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a b s t r a c t 

Endothelial to mesenchymal transformation (EndMT) is a process in which endothelial cells gain a 

mesenchymal-like phenotype in response to mechanobiological signals that results in the remodeling or 

repair of underlying tissue. While initially associated with embryonic development, this process has since 

been shown to occur in adult tissue remodeling including wound healing, fibrosis, and cancer. In an at- 

tempt to understand the role of EndMT in cancer progression and metastasis, we present a multiscale, 

three-dimensional, in silico model. The model couples tissue level phenomena such as extracellular ma- 

trix remodeling, cellular level phenomena such as migration and proliferation, and chemical transport in 

the tumor microenvironment to mimic in vitro tissue models of the cancer microenvironment. The model 

is used to study the presence of EndMT-derived activated fibroblasts (EDAFs) and varying substrate stiff- 

ness on tumor cell migration and proliferation. The simulations accurately model the behavior of tumor 

cells under given conditions. The presence of EDAFs and/or an increase in substrate stiffness resulted in 

an increase in tumor cell activity. This model lays the foundation of further studies of EDAFs in a tumor 

microenvironment on a cellular and subcellular physiological level. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Endothelial to mesenchymal transformation (EndMT) is a

hange in endothelial cell phenotype that can occur in response

o mechanobiological and biochemical cues, including exposure to

nflammatory conditions, abnormal shear stress, mechanical de-

ormation, and abnormal extracellular matrix (ECM) composition

 Dahal et al., 2017 ). This entails a remodeling of the underlying

issue, which is brought about by mesenchymally transformed

ells ( Dahal et al., 2017; Pardali et al., 2017 ). These cells give

ise to EndMT-derived activated fibroblasts (EDAFs) ( Dahal et al.,

017; Pardali et al., 2017; Potenta et al., 2008 ), which play a role

n embryonic development, and adult tissue remodeling such as

ound healing, cardiac fibrosis, and cancer ( Potenta et al., 2008 ).

ndMT is induced in response to injury to the subendothelial tis-

ue, or inflammatory signals like transforming growth factor-beta

TGF- β) from the surrounding tissue. As shown in Fig. 1 , this

eads to delamination of endothelial cells from the cell monolayer

nd loss of cell-cell junctions, as a consequence of the decrease

n endothelial cell markers such as vascular endothelial cadherin

VE-cadherin) and platelet endothelial cell adhesion marker 1
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PECAM-1) ( Dahal et al., 2017 ). The cells gain migratory and

nvasive properties, along with mesenchymal markers, such as

lpha-smooth muscle actin ( α-SMA) and fibroblast-specific protein

 (FSP-1) ( Potenta et al., 2008 ). 

In a tumor microenvironment, EDAFs can contribute up to 40%

f the cancer-associated fibroblast (CAF) population ( Potenta et al.,

008 ). CAFs constitute a majority of the stromal cells in the

icroenvironment ( Yeon et al., 2018 ), and are known to play a

ole in metastasis and tumor progression. These fibroblasts secrete

CM proteins, cytokines, and growth factors, which remodel the

icroenvironment ( Potenta et al., 2008; Kalli and Stylianopoulos,

018 ). These changes in the tumor microenvironment increase

CM stiffness, inducing activation of fibroblasts and their subse-

uent migration ( Kalli and Stylianopoulos, 2018 ). The interactions

etween CAFs and cancer cells determine the extent of metastatic

pread ( Bendas and Borsig, 2012 ). Inhibition of these interactions

an be a therapeutic target for preventing cancer metastasis.

tudying these mechanobiological effects of CAFs, along with

he phenomena that occurs in EndMT, requires the integration

f models involving different temporal and spatial scales. Today,

ultiscale, in silico models are capable of representing biological

nd mechanical behavior of such phenomena ( Shirinifard et al.,

009; Kleinstreuer et al., 2013; Bailey et al., 2009; Hutson et al.,

017; Lee et al., 2011; Virgilio et al., 2015; Oden et al., 2016 ). 

https://doi.org/10.1016/j.jtbi.2019.08.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2019.08.012&domain=pdf
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Fig. 1. Schematic of endothelial cells transforming to EndMT-derived activated fibroblasts (EDAFs). The changes in expressed factors in each phase of the process, i.e. en- 

dothelial cell markers such as vascular endothelial cadherin (VE-cadherin) and platelet and endothelial cell adhesion molecule 1 (PECAM-1) and mesenchymal cell markers 

such as alpha-smooth muscle actin ( α-SMA) and fibroblast specific protein 1 (FSP-1), are listed. Print in color. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.). 
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Computational and mathematical models of biological processes

have proven to be translational in that they enable the study of

development and pathologies at various physical scales ( An et al.,

2009 ). Multiscale models incorporate knowledge about physiologi-

cal and biochemical phenomena at each level to provide a holistic

understanding. Agent-based modeling is a cell-based, in silico mod-

eling approach which allows the modeling of individual system

components and their interactions, in order to simulate cellular

behavior observed in vitro models. In contrast to the discrete-time

and discrete-event approach of agent-based models, continuum

models provide a framework to study chemical transport and other

physical processes that are coupled to the aforementioned system

components. The formulation of continuum models generally

leads to a system of coupled partial differential equations, and is

well-suited to modeling on the microscale and above ( Cristini and

Lowengrub, 2010 ). Combining the two modeling techniques gives

rise to hybrid continuum-discrete models which provide the means

to study mechanobiology on multiple scales and to account for the

interactions between the scales (cells, tissue, etc.). This method-

ology is especially useful for modeling diseases like cancer, as it

requires the handling of intra- and extracellular factors that act on

various temporal and spatial scales ( Rejniak and Anderson, 2011 ).

