., the central area of the first subplot on the second row), and z6 has

a particularly strong effect on the intensity function for the systems in the area where x7 and

x8 are respectively close to 0.2 and 0.4, and so on. These observations yield critical insights

on system reliability and can be potentially useful for system maintenance and operation.
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Figure 15: A spatially aggregated view of the averaged β̂1 ∼ β̂7 over the spatial domain.

We compare the C-index, using cross-validation, between the RF-R, MCF, MCF-K,

NHPP with a log-linear intensity function, and the Gamma frailty model. The Gamma

frailty model is a commonly used approach to capture the random variation among systems;

see Lindqvist (2006). Figure 16 shows the comparison result. The proposed RF-R again

outperforms in terms of the prediction C-index. The parametric approaches, such as the

NHPP and Gamma frailty model, suffer from the presence of a large number of redundant

covariates. The fact that MCF has the second best performance suggests that we would

rather not to use any covariate information than incorporating a large number of redundant

covariates.
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Figure 16: Cross-validation-based comparison of the prediction C-index for four different
approaches for the case study

In repairable system reliability analysis, the cumulative hazard function is often of interest

(Meeker and Escobar, 1998). Hence, a number of 6 systems are selected from the 8232 wells.

Figure 17 shows both the true cumulative failures over time and the estimated cumulative

hazard functions for the selected systems. To capture the uncertainty, this figure also includes

the estimated cumulative hazard from individual trees. We see that, the RF-R effectively

models the system reliability based on the recurrence data from a large fleet of repairable

systems with both static and dynamic covariates.
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Figure 17: Estimated cumulative hazard for selected systems.
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6 Conclusions

An algorithm called RF-R has been proposed for analyzing large heterogeneous repairable

system reliability data with static system attributes and dynamic sensor measurement. Com-

prehensive numerical studies and comparison have been performed and the advantages of

the proposed method have been demonstrated. The strengths of the proposed algorithm

lie in the integration of the powerful Random Forests algorithm and the classical statistical

reliability data analysis methodologies. This work timely addressed some pressing challenges

facing reliability engineers today, including system heterogeneity, covariate selection, model

specification and data locality in the modern Big Data environment. Computer program

and data sets are made available on GitHub to facilitate the adoption and application of the

proposed method in practice.
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Appendix: Proof of Propositions 1 and 2

(this section can be moved to Supplementary Materials if necessary)

Proposition 1 shows the uniform consistency of the ensemble RF-R estimator. To prove

this proposition, note that,

lim
N→∞

P

{
sup
s∈[0,t]

∣∣∣∣EX(M̂CF
(∗)

(s;X))− EX(MCF(s;X))

∣∣∣∣ > ε

}

= lim
N→∞

P

{
sup
s∈[0,t]

∣∣∣∣∣ 1

B

B∑
b=1

EX(M̂CF
(b)

(s;X))− EX(MCF(s;X))

∣∣∣∣∣ > ε

}

≤ lim
N→∞

P

{
1

B

B∑
b=1

sup
s∈[0,t]

∣∣∣∣EX(M̂CF
(b)

(s;X))− EX(MCF(s;X))

∣∣∣∣ > ε

}
.

(23)

Hence, it is sufficient to show that, for any bootstrap sample b, we have

lim
N(b)→∞

P

{
sup
s∈[0,t]

∣∣∣∣EX(M̂CF
(b)

(s;X))− EX(MCF(s;X))

∣∣∣∣ > ε

}
= 0 (24)

where N (b) is the sample size of the bootstrap sample b.

Let ηi is an indicator if sample i experiences at least one failure before the censoring time

ci, i.e., ηi = 1 if di(ci) > 0, and ηi = 0 otherwise. Then, the law of large numbers lead to the

following result:

1

N (b)

N(b)∑
i=1

I(Xi ∈ A, ηi = 1)
a.s.→ P{X ∈ A, η = 1} = P{X ∈ A}P{η = 1 |X ∈ A}. (25)

Note that, X and η are not statistically independent. However, it is reasonable to assume

that P{η = 1 |X ∈ A} > 0 for any X ∈ A (in other words, there exists no subset A of X
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such that the probability of observing failures is zero), (25) implies

I

N(b)∑
i=1

I(Xi ∈ A, ηi = 1) ≥ d0

 a.s.→ 1. (26)

Equation (26) implies that the termination rule (i.e., a terminal node must have d0

systems with at least one failure) almost surely holds for any terminal node A. In other

words, the tree almost surely has terminal nodes for all possible discretized values of X:

M̂CF
(b)

(s;X) =
∑
x∈X

I(X = x)M̂CFh(b)(s) + op(1). (27)

It follows from (27) that

sups∈[0,t]

∣∣∣∣EX(M̂CF
(b)

(s;X))− EX(MCF(s;X))

∣∣∣∣
= sups∈[0,t]

∣∣∣∣∣EX

(∑
x∈X

I(X = x)M̂CFh(b)(s)

)
− EX(MCF(s;X)) + op(1)

∣∣∣∣∣
=
∑
x∈X

P(X = x)sups∈[0,t]

∣∣∣M̂CFh(b)(s)−MCF(s;x)
∣∣∣+ op(1).

