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Abstract

In the age of Big Data, one pressing challenge facing engineers is to perform reli-
ability analysis for a large fleet of heterogeneous repairable systems with covariates.
In addition to static covariates, which include time-invariant system attributes such as
nominal operating conditions, geo-locations, etc., the recent advances of sensing tech-
nologies have also made it possible to obtain dynamic sensor measurement of system
operating and environmental conditions. As a common practice in the Big Data envi-
ronment, the massive reliability data are typically stored in some distributed storage
systems. Leveraging the power of modern statistical learning, this paper investigates a
statistical approach which integrates the Random Forests algorithm and the classical
data analysis methodologies for repairable system reliability, such as the nonparametric
estimator for the Mean Cumulative Function and the parametric models based on the
Nonhomogeneous Poisson Process. We show that the proposed approach effectively ad-
dresses some common challenges arising from practice, including system heterogeneity,
covariate selection, model specification and data locality due to the distributed data
storage. The large sample properties as well as the uniform consistency of the proposed
estimator is established. Two numerical examples and a case study are presented to
illustrate the application of the proposed approach. The strengths of the proposed
approach are demonstrated by comparison studies.

Key words: Repairable Reliability Data Analysis, Recurrence Data, Random Forests, Mean
Cumulative Function, Nonhomogeneous Poisson Process.



1 Introduction

Advances in sensing technologies are re-shaping the landscape of statistical analysis for reli-
ability data. For example, a typical repairable system reliability data set contains the failure
times from a large fleet of systems as well as a set of covariates associated with each system.
Some covariates are static such as time-invariant system attributes, while some covariates are
dynamic such as sensor measurements of operating and environmental conditions (known as
the SOE data). SOE data represent one of the most significant trends in modern reliability
analysis in the age of Big Data (Meeker and Hong, 2014; Hong et al., 2018). To elaborate
the challenges lie ahead, a motivating example is firstly presented.

1.1 Motivating Example and Challenges

One million oil and natural gas wells are currently operating in the U.S. (USEIA, 2017).
Preventive maintenance of these complex engineering systems is managed by multinational
oil and gas service companies which collect and store massive field data sets. Our motivating
example is based on a data set which consists of the failure/repair data, system attributes,
and sensor measurement of 8232 oil and gas wells installed between 2007 and 2017.

For each well, the ages upon failures are recorded. Figure 1(a) shows the geo-locations
and the average annual number of failures of these wells. The longitude and latitude are
standardized to a unit square [0, 1]? so as to keep the actual well locations confidential. Figure
1(b) shows the estimated MCF (Mean Cumulative Function) (Nelson, 1995) for systems over
four geo-regions: southwest (SW), southeast (SE), northwest (NW) and northeast (NE).
Systems in the southern area appear to have higher overall failure rates than those located
in the central and northern regions. Such a spatial trend is often due to system age, soil
type, environmental and operating conditions, and others.

In addition to the failure ages, a number of 15 covariates are available including eight
static covariates, 1 ~ zg, and seven dynamic covariates, z; ~ z; as follows: 1) (well at-

tributes) covariates z; ~ x¢ are basic well attributes such as well size, nominal working
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Figure 1: Panel (a) shows the locations of the 8232 wells and the legend indicates the average
annual failures; Panel (b) shows the estimated MCF over four geo-regions.

conditions, etc.; 2) (geographical location) covariates x7 and xg respectively specify the lati-
tude and longitude of each well. Neighboring wells share common environmental conditions
such as temperature-humidity variation, soil type, contamination, etc. Although these fac-
tors are not directly observed, they may lead to some important spatial patterns of the failure
processes; 3) (torque and load) covariates z; ~ z5 are related to various dynamic torque and
load of each well such as gear torque, load range, etc.; and 4) (stress) covariates zg and z;
are respectively the gearbox and structural stress of each well monitored by sensors.

To analyze such a repairable system reliability data set, nonparametric graphical meth-
ods have been widely used for estimating the MCF which describes the average number of
failures for a population of systems up to a certain age (Nelson, 1995; Meeker and Escobar,
1998). However, nonparametric graphical methods are less effective in modeling the com-
plex relationship between failure processes and covariates. Parametric point and counting
processes have also been widely used to model the recurrence data (Fleming and Harrington,
1991; Anderson et al., 1993; Meeker and Escobar, 1998; Rigdon and Basu, 2000). Commonly

used models include the Nonhomogeneous Poisson Process (NHPP), renewal process, trend-
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renewal process, piecewise exponential model, bounded intensity model, etc. (Pulcini, 2001;
Lindqvist et al., 2003; Pan and Rigdon, 2009; Yang, et al., 2012; Ye, et al., 2013b; Mittman,
et al., 2018). However, as both the system fleet size and the number of covariates increase,

some fundamental challenges arise in the modern Big Data analytics environment:

e (Heterogeneity) It is no longer appropriate to ignore system heterogeneity among a large
fleet of field systems (Lindqvist et al., 2003; Stocker and Pena, 2007; Ye, et al., 2013; Xu,
et al., 2017). In the motivating example, it is impossible to assume that the 8232 wells are
from a homogeneous population. Subpopulations always exist due to a number of reasons
including the basic system attributes, variation in operating and environmental conditions,
maintenance history, etc. Although covariate information may be useful in explaining the
system-to-system variation, multiple subpopulations can be governed by fundamentally

different failure processes with distinctive dependence structure on covariates.

e (Model Specification) It is challenging to force and validate parametric assumptions that
adequately describe the link between failure processes and covariates, especially when inter-
actions and nonlinear effects exist among a large number of covariates. This issue is further
complicated due to system heterogeneity: both the effects of individual covariates and the

relationship between failure processes and covariates can vary across subpopulations.

e (Model Complexity and Interpretability) Although an increasingly larger number of covari-
ates has been made available due to the advances of sensing technologies, it is evident from
our industry practice that many covariates are in fact redundant from either the statistical
modeling or domain knowledge perspective. However, as many companies today have in-
vested tremendous resources in collecting and storing data, a common misconception arising
from industry is that a statistical model needs to utilize all data provided. Hence, efficient
selection of important covariates are particularly important in the Big Data environment,

as data-driving models are becoming more complex but seemingly less interpretable.



e (Data Locality) In the Big Data environment, the ways data are stored determines how
statistical data analysis can be efficiently performed—a critical issue whose impact on re-
liability analysis has often been overlooked. A common practice in industry today is to
store the massive reliability data on distributed storage such as the Hadoop distributed file
system. This leads to a critical difference between traditional statistical analysis and sta-
tistical analysis in the age of Big Data: traditional data analysis moves data to algorithms,

while data analysis in the age of Big Data moves algorithms to data; as shown in Figure 2.
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Figure 2: Traditional data analysis moves data to algorithms, while data analysis in the age
of Big Data moves algorithms to data.