One of the most widely used agent-based modeling methods is

the cellular Potts model (CPM) ( Glazier and Graner, 1993; Szabó

and Merks, 2013; Balter et al., 2007 ). This methodology is im-

plemented in CompuCell3D, a modeling environment for running

virtual tissue simulations ( Swat et al., 2012 ). In this method, cell

behavior and dynamics are represented in terms of Hamiltonian

energy function terms. ( Glazier and Graner, 1993 ). This modeling

approach has been validated thoroughly through the simulation

of physiological processes and diseases such as vasculogenesis,

angiogenesis, tumor evolution and metastasis, embryonic devel-

opment, cellular transformation, cytokine dynamics in arthritis,

and polycystic kidney disease ( Kleinstreuer et al., 2013; Szabó and

Merks, 2013; Hutson et al., 2017; Abdulla, 2013; Tang et al., 2014;

Sluka et al., 2016; Popławski et al., 2009; Belmonte et al., 2016;

Baker, 2015 ). Several computational models exist for epithelial to

mesenchymal transformation (EMT), which is a well-studied pro-

cess similar to EndMT in that epithelial cells undergo a structural

and functional change to a mesenchymal phenotype. While both

processes are observed in heart development, differences in the

processes stem from the distinct sources of the cell. Epithelial cells

are derived from the endoderm while endothelial cells are derived

from the mesoderm. This results in varying molecular mecha-

nisms, but while the mechanisms of EMT are well documented,

those of EndMT are still relatively unknown ( Saito, 2013 ). A hybrid

discrete-continuum model simulated EMT using CompuCell3D
nd found that the loss of endocardial cushion alone does not

nduce EMT ( Abdulla, 2013 ). Another research group developed

 framework based on the differential adhesion hypothesis and

sed that to simulate EMT and its role in forming cardiac cush-

ons ( Neagu et al., 2010 ). Marin-Riera et al. (2016) developed

 rule-based model to simulate EMT in embryonic development

 Marin-Riera et al., 2016 ). This model implements a complete set of

asic cell behavior in development. Another model used ordinary

ifferential equations to describe the protein-protein interactions

nd gene regulatory behavior of EMT ( Gould et al., 2016 ). Here, we

resent a novel application of CompuCell3D to model cell behavior

elated to EndMT. The aim of the model is to simulate recent in

itro experiments ( Mina et al., 2017 ), to study the interactions

etween EndMT-derived activated fibroblasts and cancer cells,

nd to elucidate the effect of EDAFs on tumor progression and

etastasis. To the best of our knowledge, this is the first hybrid

iscrete-continuum model of EndMT which incorporates various

hysiological levels and uses the Cellular Potts Model. 

. Methods 

The simulated cell behavior is based on the Cellular Potts

odel (CPM), which is a lattice-based, multi-cell, stochastic

ethodology for tissue representation. Biological cells are treated

s discrete entities, each with characteristic values of volume,

urface area, and intrinsic motility on a regular lattice. In the

resent implementation, the cells interact with each other and

he surrounding extracellular matrix (ECM) via adhesion, secretion

f factors, and cell migration. A series of reaction-diffusion and

teady-state equations are used to describe the transport of chem-

cal fields that diffuse through the system, such as oxygen, carbon

ioxide, cytokines, matrix degrading enzymes, and extracellular

atrix proteins. Oxygen acts as the growth-limiting nutrient;

ell growth and proliferation depends on the amount of oxygen

vailable to the cells. Carbon dioxide is secreted by the cells as a

aste product. Cytokines are introduced in the model to represent

he onset of inflammation, and play a role in the activation of the

ells. Specific assumptions include: (a) Inflammation is introduced

y randomly placing an EndMT-derived activated fibroblast in the

ndothelial monolayer. (b) The amount of carbon dioxide secreted

y the cells is equal to the amount of oxygen consumed by the

ells. (c) The removal of carbon dioxide occurs at a rate that is

wice the rate of the natural decay of oxygen. (d) The rate of

hemical production or consumption of quiescent cells is half the

ate for proliferating cells. Assumption (a) was made to allow for

hysiologically relevant cytokine levels to be introduced into the

ystem. Assumptions (b) and (c) were made due to the lack of
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Fig. 2. Multiscale structure of the computational model. The extracellular matrix 

(ECM) degradation module shows degradation of ECM due to the presence of ma- 

trix degrading enzymes (MDEs). The Cell Phenotype module shows a generalized 

schematic for phenotype changes of endothelial and tumor cells. The Tumor Cell 

Proliferation module outlines the conditions required for tumor cell mitosis. The 

last block represents the chemical fields in the continuum transport model. Print in 

color. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.). 
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Table 1 

CompuCell3D parameters. 

CompuCell3D Parameter Value 

Temperature 5 

Voxel (side) 10 μm 

Voxel (volume) 1000 μm 

3 

Monte Carlo Step 60 s 

Lattice dimensions 100 ×100 ×100 voxels 

Target cell volume 2 

Target cell surface area 8 

Lambda volume for cells 156 

Lambda surface for cells 156 

Lambda chemotaxis for quiescent cells 200 

Lambda chemotaxis for proliferating cells 100 
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aste secretion rates available in primary literature. Assumption

d) simplifies the metabolic differences between quiescent and

roliferating cells ( Wagner et al., 2011 ; Swat et al., 2015 ). The

verall structure of the model is illustrated in Fig. 2 . 