(28)

Hence, to show the uniform convergence of EX(M̂CF
(b)

(s;X)), it is sufficient to show the

uniform convergence of M̂CFh(b)(s) to MCF(s;x) at each terminal node h(b), which requires

the theorem of Anderson et al. (1993). Let δ
(b)
· (s;x) be the number of systems with covariate

x which are still being observed at time s, then, the Anderson’s theorem says that, if the

following two conditions are satisfied:

∫ t

0

I[δ
(b)
· (s;x) > 0]

δ
(b)
· (s;x)

v(s;x)ds
P→ 0 (29)
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and ∫ t

0

(
1− I[δ(b)· (s;x) > 0]

)
v(s;x)ds

P→ 0, (30)

then,

sups∈[0,t]

∣∣∣M̂CFh(b)(s)−MCF(s;x)
∣∣∣ P→ 0. (31)

Hence, it is necessary to show that: 1) conditions (29) and (30) still hold for our problem,

and 2) (29) and (30) still lead to the result shown in (31).

Firstly, to show that the two conditions (29) and (30) hold, let n(b)(x) be the sample size

on the terminal node that contains x. Then, for s ∈ [0, t] we have,

1

n(b)(x)
δ(b)· (s;x) ≥ 1

n(b)(x)

n(b)(x)∑
i=1

I[Ci ≥ t,Xi = x]

a.s.→ P(X = x)P(C ≥ t) > 0

(32)

where the second line on the right hand side is based on the assumptions that P{C > c} > 0

for any c ∈ [0, τ), and X and C are independent. The inequality above implies that

infs∈[0,t]δ
(b)
· (s;x)

P→∞. (33)

In other words, the number of systems with covariate x which are still being observed at

time s approaches infinity when the total sample size goes to infinity, which is intuitively

true. Since v(·;x) is bounded over [0, t], it is noted that the result above is the sufficient

condition for the two conditions (29) and (30) to be satisfied.

Secondly, to show that the conditions (29) and (30) still lead to the result shown in (31),
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we define:

M̂CFh(b)(s) =

∫ s

0

δ(b)· (u;x)dΛh(b)(u)

MCF
(∗∗)
h(b)

(s) =

∫ s

0

v(u;x)I[δ(b)· (u;x) > 0]du

MCF(s;x) =

∫ s

0

v(u;x)du

(34)

where Λh(b)(u) denotes the number of failures in the time interval (0, u] on the tree node h for

the bootstrap sample b. Then, invoking the Lenglart’s inequality (see (2.5.18) of Anderson

et al. (1993)), for any η1, η2 > 0, we have

P
(

sups∈[0,t]|M̂CFh(b)(s)−MCF
(∗∗)
h(b)

(s)| > η1

)
≤ η2
η21

+ P
(
〈M̂CFh(b)(s)−MCF

(∗∗)
h(b)

(s)〉(t) > η2

) (35)

where M̂CFh(b)(s) −MCF
(∗∗)
h(b)

(s) is a local square integrable martingale, and it follows from

condition (29) and (4.1.5) of Anderson et al. (1993) that

〈M̂CFh(b)(s)−MCF
(∗∗)
h(b)

(s)〉(t) =

∫ t

0

I[δ
(b)
· (s;x) > 0]

δ
(b)
· (s;x)

v(s;x)ds
P→ 0. (36)

Hence, the Lenglart’s inequality (35) implies that

sups∈[0,t]|M̂CFh(b)(s)−MCF
(∗∗)
h(b)

(s)| P→ 0.

Since |MCF
(∗∗)
h(b)

(s)−MCF(s;x)| =
∫ s
0

(1−I[δ
(b)
· (u;x) > 0])v(u;x)du

P→ 0 due to condition

(30), we have

sups∈[0,t]|M̂CFh(b)(s)−MCF(s;x)| P→ 0.

as was to be proved.
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Proposition 2 gives the asymptotic variance of a single randomly drawn tree. The proof

requires equation (27) and Theorem 3.2.1 in Fleming and Harrington (1991). It follows from

(27) that

Var(
√
n(M̂CF(t;X)−M̃CF(t;X)))

= Var(
√
n
∑
x∈X

I(X = x)(M̂CFh(x)(t)− M̃CF(t;x)) + op(1))

=
∑
x∈X

E(
√
nI(X = x)(M̂CF(x)(t)− M̃CF(t;x)))2

− n
∑
x∈X

I(X = x)E2(M̂CF(x)(t)− M̃CF(t;x)) + op(1)

(37)

where h(x) represents a terminal node that contains x.

Since M̂CFh(x)(t) is asymptotically unbiased (on that particular node), the second and

third term on the right-hand-side of (37) vanishes and we have

Var(
√
n(M̂CF(t;X)− M̃CF(t;X))) =

∑
x∈X

E(
√
n̄x(M̂CFh(x)(t)− M̃CF(t;x)))2 (38)

where n̄x is the expected number of systems with covariates x. Then, it follows from Theorem

3.2.1 of Fleming and Harrington (1991) that

Var
(√

n(M̂CF(t;X)− M̃CF(t;X))
)

=

∫ t

0

π−1(s)(1−∆MCF(s;x))dMCF(s;x))

=
∑
x

φ(x, t)
(39)

as was to be proved.
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