To elaborate, traditional data analysis often starts with data preparation which pulls
data from a distributed storage with multiple servers. Then, through a series of data pre-
processing, data files (such as text files and Excel spreadsheet) are generated and saved to
a local storage. Only after such a time-consuming process can the modeling and statistical
data analysis be performed based on the data files generated. Whenever there is an update
on raw data sets in the distributed storage, or, there are new requirements arising from
the modeling point of view, the above lengthy data preparation process is repeated which

typically involves the transfer of a huge amount of data. Data analysis in the age of Big



Data works in exactly the opposite direction. Instead of pulling data from different servers,
the statistical analysis procedures are assigned to different servers where data are stored in a
distributed manner. This is known as “Data Locality” which has tremendous advantages in
terms of reliability, scalability, efficiency and security (Apache Spark, 2018). The well-known
MapReduce programming model—originally referred to the proprietary Google technology—
is based on such an idea that any algorithms can be executed on smaller subsets of a larger
data set, and the outputs generated from smaller subsets are then merged to form the final
results. Through the idea of MapReduce, computations are parallelized on local nodes which
is critical when working with large data.
1.2 Overview and Literature Review
To tackle the challenges discussed above, this paper investigates an approach which inte-
grates two powerful methods respectively from the modern statistical learning and classical
repairable system reliability analysis, i.e., the Random Forests (RF) algorithm (Breiman,
2001) and the nonparametric MCF estimator (Nelson, 1995). The RF method, which con-
structs ensembles (forests) from de-correlated base learners (trees), is one of the most popular
ensemble methods which has gained tremendous success in practice. The randomness is in-
troduced into the RF through two mechanisms: 1) each tree is grown based on a bootstrap
sample (bagging), and 2) at each node of a tree, the optimum splitting variable and split
point are chosen from a randomly sampled candidate variable set. The nonparametric MCF
estimator, on the other hand, is one of the most successful methods for analyzing repairable
system reliability data (i.e., recurrence data) in industry (Nelson, 1995; Meeker and Esco-
bar, 1998; Doganaksoy et al., 2006; Zuo, et al., 2012). The theory behind the nonparametric
MCF estimator is deeply rooted in point processes (Fleming and Harrington, 1991).

In the literature, tree-based methods for analyzing survival data (i.e., time-to-event data)
with censoring have attracted much attention. A sum-of-trees (ensemble) model is essentially

an additive model with multivariate components that effectively handle the complex interac-



tion effects among covariates (Chipman et al., 2010; Pratola, et al., 2016). For right-censored
data, Hothorn et al. (2006) introduced an RF algorithm and a generic gradient boosting al-
gorithm for predicting the survival times of patients suffering from acute myeloid leukemia
based on clinical and genetic covariates; also see Hothorn et al. (2004) for bagging survival
trees. Ishwaran et al. (2008) proposed the Random Survival Forests (RSF) algorithm that
integrates the classical Kaplan-Meier estimator into the framework of RF. Fan et al. (2006,
2009) investigated trees for correlated and multivariate survival data. Bacchetti and Segal
(1995) proposed an approach which decomposes a subject into multiple pseudo-subjects, and
the pseudo-subjects can be split across many nodes as a function of time. Bou-Hamad et
al. (2009) incorporated dynamic covariates in the tree-based survival analysis by allowing
subjects to be split across different nodes depending on the time windows. A review of
tree-based methods for analyzing time-to-failure data can be found in Bou-Hamad (2011).
This work focuses on the analysis of large recurrence data with both static and dynamic
covariates arising from repairable systems. We investigate the statistical properties of the
estimator and show how the proposed approach naturally fits into the modern Big Data
environment. To our best knowledge, such work has not yet been done in the literature. We
organize the paper as follows: Section 2 presents the proposed algorithm by only considering
static covariates. Technical details and some useful theoretical results (i.e., consistency and
large-sample variance) are presented. In Section 3, we extend the framework to handle both
static and dynamic covariates. Section 4 presents two numerical examples to demonstrate
the advantages of the proposed method over some conventional methods. Section 5 revisits

the motivating example and illustrates the application of the proposed approach.



2 The RF-R Algorithm

2.1 Overview

Consider a typical repairable system reliability data set which consists of n systems. For any
system ¢ (i = 1,2,...,n), we observe a vector y; = (y;1, ..., Yi.r,» ¢;) Which contains a sequence
of r; failure ages, ¥;1,...,¥ir, and the right censoring time ¢;. Associated with system ¢
there exists a number of p attributes, ; = (x;1, %29, ...,x;,). Without loss of generality, it
is assumed that all covariates are standardized on the unit interval [0, 1], and the covariate
space is hence a multi-dimensional cube [0,1]?. Let A(t) denote the number of failures in
the time interval (0,t], then, the expectation of A(t) is the MCF which characterizes the

reliability of a population of repairable systems (Nelson, 1995; Meeker and Escobar, 1998).

Algorithm 1: The RF-R algorithm
Data: (x;,y;) fori=1,2,...,n
Step 1 Draw B bootstrap samples from the original data.
Step 2 for b=1,...,B do

Grow a random MCF tree by recursively repeating the following steps at each
node of the tree:

2.1) Select m covariates at random from the p covariates.

2.2) Pick the best covariate and its split point among the m selected covariates
by maximizing the difference of the MCF between daughter nodes.

2.3) Grow the tree to full size under the condition that each terminal node
contains at least dy systems with at least one failure.

Step 3 Obtain the ensemble MCF by averaging the MCF obtained from all trees.
Step 4 Compute the Out-of-Bag (OOB) prediction error for the ensemble MCF.

To tackle the challenges described in Section 1.1, an algorithm, called RF-R (Random
Forests for Repairable System Reliability Analysis), is proposed to integrate the nonpara-
metric MCF estimator into the framework of RF. The RF-R algorithm is described in Algo-
rithm 1, while the technical and theoretical details are presented in Sections 2.2 and 2.3.

The RF-R integrates the nonparametric MCF estimator into the framework of RF, and
hence has the same computational complexity as RF, i.e., O(mnlogn). The choice of m

is case-dependent; for example, m = |p/3] as recommended in Hastie et al. (2009). By



integrating the nonparametric MCF estimator with RF, the RF-R algorithm achieves the
following advantages: 1) (heterogeneity) for each bootstrap sample, the algorithm uses a bi-
nary tree to divide the covariate space into a set of rectangular partitions represented by the
terminal nodes of a tree. In other words, heterogeneous systems are divided into sub-groups
based on their attributes. Then, separate reliability models, such as the MCF in this case,
are constructed to characterize the system reliability on different terminal nodes; 2) (model
specification) the nonparametric MCF estimator enables us to avoid the difficult specifi-
cation of the complicated relationship between failure processes and covariates. Complex
interaction structures in data can also be automatically captured by the tree-based methods
(Chipman et al., 2010). The sample size in the Big Data environment is large enough to
overcome the traditional limitations of nonparametric methods; and 3) (data locality) the
RF-R algorithm, which can be implemented in a modern distributed computing environ-
ment, does not require any transfer of the original data sets across the worker nodes and
satisfies the basic requirements for Big Data analytics as discussed in Section 1.1.