In the CPM, the cells are individual voxels or clusters of voxels

n a fixed cell lattice, where each voxel has a position 

�
 x and an

ndex σ ( � x ) associated with it. Each cell behavior is associated with

n effective ener gy term, which is a representation to produce

esired actions and not related to an actual physical energy. For

xample, modeling a cell with a defined volume v and surface

rea s requires two effective energy terms for cell-volume and

ell-surface constraints, shown in the first and second terms of

he following equation, respectively: 

 = 

∑ 

σ

λV (v − V T ) 
2 + 

∑ 

σ

λS (s − S T ) 
2 (1) 

here λV and λS are constraint strengths that represent the elastic

odulus of the cells ( Swat et al., 2015 ), V T is the target volume,

nd S T is the target surface area. The algorithm performs a series of

oxel-copy attempts, where neighboring lattice sites are selected as

he target and source site. The change in effective ener gy that oc-
urs if the index of the source-site voxel is copied to the target-site

oxel is calculated. The CPM voxel-copy mechanism aims to lower

he effective ener gy change of the simulation, and the configura-

ion which allows this is selected for the next series of attempts.

ne set of voxel-copy attempts occurs in one unit of simulation

ime, which is known as a Monte Carlo Step (MCS). The number

f voxel-copy attempts is dependent on the number of voxels in

he cell lattice. The spatial resolution of the model is dependent

n the size of the cell-lattice voxel. In physiologically-relevant

imulations, the MCS and experimental time are proportional, and

he spatial resolution follows a metric scale. 

In this study, three main generalized cell classes are defined:

umor cells, endothelial cells, and ECM. The tumor cells have

hree subtypes: quiescent cancer cells, activated cancer cells, and

etastatic cancer cells. Similarly, endothelial cells have three

ubtypes: quiescent endothelial cells, EndMT-derived activated 

broblasts (EDAFs), and superactivated EDAFs. The ECM is repre-

ented as a uniform medium. CompuCell3D cell types are used to

efine each of these cell types, ECM, and a default cell type called

edium, which represents the extracellular space. Based on the

umber of cells used in the in vitro tissue model, for the simu-

ations, the initial cell counts are 10,0 0 0 for endothelial cells and

0 0,0 0 0 for tumor cells. Each cell is initially set as a voxel. As cell

iameter is approximately 10 μm, each voxel edge corresponds to

0 μm in real-world units. Furthermore, the experimental endothe-

ial cell-migration speed is ∼0.3 μm/min ( Kick et al., 2016 ), and the

xperimental cancer cell-migration speed ranges from 0.14 μm/min

o 0.3 μm/min ( Kikuchi et al., 2011; Truong et al., 2016 ). To match

he experimental cell speeds to the simulated cell speeds, one

CS was set to one minute. A temperature parameter was used

o prescribe the entropy of the stochastic cell migration, and it is

ot representative of the physical temperature. It should be noted

hat the use of small target volumes is generally unsuitable for

uch simulations, as the cells can obtain a volume of zero and dis-

ppear. However, CompuCell3D provides mathematical constraints

or calculating lambda values, temperature, and target values in

uch a manner that disappearance does not occur ( Swat et al.,

013 ). We have calculated the parameter values based on these

onstraints, and then tested them to ensure that they resulted in

 stable simulation. For the values used in the simulations, cell

isappearance did not occur. The CompuCell3D parameters are

ummarized in Table 1 . 

Cells attach to other cells and the extracellular matrix through

ell-surface proteins, such as cadherins and integrins ( Alberts et al.,

002 ). A possible theory for cadherin-mediated cell-cell adhesion

s based on homolytic binding, where molecules on one cell bind

ith the same type of molecules on another cell ( Alberts et al.,

002 ). Integrins act as matrix receptors and bind to many ECM

roteins such as collagen, fibronectin, and laminins ( Alberts et al.,

002 ). CompuCell3D simulates cell adhesion using contact en-

rgies, which essentially represent the adhesion bond strength
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Table 2 

Contact energies between the different cell types. Med = Medium, 

ECM = extracellular matrix, QE = quiescent endothelial cells, PE = preactivated 

endothelial cells, AE = EndMT-derived activated fibroblasts (EDAF), 

SE = superactivated EDAFs, QT = quiescent tumor cells, PT = preactivated 

tumor cells, AT = activated tumor cells, and ST = superactivated tumor cells. 

Med ECM QE PE AE SE QT PT AT ST 

Med 20 20 20 20 20 20 20 20 20 20 

ECM 15 5 5 5 5 5 5 5 5 

QE 3 3 3 3 3 3 3 3 

PE 3 3 3 3 3 3 3 

AE 3 3 3 3 3 3 

SE 3 3 3 3 3 

QT 3 3 3 3 

PT 3 3 3 

AT 3 3 

ST 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

r  

t  

T  

u  

u  

c

∇  

 

r  

s  

o  

t  

d  

o  

t  

c  

d  

d  

r  

s  

d  

t  

c  

d  

 

a  

t  

o  

f  

l  

2  

a  

a  

e  

t

∂  

w  

t  

a  

v  

t  

o  

e  

a  

f  

m  

2  

g  

d

∂  

 

i  

b  

a

 

a  

t  

a  

c  

o  

l  

s  
between cells. The effective energy term for contact energy in a

three-dimensional model is, 

H = 

∑ 

i, j,neighbors 

J 
(
τσ ( i ) , τσ ( j ) 

)(
1 − δσ ( i ) , σ ( j ) 

)
(2)

where J is the contact energy per unit area, τ is the cell type, i

and j are indices of neighboring lattice sites, and δσ ( i ), σ ( j ) is the

Kronecker delta function. The factor ( 1 − δ σ (i ) , σ ( j) ) ensures that

voxels of different cell types are being compared. However, the

value of the contact energy is not as important to the model as

the hierarchy of contact energies between cells ( Swat et al., 2012 ).

We make the assumption that endothelial cells and cancer cells

bind to cells of the same type and each other more strongly than

they bind to ECM. Consequently, the contact energy hierarchy for

our model is as follows: 

J endothel ial , endothel ial = J endothel ial , cancer = J cancer, cancer > J endothel ial , ECM 

= J cancer, ECM 

> J E CM, E CM 

(3)

Based on this hierarchy and the mathematical constraints

stated in the CompuCell3D Quick Start Guide (Version 3.7.0)

( Swat et al., 2013 ), different contact energy values were tested to

observe the resulting cell speeds. The contact energies presented

in Table 2 were used in the model as they resulted in a range of

cell speeds that matched experimentally observed cell speeds. 

Cytoskeleton-dependent phenomena, such as protrusion, at-

tachment, and traction, result in cell motility ( Alberts et al., 2002 ).

While random motility is promoted in mammalian cells in the

absence of an extracellular stimulus ( Kölsch et al., 2008 ), gradients

of diffusible chemicals, substrate stiffness, and cell adhesion result

in directional movement of cells ( Alberts et al., 2002 ; Wen et al.,

2015 ). The directed migration of cancer cells in the tumor mi-

croenvironment plays a substantial role in cancer metastasis

( Roussos et al., 2011 ). Tumor cells invade in the direction of the

nutrient source ( Kenney et al., 2016 ) and higher concentrations of

inflammatory cytokines ( Mandel et al., 2013 ). Moreover, the tumor

cell migration speed increases with an increase in endothelial

cell invasion into the ECM ( Mina et al., 2017 ). While the dynamic

motility in the model is intrinsically simulated in the voxel-copy

attempts ( Swat et al., 2012 ), the chemotactic behavior of the cells

was represented in terms of the effective energy term, 

H = λchem 

( c ( x dest inat ion ) − c ( x source ) ) (4)

where λchem 

is a constraint representing the extent to which the

difference in chemical concentrations will affect chemotaxis, and

c ( x destination ) and c ( x source ) represent the chemical concentrations

at the source and potential destination voxels in the cell lattice.

This equation is used to model chemotaxis of tumor cells towards

higher oxygen and cytokine concentrations and haptotaxis of

endothelial cells towards higher concentrations of ECM proteins. 
Nutrient and waste concentrations in tissues are maintained

n normal ranges by blood vessels through constant supply and

emoval, respectively. Oxygen and carbon dioxide are used in

he model to represent the nutrient and waste concentrations.

hey diffuse through tissue rapidly, and therefore can be modeled

sing a steady-state diffusion equation ( Popel, 1989 ). CompuCell3D

ses the Helmholtz equation to solve for steady-state diffusion

oncentrations. 

 

2 X − λX = F (5)

Here X is the chemical concentration, λ is the natural decay

ate of the chemical field, and F is a function which models the

ecretion and uptake of the chemical by the cells. The function for

xygen includes the oxygen source and consumption of oxygen by

he cells, while secretion is represented in the equation for carbon

ioxide. As there is a constant nutrient source in the model, the

xygen diffusion model uses Dirichlet boundary conditions along

he y-axis; the y-minimum condition is zero and the y-maximum

ondition is set to 10 −15 moles. Similarly, the carbon dioxide

iffusion model implements the y-minimum and the y-maximum

erivative (Neumann) boundary conditions set equal to zero to

epresent no flux of carbon dioxide at the boundaries of the

ystem, which is what occurs in vitro setups. These values were

etermined based on experimental data to ensure that the virtual

issue has physiologically-relevant partial pressures of oxygen and

arbon dioxide as shown in Table 3 . Zero derivative boundary con-

itions along the x- and z-axes are used for both chemical species.

Mediators of inflammation that induce endothelial fibrosis

re transforming growth factor-beta (TGF- β), interleukin-1 (IL-1),

umor necrosis factor-alpha (TNF- α), bacterial endotoxins, and

xidative stress ( Pérez et al., 2017; Cho et al., 2018 ). Some of these

actors trigger EndMT, and lead to the transformation of endothe-

ial cells to EndMT-derived activated fibroblasts ( Mahler et al.,

013 ). Consequently, cytokine diffusion throughout the tissue is

lso a component of the continuum transport model. The cytokines

re introduced to the model by randomly placing an EDAF in the

ndothelial monolayer. The rate of change of cytokine concentra-

ion C is governed by the following reaction-diffusion equation: 

 C/∂ t = D IC ∇ 

2 C + βc − γC (6)

here D IC is the diffusion coefficient of the inflammatory cy-

okines, β is the production rate of inflammatory cytokines by the

ctivated and superactivated tumor cells, EDAFs, and superacti-

ated EDAFs, and γ is the removal of inflammatory cytokines due

o natural decay. A similar equation is used to model the behavior

f matrix degrading enzymes (MDEs) that are secreted by periph-

ral tumor cells. MDEs include matrix metalloproteinases (MMPs)

nd urokinase plasminogen activators (uPAs) and are responsible

or ECM degradation. This facilitates ECM remodeling, and pro-

otes tumor cell migration and proliferation ( Ramis-Conde et al.,

008 ). For simplicity, MMPs and uPAs are grouped into a cate-

ory called MDEs in the in silico model ( Anderson, 2007 ). The

egradation of extracellular matrix proteins is modeled as, 

 e/∂ t = −αme (7)

Here e is the ECM protein concentration at that lattice site, m

s the MDE concentration, and α is the degradation rate of ECM

y MDEs. The parameters used in the continuum transport model

re summarized in Table 3 . 