To elaborate, Step 1 involves generating bootstrap samples on local worker nodes. This
process can be done in parallel across worker nodes. In Step 2, a MCF tree is grown which
involves recursively splitting the tree nodes until the termination condition is met. For
each splitting, the driver node selects m covariates at random from the p covariates, and
creates the candidate split point for each of the selected m covariates. After receiving the
selected covariates and the candidate split points, the worker node, in parallel, performs
the splitting of the local bootstrap data into two sub-populations, and constructs the (local)
MCF respectively for both sub-populations. The constructed MCF, using the data stored
on the worker node, are returned to the driver node. After that, the driver node merges
the local MCF constructed from all worker nodes using the method to be discussed in 2.2.1.
Finally, the optimum splitting covariate and split-point are found on the driver node. The

tree structure is updated on the driver node until the algorithm terminates.



2.2 Technical Details

Let T'(x; ©®) be a binary MCF tree based on the bootstrap sample b, b = 1,2, ..., B. Here,
x is a vector of covariates and the parameter, ©®)| fully specifies the tree in terms of splitting
covariates, split points, and the constructed MCF on terminal nodes. Let (hgb), h;b) s s hg\?[))

be a set of M terminal nodes of the bth tree and each terminal node defines a binary partition

on the covariate space. Then, for a vector of covariates & € h(~b), the MCF is given by:
sice"” Z MCF o (1) I{z € '} (1)
j=1

where mh(vb)(t) is the MCF constructed on terminal node hg»b). The bootstrap ensemble

MCF is computed by averaging over the B trees:

! if@ ) I{z € "} 2)

b: b:l j=1

Mm

MCF

The greedy algorithm can be used in step 2 of Algorithm 1 which recursively decides on
the optimum splitting covariates, split points, and the tree topology (Hastie et al., 2009).
Given the candidate splitting covariate j and the split point Z;, an intermediate node h
can be split into two daughter nodes. The greedy algorithm seeks the optimum splitting
covariate and the split point that maximize the difference between the two MCF, 1\TC\F,%_)(t)

— (+
and MCF% )(t), respectively constructed on the left and right daughter nodes:

max g(MCFy, (1), MCFy, (1)) 3)

3,%j
where ¢ is some distance measure between two MCF. Hence, two fundamental questions
need to be addressed: the construction of MCF on a given tree node for distributed data
(Section 2.2.1), and the choice of the splitting rule in (Section 2.2.2).

2.2.1 MCF for Large Distributed Data Sets

For distributed data sets, the MCF needs to be constructed in a distributed manner such

that each worker node constructs the MCF using the local data on that worker node and the
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driver node merges the MCF' constructed from all worker nodes. By modifying algorithm
16.1 in Meeker and Escobar (1998), we obtain the following algorithm which constructs MCF
on a tree node using distributed data on worker nodes. This approach can be used to obtain

the MCF on both intermediate and terminal nodes, and the subscript A in (3) is suppressed.

Algorithm 2: Nonparametric MCF for Distributed Data Sets

Data: Prepare the data set ©,, on each local worker node w (w = 1,2,..., W) from
which a MCF is to be constructed.

Step 1 (Map phase) For each worker node w, the following steps are executed in
parallel, i.e., for w=1,..., W do

1.1. Find the ordered unique failure times, t; <t < ... < t,,(), Where n(® is the
number of unique failure times in ©,,.

1.2. Compute the number of failure d;(tx) for system i at time ¢
(k=1,2,....,n") in D,

1.3. Let 0;(tx) = 1 if system 1 is still being observed at tx; ;(t;) = 0 otherwise.

1.4. Compute the local MCF from the data set ©,, for j = 1,2, ..., n(®)

n(w)

rﬁw(])_;{z;gi i } ZW () ()

. —(w) . . Ly . .
where the estimate, mcf “ (t), is a step function, with jumps at failure times,
but constant between the failure times.

Step 2 (Reduce phase) Merge the local MCF on the driver node:

w —(w)
MC\F(t)ZZmﬂ;Cf () (5)

From Nelson (1995) and Meeker and Escobar (1998), Izc\f(w) (t;) in (4) is unbiased for the

data on the worker node w and has the large-sample approximate variance as follows:

() j 2
Var(mcf Z { 5 b) (t) — d® (tk))} : (6)

=1

Hence, assuming that individual systems are independent conditioning on the covariates,

I\TC\F(t) in (5) is also unbiased with its variance estimated by:

S Var(met (1))
W2 '

Var(MCF (1)) = (7)
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It is also possible to obtain the covariance of MCF( ;) and MCF( )

W w p
Cov(MCF(¢,), MCF(t,)) = —Cov (ZZCM tr) ,Z d™)( tk)
w=1 k=1 =1 k=1 (8)
— Cov(met " (¢,), meb )(t,,)).
Here, Cov(n/lc\f(w) (tj),rzc\f(w)(tp)) >0 Cov(d™ (ty), d™) (t),)) and
( (w)
Cov(d® (t1,),d) (1))
k(t T k<K
Cov(d™ (ty),d"™ (ty)) = 00v(d<§>(g§(>t ‘ () pos 9)
Var(d™ (1)) _
(S.(T(tk)k k; — k/

where Var(d™)(¢;)) and Cov(d™(t;),d™ (t;,)) are estimated by (Meeker and Escobar, 1998):

n(w)
Var d(w tk Z 5 () ) - d(w)(tk))Q, tk < tk/, (10)
n(w®) 5i(te)
Cov(d™ (ty), d™ (t)) Z o )’;k/ W) — d () ds(tr),  tr < tw. (11)

2.2.2 The Splitting Rule
The splitting rule for a node maximizes the difference between the MCF constructed on the

two daughter nodes; see (3). The RF-R algorithm adopts the following splitting approaches.
e (Splitting based on the log-rank test). For any parent node which contains a number of k

pooled failure times, t; <ty < ... < 1y, let

Z(t:) = MCF(t;) = MCF " (t), i=1,2, .k (12)

be the difference of the MCF estimates at time ¢; between the left and right daughter
nodes. It follows from (7) that Var(Z(t;)) = Var(m(i)(ti)) + Var(l\fC\F(H(ti)) and
Cov(Z(t:), Z(t;)) = Cov(MCE (), MOF"(£;))+Cov(MCE (1), MCF' " (t,)) for i, j —

2,...,k and i # j. Let X be the covariance matrix of Z = (Z(t,), Z(t2), ..., Z(tx)), the

test statistic is given by the quadratic form ZXZ7 (Klein and Moeschberger, 2005). Since
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the MCF estimate is asymptotically normal (Meeker and Escobar, 1998), the test statistic
has a chi-squared distribution for large samples with k& — 1 degree of freedom, under the

null hypothesis that m(_)(t) = m(+) (t).

e (Splitting based on the L? distance). The optimum splitting essentially maximizes some
(= —— (+
distance between MCF( )(t) and MCF( )(t) on the two daughter nodes. Hence, a natural

distance measure between two real-valued functions in the L? space is given by:

— (—) ——(+) tr () () 2 % k %
[IMCF "(t) — MCF "(t)||2 = / (MCF (t) — MCF (t)) dt | = Z Z2(t) | .
0 i=1
(13)
The square root of the log-rank test statistic reduces to (13) when ¥ becomes an identify

matrix. Our numerical experiment shows that the two rules generate comparable perfor-
mance in terms of accuracy. However, the splitting based on the L? distance is much faster

as it does not require the evaluation of the covariance matrix in the log-rank test statistic.