Environmental factors such as a lack of nutrients, increased

cidity due to carbon dioxide build-up, and increased exposure

o inflammatory conditions result in quiescent cells becoming

ctivated phenotypes ( Pérez et al., 2017 ; Tang et al., 2014 ). These

hanges in phenotype can be temporary or permanent, depending

n the duration of unfavorable conditions. Our model incorporates

ow oxygen partial pressures, high carbon dioxide partial pres-

ures, and increased cytokine concentrations as conditions that
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Table 3 

Physiological values of parameters in the continuum transport model and their adjusted values. 

Parameter Physiological Value Adjusted Value References 

O 2 partial pressure 38 mmHg — ( McKeown, 2014; Trepiana et al., 

2017; Horsman and Vaupel, 2016 ) 

CO 2 partial pressure 40 mmHg — ( Markwalder et al., 1984; Arthurs and 

Sudhakar, 2005 ) 

O 2 consumption rate by tumor 

cells, φT 

2 × 10 −15 mol es/cel l /min 3 . 33 × 10 −17 mol es/cel l /MCS ( Caicedo et al., 2015; Wagner et al., 

2011 ) 

O 2 consumption rate by 

endothelial cells, φE 

17 × 10 −18 mol es/cel l /s 1 . 02 × 10 −15 mol es/cel l /MCS ( Wagner et al., 2011 ), 

( Usselman et al., 2016 ) 

Natural decay rate of O 2, λ 0.1 / min 0.1 / MCS ( Cristini and Lowengrub, 2010 ) 

CO 2 production rate by tumor 

cells, δT 

2 × 10 −15 mol es/cel l /min 3 . 33 × 10 −17 mol es/cel l /MCS Assumption, equivalent to O 2 

consumption rate 

CO 2 production rate by 

endothelial cells, δE 

17 × 10 −18 mol es/cel l /s 1 . 02 × 10 −15 mol es/cel l /MCS Assumption, equivalent to O 2 

consumption rate 

CO 2 removal from tissue, λ 0.2 / min 0.2 / MCS Assumption. Assumed to be twice the 

oxygen decay. 

Diffusion coefficient of cytokines, 

D IC 

0 . 1 × 10 −10 m 

2 /sec 6 pixel 2 / MCS ( Eladdadi et al., 2014; Su et al., 2009; 

Albro et al., 2013; Hao et al., 2017 ) 

Cytokine production rate by tumor 

cells, β

1/ cell / min 1/ cell / MCS ( Eladdadi et al., 2014 ) 

Cytokine natural decay rate, γ 2 / day 1 . 38 × 10 −3 /MCS ( Eladdadi et al., 2014; Su et al., 2009 ) 

Diffusion coefficient of MDE, D m 10 −9 c m 

2 /sec 6 × 10 −2 pixe l 2 /MCS ( Gerisch and Chaplain, 2008; Nargis 

et al., 2018; Anderson, 2005 ) 

MDE production rate by tumor 

cells, β

0.01 / s 0.6 / MCS ( Kumar et al., 2016 ) 

MDE natural decay rate, γ 0.001 / s 6 × 10 −2 /MCS Assumption based on 

Ramis-Conde et al., 2008 . 

ECM degradation rate by MDE 0.02 /s 1.2 /MCS Assumption based on 

Ramis-Conde et al., 2008 . 

Table 4 

Summary of the cell behaviors modeled for each of the cell types. 

Cell Types Modeled Behavior References 

Quiescent Tumor Cells • Consume oxygen 
• Secrete carbon dioxide 

( Wagner et al., 2011; Swat et al., 2015 ) 

Preactivated, Activated, and 

Superactivated Tumor Cells 

• Consume oxygen 
• Secrete carbon dioxide 
• Secrete inflammatory cytokines 
• Secrete MDEs when in contact with ECM 

• Chemotaxis towards oxygen and cytokines 
• Undergo mitosis every 20 h 

( Anderson, 2007; Pérez et al., 2017; Tang 

et al., 2014; Ramis-Conde et al., 2008 ) 

Quiescent Endothelial Cells • Consume oxygen 
• Secrete carbon dioxide 

( Wagner et al., 2011; Swat et al., 2015 ) 

Preactivated endothelial cells, 

EndMT-derived activated 

fibroblasts (EDAFs), and 

Superactivated EDAFs 

• Consume oxygen 
• Secrete carbon dioxide 
• Secrete inflammatory cytokines 
• Chemotaxis towards cytokines 

( Pérez et al., 2017; Tang et al., 2014 ) 
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b  

c  
ause quiescent cells to gain migratory properties. When the cells

ave migrated more than 80 μm, they transition to an activated

henotype ( Mosadegh et al., 2015 ). For the purpose of program-

ing simplicity, the former cell types (those that have migrated

 80 μm) are represented as preactivated cells. An improvement in

hese conditions may result in activated cells transitioning back

o quiescent cells, when the nutrient, waste, and cytokine levels

re in a biologically-favorable range. However, if the activated

ells remain in the phenotype for more than 48 h, they transition

o a superactivated phenotype, which cannot revert to quiescent

ells. To model the metabolism of these cells in a physiologically

elevant manner, the rates of oxygen consumption and carbon

ioxide secretion of quiescent cells are half the rates for prolif-

rating cells ( Wagner et al., 2011 ; Swat et al., 2015 ). Similarly,

he rates of matrix degrading enzyme secretion and cytokine

ecretion for preactivated cells are half the rates for activated and

uperactivated cells. Tumor cell growth and proliferation is based

n the cell age and available nutrients and space ( Anderson, 2007 ;

nderling et al., 2009 ; Swat et al., 2015 ). As the time taken for

ach cell cycle is around 20 h ( Yu et al., 2001 ), non-quiescent cells

an undergo mitosis if their age is greater than 20 h. This corre-
 i  
ponds to 1200 Monte Carlo steps in the model. Another condition

or mitosis is the availability of nutrients (oxygen) and space

round the dividing cell. Availability of space was determined by

hecking if there were any endothelial, tumor, or ECM cells around

he dividing cell. If all three requirements are fulfilled, the tumor

ell can undergo mitosis. As the simulation is run for an equivalent

f 48 h in real time, cell proliferation does not reach the Hayflick

imit ( Rubin, 2002 ; Hayflick, 1965 ). The time duration of 48 h was

hosen because the in vitro experiments from previous studies

 Mahler et al., 2013 ; Dahal et al., 2017 ; Mina et al., 2017 ) were

erformed for the same time interval. Consequently, cell behavior

uch as cell senescence and death is not relevant, and was not

ncorporated in the model. The cell behavior modeled for each of

he cell types has been summarized in Table 4 . 

. Results 

The simulations performed on the system illustrate tumor cell

ehavior in initial diseased states. The simulated behavior was

ompared with the results from an in vitro microfluidic exper-

ment which modeled EndMT in the tumor microenvironment
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Fig. 3. (A) Simulation snapshot of the initial conditions of the 3D model in CompuCell3D. Green = quiescent endothelial cells. Grey = extracellular matrix (ECM). 

Red = quiescent tumor cells. (B) Simulation snapshot of the model when all the cells become preactivated due to the cells being subjected to inflammatory conditions. 

Cyan = preactivated endothelial cells. Light blue = preactivated tumor cells. (C) Presence of matrix degrading enzymes (MDEs) secreted by non-quiescent tumor cells in the 

3D model at Monte Carlo step (MCS) = 100. (D) Varying concentration of ECM proteins due to degradation by MDEs at MCS = 100. (E) Zoom-in view of the 3D model to show 

EndMT-derived activated fibroblasts (EDAFs) (dark green, pointed to with the arrow). (F) Protrusions (highlighted by the circle) and activated tumor cells (purple, pointed 

to with the arrow) formed due to migration of the tumor cells. (G) Chemical concentration map showing diffusion of oxygen throughout the system. The red portion at 

Y = 100 indicates the highest concentration of oxygen at the source, i.e. the simulated top of a cell culture flask. The oxygen concentration decreases towards the bottom of 

the system, i.e. towards the tumor cells. (H) Chemical concentration map showing diffusion of cytokines throughout the system. The red portion in the bottom half of the 

system indicates the presence of the source of cytokine secretion, i.e. the tumor cells. Print in color. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.). 
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( Mina et al., 2017 ). Based on the experimental results, it was de-

termined that the distance travelled by tumor cells was consistent

across hydrogels with the same stiffness. Moreover, their tissue

model had more migration of tumor cells in the presence of EDAFs

as compared to the absence of EDAFs which was observed in the in

silico model under the highest stiffness. In addition, they observed

increased tumor cell proliferation in the presence of EDAFs as com-
ared to the absence of EDAFs. Lastly, these in vitro studies showed

hat there was an increase in tumor cell invasion and proliferation

s substrate stiffness increased. An increase in tumor cell activity

n response to progressed disease states (represented by increases

n substrate stiffness) was observed in the in silico model. The ef-

ects of the presence of simulated EDAFs on tumor cell behavior

ere limited. The three-dimensional multiscale model shown in
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Fig. 4. Degradation of extracellular matrix (ECM) and the protrusion-like growth and migration of tumor cells shown through screenshots of the model along the vertical 

axis from Y = 50 to 58. The panel for Y = 50 shows how the tumor cells have completely degraded the ECM in that plane, while the panels corresponding to Y = 51, 52, 

and 53 show varying degradation of ECM due to the surrounding tumor cells. The line present in all images around Z = 50 is a result of degraded ECM due to the tumor 

cells. At Y = 58, the empty section shows ECM degraded by the tumor cells at the tip of the protrusion (in Y = 57). The purple cells are activated tumor cells, light blue cells 

are preactivated tumor cells, and grey cells represent ECM. The black areas represent Medium cells which occur due to ECM degradation in the voxel. Print in color. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 
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ig. 3 A is an accurate representation of the in vitro tissue model in