2.2.3 Out-of-Bag (OOB) Error
The use of OOB samples is an important feature under the framework of RF. The MCF of
an OOB system is constructed by only averaging those trees in which this particular system
does not appear, thus the OOB prediction error is close to that of a cross-validation. The
stabilization of the OOB error also helps to determine the number of trees in a forest.

Let 7;(b) = 1 if system 4 is not contained in the bootstrap sample b, otherwise, v;(b) = 0.
Then, the OOB ensemble MCF for system ¢ can be calculated as:

——— (00B) S8 (b)) SN, MCE, o () [ {m € P}
MCF (t; .’,C) = 5 J
> b1 7%i(0)

The quantification of prediction error depends on specific applications. For example, if

(14)

the MCF at a particular time is of interest, the prediction error can be measured by the
Mean Squared Error of the predicted MCF at that time. In this paper, we follow the idea

of Ishwaran et al. (2008) and choose a more general error measure, known as the Harrell’s
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concordance index (or, C-index). The C-index was firstly proposed in Harrell et al. (1982) for
evaluating the amount of information a medical test provides about individual patients; also
see Brentnall and Cuzick (2018). For the problem considered in this paper, the C-index can
be interpreted as the empirical probability of correctly ranking any two systems in terms of
their reliability, and can be calculated in the following way: 1) form all pairs of systems from
the OOB sample, and the total number of system pairs is ("OQOB) with n©OB = Zszl 7 (D)
being the total number of OOB samples; 2) for each pair i, rank the two systems based
on some reliability measures, such as the mean intensity, the cumulative number of failures
up to a given time, etc. These reliability measures can be calculated from the observed
failure times; 3) for each pair 7, rank the two systems based on the same reliability measure,
which is calculated from the predicted MCF'. If the predicted rankings are consistent with
the observed rankings, let C; = 1 for pair i, otherwise C; = 0; and 4) the C-index for an

OOB sample is given by (O(;B)_l > C.

2.3 Theoretical Results

Some useful properties of the RF-R estimator can be obtained by extending the existing
work (Fleming and Harrington, 1991; Anderson et al., 1993; Ishwaran and Kogalur, 2010).
As discussed in Section 2, this paper considers the standardized covariate space X which is a
multi-dimensional cube [0, 1]P. Ishwaran and Kogalur (2010) showed the uniform consistency
of RSF for right-censored time-to-failure data under the assumption that the covariate space
X has finite cardinality and the covariate X for any system is randomly sampled from a dis-
crete covariate space X according to the marginal distribution y, i.e., u(A) = P(X € A) for
some subset A of X. Adopting the same assumption and for any covariate j, 7 = 1,2, ..., p,
the continuous covariate space [0, 1] is discretized to a large number of L; equal-width bins
in order to ensure high granularity. In numerical computation, even if the covariate is con-
tinuous, discretizing covariates is always needed when splitting a tree node. The proposition

below shows the uniform consistency of the ensemble RF-R estimator.
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Proposition 1 (uniform consistency). Let v(-; &) be the strictly positive recurrence rate
given the covariate x, and let 7 = min(7(x) : @ € X) with 7(x) = sup{t : fo s;x)ds < 0o}

IfP{C > ¢} > 0 for c € |0,7), then, fort € (0,7) and all € > 0 we have

lim ]P’{ sup |Ex(MCE' (s; X)) — Ex (MCF(s: X))‘ > e} = 0. (15)
N—oo s€[0,4]

The proof is provided in the Appendix. Recall that, the fundamental idea behind RF is
to reduce the variance through bagging and de-correlating trees. For a given covariate @, it

is well-known that the variance of the ensemble trees is given by (Hastie et al., 2009)
p(z)Var(MCF(t; z)) + B~(1 — p(z))Var(MCE(t; )

where Var(l\fC\F(t; x)) is the sampling variance of any single randomly drawn tree, and p(x)
is the correlation between a pair of randomly chosen trees for a given covariate . Hence,
when B — oo, the variance of the ensemble trees becomes p(m)Var(m(t; x)).

In Hastie et al. (2009) (page 599), the authors provided a simple approach which allows
us to numerically investigate the correlation p(x) between pairs of trees drawn from a forest,

while Proposition 2 below gives the asymptotic variance of a single randomly drawn tree.

Proposition 2. Let 0,(t) = 1 if there is at least one system which is still under observation
at time t with covariate x, and 6.(t) = 0 otherwise, and let MCF t;x) fo I{0,(t
0}dMCEF(t; x) and Méf‘(t; X) =) cx MCF(t; x). Then, fort € (0,7) with T being defined

in Proposition 1, the asymptotic variance of a randomly drawn tree l\m(t; X)) is given by:
Var (ﬁ(@(t;X) MCF(¢; X) ) Z¢> (,1) (16)

where ¢(x,t) = fot 771(s)(1 — AMCF(s; ))dMCF(s; x)), and 7(-) is the density function of
the random censoring time, and AMCF (t; ) = MCF(s; x) — limg; MCF(s; ).

The proof is available in the Appendix.
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3 Extended RF-R to Incorporate Dynamic Covariates

In this section, we show that the RF-R algorithm can be extended to handle both static
system attributes and dynamic sensor measurements. For any system ¢, in addition to the
event times y; and a vector of static covariates x;, we also observe a ¢-dimensional time
series, z;(t) = (21(t), zi2(%), ..., zi4(t)), where z; ;(t) can be the jth sensor measurement of
some operating and environmental condition at time t.

Incorporating dynamic covariates into a tree-based method is challenging. As shown
in Section 5, systems in the field can experience distinctive operating and environmental
conditions, which typically have cumulative effects on the failure process. Hence, we extend
the RF-R algorithm to include dynamic covariates based on the following strategy: the split
of a tree node is based on the static system attributes, while the data on each node are
modeled by a parametric model incorporating the dynamic covariates. In other words, we
consider the scenario where the subpopulations among a large fleet of systems are mainly
characterized by the static system attributes, while the dynamic sensor measurement is used
for explaining the system-to-system variation of the failure processes among systems sharing
similar attributes. In particular, for a vector of covariates x € hﬁ-b), the corresponding

intensity function of the failure process is given by:

~

M
AO(tx) =YX, 0 ) {z € B}, (17)
J
j=1

where Xh“’) (t) is the intensity function estimated using data from the terminal node hy’), and
j

the ensemble intensity, A (t;x), is computed by averaging over the B trees:

B B M
~ 1 ~ 1 ~
) (4 m) — - ) (4+ ) — (0)
At @) = B g AV (t; @) = 5 g g /\hg_b) (t)[{x € h;"}. (18)
b=1 b=1 j=1
Hence, when the dynamic covariates are incorporated, the intensity functions need to be

estimated on a tree node instead of estimating MCF. Let A denote either an intermediate

or terminal node, we assume that the failure process on node h can be modeled by a NHPP
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with the intensity function A;(¢) being parameterized by a vector (Bg, Bi‘, e ﬁf})T through a

log-linear specification:
- 4q -
log i (1) = 5" + D _ % (1)8)". (19)
j=1
Then, A;(t) can be estimated by minimizing the negative log-likelihood function with the

L' penalty (Lasso): o ~
—log L(B, ") + wl|B"|lx (20)

where 8" = (8%, B, ...,ﬂg)T and log L(3h, Bh) = Z?j)(—f)\ﬁ(s)ds + Zle A;(t;)). Here,
n® and k are respectively the number of systems and pooled failure times on node h. The L!
regularization shrinks some coefficients to be exactly zero. Although an increasingly larger
number of covariates has been made available by the advances of sensing technologies, it is
evident from our industry practice that many covariates are in fact redundant from either
the statistical modeling or domain knowledge perspectives. Also note that, the likelihood
(20) can be evaluated in parallel for distributed datasets as the contribution to the total
likelihood from each system can be calculated independently.