ina et al. (2017) Fig. 5 A. The computational model also correctly

imulates tumor cell behavior in early stages of tumor growth,

uch as the presence of activated tumor cells and protrusions that

ccur when metastasis begins ( Sai et al., 2016 ). Fig. 3 B shows a

napshot of the model as the cells become preactivated in response

o inflammatory conditions. The diffusion of chemical fields oc-

urred in a manner similar to that in an in vitro set up, as shown

n Fig. 3 C, D, G, and H. Fig. 4 shows the degradation of ECM at
ach y-coordinate between Y = 50, which is the outermost layer of

ells in the tumor spheroid, and Y = 58, which is the distance to

hich a protrusion invaded into the surrounding tissue. The panel

or Y = 50 shows how the tumor cells have completely degraded

he ECM in that plane, while the panels corresponding to Y = 51,

2, and 53 show varying degradation of ECM due to the surround-

ng tumor cells. The line present in all images around Z = 50 is

 result of degraded ECM due to the tumor cells. At Y = 58, the

mpty section shows ECM degraded by the tumor cells at the tip
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Fig. 5. Scatter plots presenting various metrics of tumor cell behavior in the presence (blue square) and absence (purple circle) of EndMT-derived activated fibroblasts 

(EDAFs) and varying substrate stiffness at the end of the simulations. The replicates for each condition ( n = 5 to 7) are plotted in each graph. (A) Average tumor cell velocity 

increases as substrate stiffness increases from 15% stiffness ECM to 75% stiffness ECM and remains the same at 100% stiffness ECM. (B) Increase in tumor cell population 

increases with an increase in substrate stiffness. (C) The fraction of activated tumor cells in the tumor cell population increases as substrate stiffness increases from 15% 

stiffness ECM to 75% stiffness ECM but decreases at 100% stiffness ECM. (D) The velocity of tumor cells in the y-direction, i.e. into the extracellular matrix, increases with an 

increase in substrate stiffness. The vertical velocity of tumor cells is higher in the presence of EDAFs. (E) The average cell velocity for activated tumor cells increases with 

an increase in substrate stiffness, with an apparent difference between the two conditions at 100% stiffness ECM. (F) The vertical velocity of activated tumor cells decreases 

with an increase in substrate stiffness from 15% stiffness ECM to 75% stiffness ECM, but increases at 100% stiffness ECM. There is an apparent difference between the two 

conditions at 100% stiffness ECM, indicating that the presence of EDAFs in stiff substrates might increase tumor cell migration. Print in color. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.). 
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of the protrusion (in Y = 57). This shows how cells secrete MDEs to

degrade the surrounding matrix to make way for cell migration. 

3.1. Presence of EndMT-derived activated fibroblasts increases tumor 

cell activity 

In the absence of EDAFs, the average tumor cell velocity (calcu-

lated as total displacement of cell divided by the time is possessed

migratory properties) was found to be 0.0355 ± 0.0 0 035 μm/min,

and the tumor cell population increased by 6.357%. In the sim-

ulation, endothelial cells are expected to be activated due to

tumor-produced cytokines. However, previous work has shown

that small numbers of EndMT-derived activated fibroblasts are

found after 48 h in EndMT-promoting conditions ( Mahler et al.,

2013 ; Dahal et al., 2017 ). This process would require a much longer

simulation time. Thus, to limit simulation time while determining

the effect of EDAFs on tumor cells, EDAFs were embedded in

the extracellular matrix. The proportion of EDAFs was set to 5%

of the initial endothelial cell population ( Wang et al., 2018 ). In

the presence of EDAFs, the average tumor cell speed was 0.0363

± 0.0 0 057 μm/min, and the increase in tumor cell population

was 6.4%. Activated tumor cells constituted 18.314% of the tumor

cell population in the absence of EDAFs whereas this percentage

became 18.07% in the presence of EDAFs. 
.2. An increase in substrate stiffness increases tumor cell activity 

Extracellular matrix stiffness is known to play a role in tu-

origenesis ( Pathak and Kumar, 2012 ). To simulate varying stiff-

ess of the extracellular matrix that result from disease progres-

ion, a ratio of ECM and Medium type cells was used. A higher

CM concentration (i.e., stiffer substrate) was represented by a

igher ratio of ECM cells to Medium cells. As the contact energy

etween ECM and tumor cells is lower than the contact energy

etween tumor cells and Medium, contact between ECM and tu-

or cells is preferred by the algorithm. This results in more ECM-

umor cell adhesion, which in turn allows more guided migration

long ECM cells, a commonly observed phenomenon in cell migra-

ion studies ( Lauffenbur ger and Horwitz, 1996 ). Based on the lit-

rature review conducted, the highest collagen concentration in a

D, in vitro tumor environment cell culture model hydrogel was

0 mg/ml ( Szot et al., 2011 ). In the model, this was represented

s 100% ECM cells and 0% Medium cells. In a similar manner, the

ollagen concentrations used in our previous in vitro experiments

 1.5 mg/ml, 2.0 mg/ml, and 2.2 mg/ml - were represented as 15%,

0%, and 22% ECM cells with the remaining proportions as Medium

ells. 