The extended RF-R algorithm is summarized in Algorithm 3. The computational com-
plexity of the extended RF-R algorithm depends on the dimension, ¢, of the dynamic covari-
ates as well as the optimization methods used for maximizing the likelihood (20). For exam-
ple, the quasi-Newton method (the variable metric algorithm) is used in our numerical exam-
ples, and the computational complexity of the extended RF-R algorithm is O(mng*logn),
where O(g?) is the cost associated with the quasi-Newton method.

The extended RF-R algorithm also satisfies the basic scalability, reliability and security
requirements for big data analytics and no transfer of the raw data is required during the
analysis; see Section 2. In Step 1, the data included in a bootstrap sample are generated
locally on each worker node in parallel. In Step 2, a tree is grown until the termination
condition is met. At each node and for each splitting, the driver node generates m covariates

at random from the p covariates, and creates the candidate split point for each of the selected

17



m covariates. The worker node performs the splitting of the local bootstrap data into two
subpopulations, and computes the total likelihood for both subpopulations. The computed
total likelihood, using data stored on the worker node, is returned to the driver node. Then,
the driver node aggregates the local likelihood constructed from all worker nodes, and the
optimum splitting covariate and split-point is carried out on the driver node. The tree

structure is updated and recorded on the driver node until the termination condition is met.

Algorithm 3: The extended RF-R algorithm with static and dynamic covariates

Data: y;, x; and z;(t) for all i

Step 1 Draw B bootstrap samples from the original data.

Step 2 for b=1,...,B do

Grow a random tree by recursively repeating the following steps at each node of
the tree:

2.1) Select m covariates at random from the p covariates.

2.2) Pick the best covariate and its split-point among the m selected covariates
by maximizing the L? distance of the intensity functions between the two
daughter nodes; see (21). At each daughter node, the intensity function, which
depends on the dynamic covariates, is estimated by minimizing the negative
log-likelihood function with the L' penalty (20)

2.3) Grow the tree to full size under the condition that each terminal node

| contains at least dj systems with at least one failure.

Step 3 Obtain the ensemble estimator by averaging all trees.

Step 4 Compute the prediction error using the OOB data.

Based on the same idea described in Section 2.2.2, the splitting rule for a node maximizes

distance between two real-valued intensity functions in the L? space:

A (@) = XD @], = (/tk (5&—)@) — ;\(+>(15))2dt>é (21)

where A7) () and A(H(¢) respectively denote the estimated intensity functions on the two

daughter nodes. The OOB ensemble intensity can also be calculated as:

S (b) o th_b) () {z € b}
a ZbB:1 %’(b)

where ~;(b) = 1 if system ¢ is not contained in the bootstrap sample b, otherwise, v;(b) = 0.

AOOB) (¢ )

(22)

The OOB error can be measured using the C-index as described in Section 2.2.3.
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Figure 3: Covariate importance based on DATASET A and DATASET B

4 Numerical Examples

Section 4 investigates two illustrative examples in order to generate some critical insights and
demonstrate the key advantages of the proposed RF-R. The motivating example is re-visited
in Section 5 to illustrate the application of RF-R on a real industrial problem. All data sets
and computer code are available on Github (https://github.com/dnncode/RF-R).
4.1 Numerical Example 1
We start with a simple numerical example involving 200 systems. For each system, a number
of 10 system attributes are respectively sampled from the unit interval [0, 1]. Let x; ; represent
the value of covariate j associated with system i (i = 1,2, ...,200, j = 1,2, ..., 10), the failure
data of system ¢ are simulated from a Homogeneous Poisson Process (HPP) with the following
intensity: A; = 0.01if < x;1,2;0 < 0.5, \; =0.11if 0.5 < 2,1, 7,2 < 1, otherwise \; = 0.05.
This data set is referred to as DATASET A. Note that, covariates xs, ..., x1¢ are purposely made
redundant in this example.

Following the classical idea of identifying variable importance under the framework of RF,
Figure 3(a) shows the covariate importance as the average decrease of the OOB prediction
C-index after the values of a particular covariate have been randomly permuted. A larger

decrease of the OOB prediction C-index naturally indicates a stronger impact of a particular
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covariate on the prediction performance. It is immediately seen that, the algorithm success-
fully identifies covariates x; and zo as important covariates, while covariates xs, x4, ..., Z10
have little impact on the OOB prediction C-index and need to be excluded from the model.

We re-run the RF-R algorithm retaining only covariates x; and z. Since the space of
the two covariates, z; and zs, is a unit square [0, 1]?, it is possible to visualize the binary
partition of the covariate space by each tree. Figure 4 shows the binary partition of the
covariate space [0,1]* by eight randomly selected trees from the ensemble forests (with 500
trees). Note that, each tree divides the covariate space into a number of partitions, and each
partition is represented by a terminal node. Hence, for each partition of a tree, the MCF is
estimated using the data within that partition and is also shown in Figure 4.

For DATASET A, the intensity of the HPP falls into three classes depending on the values
of 1 and x,. All trees in Figure 4 perform good binary partitions of the covariate space
[0,1]%. For example, tree #84 partitions [0, 1]* into 13 partitions (i.e., 13 terminal nodes).
The first class, x1,29 € [0,0.5], is captured by terminal nodes 1 and 2; the second class,
x1, 29 € (0.5,1], is reasonably represented by terminal nodes 11 ~ 13; while the third class
is captured by the remaining terminal nodes. For another example, tree #351 contains 12
terminal nodes. The first class, x1, 25 € [0,0.5], is captured by terminal nodes 1 ~ 3, and
the second class, x1,x2 € (0.5, 1], is almost perfectly represented by terminal nodes 10 ~ 12.

Interestingly, Figure 4 may suggest the necessity to control the depth of the tree by
combining some of the terminal nodes (Huo et al., 2006). For tree #351, for example, the
ideal case is to combine terminal nodes 1 ~ 3 to form one bigger node. Note that, if the RF-
R algorithm chooses the optimum splitting covariate and split point based on the log-rank
test, one possible way to prune the tree is to stop further splitting a node if the minimum
p-value is larger than a certain threshold, say, 0.05 or 0.1. This strategy effectively stops the
tree from growing too deep. Alternatively, one might use a larger value of dj in the RF-R

algorithm, which is the minimum number of systems with failures in a node. Fortunately,
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Figure 4: Columns 1 and 3 show the binary partitions of the covariate space [0, 1]* by eight
randomly selected trees from the ensemble forests with the red dash lines indicating the true
classification of the failure intensity. Columns 2 and 4 show the estimated MCF associated
with each terminal node for the eight randomly chosen trees.

using full-grown trees seldom costs much in terms of model performance (Hastie et al., 2009).
When trees are grown deep, each individual tree usually has low bias with high variance.
Then, the idea of bagging (averaging full-grown trees) effectively reduces the variance of the
ensemble estimator, and high model accuracy can thus be achieved.

To demonstrate the advantages of the proposed approach, a cross-validation-based com-
parison study is performed considering the following four candidate approaches: 1) RF-R:
the proposed RF-R approach; 2) MCF': the nonparametric estimation for MCF without

utilizing any system attributes; 3) MCF-K: the nonparametric estimation for MCF using
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only the data from the K nearest “neighboring” a system. Here, the distance between two
systems is given by the Euclidean distance based on their covariates; and 4) HPP: the HPP
model with a log-linear intensity, log(\;) = 8o + >__; 2 ;8; and p = 10.

Figure 5(a) shows the cross-validation-based comparison of the prediction C-index for the
four approaches above. A number of 500 iterations are performed. Within each iteration,
the training and testing data sets are randomly split according to a 75%-25% ratio. We
see that the proposed RF-R approach generates the highest prediction C-index. Note that,
C-index is an evaluation metric based on pairwise ranking: 1) firstly, we rank the reliability
of two systems based on the model; 2) then, we look at the observed reliability ranking of
two systems, which is subject to uncertainty and may not always reflect the true reliability
ranking of the two systems. In this sense, the C-index depends not only on the methods
but also on the data itself. The comparison presented in Figure 5 is fair because different

methods are applied to the same data set.
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Figure 5: Cross-validation-based comparison of the prediction C-index based on DATASET A
and DATASET B.

One might argue that the assumption of HPP with a log-linear intensity function is
not appropriate given how DATASET A is simulated. Hence, we regenerate the failure data
exactly from a HPP with the log-linear intensity function log(X\;) = By + fizi1 + Baxio,

where By = 0.01, 81 = 2 and By = 0.5. This data set is referred to as DATASET B. Here, the
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covariates, x3, ..., T19, are still treated as redundant variables. The comparison results based
on DATASET B are shown in Figure 5(b). We see that not only the RF-R method but also
the two MCF-based methods outperform the parametric approach assuming HPP, even if
the data are simulated exactly from a HPP. The performance of the parametric approach
clearly suffers from the presence of eight redundant covariates.

Based on DATASET B, Figure 3(b) shows the covariate importance as the average decrease
of the OOB prediction C-index. It is interesting to see that, since [3; is set to be four times
larger than By when DATASET B is generated, the algorithm successfully identifies x; to be
the most important covariate (all covariates are standardized). We also see that, although
the importance of x5 is much lower than that of x1, x5 is still obviously more important than
the remaining eight redundant covariates, s, ..., 19, as shown in Figure 3(b).

4.2 Numerical Example 2

We consider both static and dynamic covariates in the second numerical example. For each
system, in addition to a number of 10 static covariates which are randomly sampled from the
unit interval [0, 1], a dynamic time-varying covariate z(t) is also simulated from a Brownian
motion process oB; where B, is a standard Brownian motion and ¢ = 0.1. The failure
data for 200 systems are generated. For any system 4, its failure times are simulated from
a NHPP using the thinning method (Lewis and Shedler, 1979) with the intensity function,
Ai(t) = exp{Bio + Bi12i(t)}, where exp{Bio} = 0.01 and ;3 = 0.5 if 0 < ;1,75 < 0.5,
exp{fBio} = fi1 = 0.1if 0.5 < x;1,2;,0 < 1, and exp{S;o} = 0.05 and 3;; = 0 otherwise.
This data set is referred to as DATASET C, and the failure process depends only on the first
two attributes, 21 and x5, as well as the time-varying covariate z(t).

Figure 6 shows the importance of the ten system attributes, 1, xs,...,219, measured by
the decrease of the OOB prediction C-index after the values of a particular attribute has
been permuted. The algorithm successfully identifies the first two attributes, z; and xs.

Similar to Figure 4 in Example 1, Figure 7 shows how the binary partitions of the space
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0, 1]? are performed by eight randomly chosen trees. For tree #3, for example, the first class,

x1, 29 € [0,0.5], is captured by terminal nodes 1 and 4; the second class, x1, 22 € (0.5,1], is

reasonably well represented by terminal nodes 10 ~ 13; while the third class is captured by

remaining terminal nodes. Also note that, for an ensemble approach like RF, we generally

do not expect all trees performs equally good, and some “weak learners” always exist.
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Figure 6: Covariates importance based on DATASET C.
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dash lines indicate the true classification of failure intensity for DATASET C
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Figure 8: Left panel: an aggregated view of the estimated effect 51 of the dynamic covariate
for different x; and xz9; Right panel: the true effect 8; for DATASET C.

More interestingly, to show how the RF-R effectively captures the interactions between
the static covariates, z; and x5, and the dynamic covariate, z(t), Figure 8 provides an
aggregated view of the effect 5, from the ensemble trees over the domain [0,1]? (note that,
each tree partitions the space [0, 1] into a number of rectangular areas and the effects 3, are
estimated for each area). In this figure, the panel on the left shows how the estimated effect
Bl interacts with the static covariates, while the panel on the right shows the actual effect
of By (recall that the true effect 8; of the dynamic covariate is much stronger when z; and
xo are below 0.5 for DATASET C). We see from this figure that the proposed RF-R algorithm
successfully captures the interaction between the dynamic and static covariates, which can
be extremely challenging for conventional approach.

A cross-validation-based comparison of the C-index is performed for RF-R, MCF, MCF-
K and NHPP which refers to the MLE assuming a NHPP model with a log-linear intensity
function, A\;(t) = exp{ﬁi,0+zjl-il Bi.j%i;+Bi112(t)}. Figure 9(a) shows the comparison based
on DATASET C. We see that the RF-R again outperforms in terms of the prediction C-index.
Note that, since the NHPP model is not appropriate given how DATASET C is simulated, we

re-generate the data using the intensity function, \;(t) = exp {fo + S1xi1 + Bowiz + B32i(t)}
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where 5y = log(0.01), f; = 2, and B, = 3 = 0.5. This dataset is referred to as Dataset
D. Based on Dataset D, we regenerate the comparison results as shown in Figure 9(b). The
proposed RF-R still outperforms. This figure also indicates that the presence of redundant
covariates w3 ~ x19 has a significant detrimental impact on the prediction accuracy of the
NHPP model. However, the proposed RF-R algorithm appears to be much more robust
against redundant covariates, which is a salient advantage of the proposed method in modern

Big Data environment where the presence of redundant covariates is almost inevitable.
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Figure 9: Cross-validation-based comparison of the prediction C-index for four different
approaches. Panel (a) on the left shows the comparison results based on Dataset C, and
panel (b) on the right shows the results based on Dataset D.

5 Case Study: The Motivating Example Revisited

The motivating example in Section 1.1 is re-visited in this section to demonstrate the ap-
plication of the proposed approach on a real problem arising from industry. This case
study is based on a modified data set which consists of 8232 oil and gas wells installed over
2007~2017. More details can be found in Section 1.1 and the data is available from the
GitHub (https://github.com/dnncode/RF-R).

A number of eight well attributes x; ~ xg are available and all covariates are standardized
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on the unit interval [0, 1]. In particular, the geo-locations of these wells are given by covariates
x7 (latitude) and xg (longitude); see Figure 1. Covariates x; ~ g are static attributes
that contain basic well characteristics. Figure 10 shows the standardized values of the six

attributes for all 8232 systems, and the heterogeneity among systems is clearly shown.
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Figure 11: Sensor measurement in terms of torque, load and stress, z; ~ z7, for three selected
systems: system #1, system #4000, and system #8000.

In addition to the static covariates xy ~ xg, seven dynamic sensor measurement of system

operating conditions, z;(t) ~ z7(t), are also available. In particular, z;(t) ~ z5(t) are related
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to the dynamic torque and load measurement of each well including gear torque, load range,
and so on, while z4(¢) and z7(t) are respectively the monitored gearbox and structural stress.
The sensor data are aggregated on daily basis. For illustrative purposes, Figure 11 plots
the values of z;(t) ~ z7(t) for three systems: system #1, #4000, and #8000. We see that,
different well systems experience very different operating conditions in terms of torque, load

and stress, further increasing the heterogeneity among these systems.
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Figure 12: Panel (a) shows the OOB ensemble prediction C-index against the number of
trees in a forest for the first 100 trees, and panel (b) shows the importance of the eight static
system attributes measured by the average decrease of the OOB prediction C-index

We run the RF-R algorithm, and Figure 12(a) shows the OOB ensemble prediction C-
index against the number of trees in a forest for the first 100 trees. It is seen that, the OOB
prediction C-index quickly increases as the number of trees increases, and is stabilized ap-
proximated after 50 trees have been grown. Figure 12(b) shows the importance of the eight
static system attributes as the average decrease of the OOB prediction C-index after the
values of a particular covariate has been randomly permuted. Interestingly, the algorithm
identifies z7 and xg, the geo-locations, as the two most important system attributes. Because
wells at similar geographical locations share common, but unknown, environmental condi-
tions (e.g., temperature and humidity variation, soil type, contamination, etc), geo-locations

may serve as important proxies in capturing those unknown environmental factors which may
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lead to some important spatial patterns such as trend and clustering. The results shown in
Figure 12(b) confirm that these unknown environmental factors significantly influence the
system failure processes, causing distinctive failure patterns among well systems. One might
also note that the importance of latitude, x7, is slightly higher than that of longitude, xg,
indicating a stronger spatial trend along the south-north direction. This is consistent with

our initial observations from Figures 1.
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Figure 13: Binary partition of the spatial domain by two chosen trees: tree #1 and #59.

To generate more insights on how the RF-R performs, we re-run the analysis by only
retaining the geo-location information, 7 and xg, and the sensor measurement, z1(t) ~ z7(t).
For illustrative purposes, Figure 13 shows the binary partition of the spatial domain from
two chosen trees: tree #1 and #59. Tree #1 divides the spatial domain into 32 rectangular
regions, while tree #59 divides the spatial domain into 33 rectangular regions. At each
terminal node of a tree, the intensity function of the NHPP, which depends on the dynamic
conditions measured by sensors, is estimated by minimizing the negative log-likelihood with
the L' penalty in (20). Note that, not all sensor measurement are relevant in terms of
estimating the failure process. As an illustrative example, Figure 14 shows the estimated

values, Bl ~ 37, on every terminal node of tree #1 and tree #59. This figure is presented
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in the stacked view in the sense that, for each terminal node, the heights of the colored bars
respectively indicate the sizes of the estimated values. It is seen that, the Lasso penalty
successfully imposes sparsity on the terminal nodes of a tree: at each terminal node, only a
small subset of z1(t) ~ z7(t) is included in the estimated intensity function, which describes
the failure process of the systems on that terminal node. This result also suggests that
the intensity functions of systems from different geo-regions may have different dependence
structures on system operational and environmental conditions, indicating a high level of

heterogeneity among the 8232 systems in this case study.
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Figure 14: The estimated values, Bl ~ 37, on each terminal node of tree #1 and tree #59.

To further elaborate the interactions between geo-locations and system operating con-
ditions, Figure 15 provides a spatially aggregated view of the averaged Bl ~ 37 from the
ensemble trees over the spatial domain. Note that, each tree partitions the spatial domain
[0,1]% into a number of rectangular areas and the estimates Bl ~ 5’7 are obtained for each
area. It is immediately seen that the failure intensities at different geo-locations are dom-
inated by different operational and environmental conditions. For example, z; appears to
have a positive effect on the intensity function for systems located in the area where x7 > 0.7
and zg > 0.4 (i.e., the top right area of the first subplot on the first row), z generally has a

negative effect on the intensity function for systems located to the area where x7 > 0.9 (i.e.,
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the top area of the second subplot on the first row), and so on. Some sensor measurements
may have particularly strong local effect on the failure intensity. For example, z4 has a strong
effect on the intensity function for those systems in the area where x7 and xg are respectively
close to 0.4 and 0.6 (i.e., the central area of the first subplot on the second row), and zg has
a particularly strong effect on the intensity function for the systems in the area where x; and
xg are respectively close to 0.2 and 0.4, and so on. These observations yield critical insights

on system reliability and can be potentially useful for system maintenance and operation.
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Figure 15: A spatially aggregated view of the averaged Bl ~ 37 over the spatial domain.

We compare the C-index, using cross-validation, between the RF-R, MCF, MCF-K,
NHPP with a log-linear intensity function, and the Gamma frailty model. The Gamma
frailty model is a commonly used approach to capture the random variation among systems;
see Lindqvist (2006). Figure 16 shows the comparison result. The proposed RF-R again
outperforms in terms of the prediction C-index. The parametric approaches, such as the
NHPP and Gamma frailty model, suffer from the presence of a large number of redundant
covariates. The fact that MCF has the second best performance suggests that we would
rather not to use any covariate information than incorporating a large number of redundant

covariates.
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Figure 16: Cross-validation-based comparison of the prediction C-index for four different
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approaches for the case study

In repairable system reliability analysis, the cumulative hazard function is often of interest
(Meeker and Escobar, 1998). Hence, a number of 6 systems are selected from the 8232 wells.
Figure 17 shows both the true cumulative failures over time and the estimated cumulative
hazard functions for the selected systems. To capture the uncertainty, this figure also includes
the estimated cumulative hazard from individual trees. We see that, the RF-R effectively

models the system reliability based on the recurrence data from a large fleet of repairable

systems with both static and dynamic covariates.
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6 Conclusions

An algorithm called RF-R has been proposed for analyzing large heterogeneous repairable
system reliability data with static system attributes and dynamic sensor measurement. Com-
prehensive numerical studies and comparison have been performed and the advantages of
the proposed method have been demonstrated. The strengths of the proposed algorithm
lie in the integration of the powerful Random Forests algorithm and the classical statistical
reliability data analysis methodologies. This work timely addressed some pressing challenges
facing reliability engineers today, including system heterogeneity, covariate selection, model
specification and data locality in the modern Big Data environment. Computer program
and data sets are made available on GitHub to facilitate the adoption and application of the

proposed method in practice.
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Appendix: Proof of Propositions 1 and 2

(this section can be moved to Supplementary Materials if necessary)

Proposition 1 shows the uniform consistency of the ensemble RF-R estimator. To prove

this proposition, note that,

lim P{ sup [Ex(MCF ' (s; X)) — Ex(MCF(s: X))| > ¢
N—o0 s€[0,t]
B
. 1 — (b)
= ]\}lm IP’{ sup |—= E Ex(MCF (s; X)) —Ex(MCF(s; X))| > e} (23)
00 s€[0,t] b—1
B
< A}lm IP’{— E sup |[Ex(MCF "(s; X)) — Ex(MCF(s; X))| > e}.
—00
b—1 s€[0,t]

Hence, it is sufficient to show that, for any bootstrap sample b, we have
> e} = (24)

Let n; is an indicator if sample ¢ experiences at least one failure before the censoring time

lim IP’{ sup |Ex(MCE" (s: X)) — Ex (MCF(s: X))

N® 500 s€[0,t]

where N® is the sample size of the bootstrap sample b.

¢, i.e., m; = 1if d;i(¢;) > 0, and n; = 0 otherwise. Then, the law of large numbers lead to the

following result:

N(®)
1 a.s.
=1

Note that, X and 7 are not statistically independent. However, it is reasonable to assume

that P{n =1 |X € A} > 0 for any X € A (in other words, there exists no subset A of X
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such that the probability of observing failures is zero), (25) implies

N(®)
Y IX;eAn=1)>dy | ¥ 1. (26)

i=1

Equation (26) implies that the termination rule (i.e., a terminal node must have dy
systems with at least one failure) almost surely holds for any terminal node A. In other

words, the tree almost surely has terminal nodes for all possible discretized values of X:

NcE" => I(X @)MCF ) (s) + 0,(1). (27)

rzeX

It follows from (27) that

SUDP g0,

Ex (MCF"(5; X)) — Ex (MCF(s; X )))

= SUDPye(oq |Ex (Z I(X = w)mh<b>(s)> — Ex(MCF(s; X)) +0,(1)|  (28)
reX
= ZIP’ T)SUDe(o MCFh(b)( ) — MCF(S;J})‘ + 0,(1).
rzeX

Hence, to show the uniform convergence of E X(m(b)(s; X)), it is sufficient to show the
uniform convergence of I\TC\FW) (s) to MCF(s;x) at each terminal node h*), which requires
the theorem of Anderson et al. (1993). Let 5.(b)(s; x) be the number of systems with covariate
x which are still being observed at time s, then, the Anderson’s theorem says that, if the

following two conditions are satisfied:

/t 100(s2) > 0] e B (29)
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and

t
/ (1= I[6®(s;) > 0]) v(s;z)ds 5o, (30)
0
then,
SUDse0, mh(b)(s) — MCF(s; zc)’ 5o, (31)

Hence, it is necessary to show that: 1) conditions (29) and (30) still hold for our problem,
and 2) (29) and (30) still lead to the result shown in (31).

Firstly, to show that the two conditions (29) and (30) hold, let n®) () be the sample size
on the terminal node that contains . Then, for s € [0, t] we have,
n(®) (x)

i=1 (32)

3P(X =x)P(C >1)>0

1

b/
O (s ) 2 n®)(z)

n® (x)

o

Ik

where the second line on the right hand side is based on the assumptions that P{C' > ¢} > 0

for any ¢ € [0,7), and X and C are independent. The inequality above implies that
infse[ovt]d(b)(s; x) 5 . (33)

In other words, the number of systems with covariate & which are still being observed at
time s approaches infinity when the total sample size goes to infinity, which is intuitively
true. Since v(-;x) is bounded over [0,¢], it is noted that the result above is the sufficient
condition for the two conditions (29) and (30) to be satisfied.

Secondly, to show that the conditions (29) and (30) still lead to the result shown in (31),
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we define:

MCF ) (s) = / 6O (u; ) d A, (u)
0

MCFE:;Z))(S) = /Osv(u; x)I[6®) (u; ) > 0]du (34)

MCF(s; ) = /0 (s 2)du

where Ay e (u) denotes the number of failures in the time interval (0, u] on the tree node h for
the bootstrap sample b. Then, invoking the Lenglart’s inequality (see (2.5.18) of Anderson

et al. (1993)), for any n;,7m2 > 0, we have

P (supse[oﬂ IMCF 0 () — MCF2) (s)] > m)
(35)

n ST o
<TG +P ({MCFy0(5) — MCF3) () (8) > 1)
1

where mh<b>(s) - MCF,(;Z:)) (s) is a local square integrable martingale, and it follows from

condition (29) and (4.1.5) of Anderson et al. (1993) that

. tr1s® (s P
(CF ) = NCF)0) = [ HEGED “uisapas B o)

Hence, the Lenglart’s inequality (35) implies that

—_— sk P
sUP e MCF ) (s) — MCE') (s)] = 0.

Since |MCF§;:))(3) —MCF(s;x)| = fos(l—I[d(b) (u;x) > 0])v(u; x)du L 0 due to condition
(30), we have

sup, (o [MCF 0 (s) — MCF(s; )| 2 0.

as was to be proved.
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Proposition 2 gives the asymptotic variance of a single randomly drawn tree. The proof
requires equation (27) and Theorem 3.2.1 in Fleming and Harrington (1991). It follows from
(27) that

Var(\/ﬁ(l\f(]\F(t; X)—l\Z\C/F(t; X)))

= Var( \/_ZI MCFh () — M\C/F(t,m)) +0,(1))
zeX - N N
- ZE(\/EI(X = z)(MCF(x)(t) — MCF(t; a:)))2 (37)
—n Y I(X = 2)E*(MCF(z)(t) - MCF(t; 2)) + 0,(1)

where h(x) represents a terminal node that contains x.
Since mh(m) (t) is asymptotically unbiased (on that particular node), the second and

third term on the right-hand-side of (37) vanishes and we have

Var(v/n(MCF(t; X) — MCF(t; X))) = > E(Viig(MCFy ) (t) — MCF(t; )2 (38)

xeX

where 7i,, is the expected number of systems with covariates . Then, it follows from Theorem

3.2.1 of Fleming and Harrington (1991) that

Var (\/ﬁ(ﬂc\F(t; X) — MCF(t; X))) - / t 771(s)(1 — AMCF(s; &))dMCF(s; )

- Z¢(wvt>

(39)

as was to be proved.
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