As seen in Fig. 5 A, the overall velocity of the tumor cells in-

reases from 0.0241 ± 0.0 0 038 μm/min in 15% stiffness to 0.0361

0.0 0 072 μm/min in 75% stiffness ECM cells, but does not change
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ignificantly in 100% stiffness ECM cells in the absence of EDAFs.

n the presence of EDAFs, the overall tumor cell velocity increases

rom 0.0239 ± 0.0 0 042 μm/min in 15% stiffness ECM to 0.0361 ±
.0 0 043 μm/min in 75% stiffness ECM. A similar trend is followed

n Fig. 5 D, where the velocity of the cells in the y-direction, i.e.

nto the hydrogel, increases from 0.00115 ± 6.85E-05 μm/min in

5% stiffness ECM to 0.00181 ± 0.0 0 010 μm/min in 75% stiffness

CM in the absence of EDAFs. In the presence of EDAFs, the veloc-

ty in the y-direction increases from 0.00114 ± 4.95E-05 μm/min

n 15% stiffness ECM to 0.00180 ± 5.59E-05 μm/min in 75% stiff-

ess ECM. This increase in velocity stems from an increase in the

isplacement of the cells (which primarily takes place in the y-

irection; data not shown), which shows that increased stiffness

esults in increased cell invasion. In the 100% stiffness ECM con-

ition, the tumor cell velocity in the presence of EDAFs increases

o 0.00189 ± 0.00018 μm/min. However, in the absence of EDAFs,

he tumor cell velocity decreases from 0.0 0181 ± 0.0 0 010 μm/min

n the 75% stiffness ECM condition to 0.00156 ± 0.0 0 010 μm/min

n the 100% stiffness ECM condition. Consequently, the tumor

ell velocity in the presence of EDAFs is greater than the tu-

or cell velocity in the absence of EDAFs. This is not a trend

hat is apparent in the other stiffness conditions, and can there-

ore indicate that the presence of EDAFs in a stiff substrate may

ncrease tumor cell migration. The increase in tumor cell pop-

lation increases from 3.738 ± 0.081% in 15% stiffness ECM to

.357 ± 0.054% in 100% stiffness ECM in the absence of endothe-

ial cells, and 3.695 ± 0.061% in 15% stiffness ECM to 6.404 ±
.046% in 100% stiffness ECM in the presence of endothelial cells

s shown in Fig. 5 B. In Fig. 5 C, the percentage of activated tu-

or cells increases with an increase in substrate stiffness from

.914 ± 0.11% in 15% stiffness ECM to 22.305 ± 0.38% in 75%

tiffness ECM, but decreases to 18.314 ± 0.41% at 100% stiffness

CM in the absence of EDAFs. These numbers do not change sig-

ificantly in the presence of EDAFs. Fig. 5 E and F show how

ubstrate stiffness affects the velocity of activated tumor cells.

ig. 5 E shows the overall average velocity of activated tumor

ells and Fig. 5 F shows the trends of the vertical velocity (i.e.

nto the hydrogel) of activated tumor cells. The horizontal veloc-

ty in the absence of EDAFs increases as substrate stiffness in-

reases from 0.0514 ± 0.0012 μm/min in 15% stiffness ECM to

.0678 ± 0.0 0 056 μm/min in 10 0% stiffness ECM, as there is

ore ECM for the tumor cells to move along. In the presence of

DAFs, the horizontal velocity of activated tumor cells increases

rom 0.0509 ± 0.0010 μm/min in 15% stiffness ECM to 0.0703 ±
.0015 μm/min in 100% stiffness ECM. However, there is a decrease

n the vertical velocity of the activated tumor cells from 0.0178 ±
.0 0 036 μm/min in 15% stiffness ECM to 0.0119 ± 0.0 0 015 μm/min

n 75% stiffness ECM, but increases to 0.0129 ± 0.0 0 036 μm/min at

00% stiffness ECM in the absence of EDAFs. The same trend is fol-

owed in the presence of EDAFs, with the vertical velocity at 100%

tiffness ECM being 0.0137 ± 0.0 0 046 μm/min. This could be an

utcome of the activated tumor cells’ preferred direction of move-

ent being along the orientation of the ECM cells, as opposed to

nvading into the hydrogel. Furthermore, both the horizontal and

ertical velocities at 100% stiffness ECM are higher in the presence

f EDAFs than in the absence of EDAFs, indicating that EDAFs can

lter tumor cell behavior at higher substrate stiffness. As EDAFs

emodel the underlying extracellular matrix, an indirect effect of

heir presence on tumor cells is seen through the effects of sub-

trate stiffness on tumor cell behavior. However, a direct effect

s not as apparent from the modeled EDAF behavior, which is a

eviation from the observations in the in vitro experiments. This

ay be due to the unconfined nature of the computational model,

hich has previously been shown to result in slow tumor cell mi-

ration when compared to confined models ( Pathak and Kumar,

012 ). 
. Discussion 

Here we present a novel, multiscale model of EndMT in a tumor

icroenvironment. The results obtained from the simulations were

ompared with in vitro tissue models of tumor microenvironments.

ina et al. (2017) created a microfluidic device to study EndMT

n vitro . Using this device, it was determined that the distance

ravelled by tumor cells was consistent across hydrogels with

he same stiffness. Moreover, their model had more migration of

umor cells in the presence of EDAFs as compared to the absence

f EDAFs, which is also shown in our in silico model. Lastly, Mina

t al. saw ∼2.5% proliferation in tumor cells in the 2.2 mg/ml

ollagen hydrogel without activated fibroblasts, and ∼4% prolif-

ration with activated fibroblasts. However, the distance travelled

y the cells in the cell culture model by Mina et al. (2017) was

ore than the distance travelled by cells in the in silico model

differences in distances were between 50–100 μm). This could

e attributed to the fact that cells tend to move faster in the

onfined extracellular matrix in a microfluidic device as compared

o the unconfined extracellular matrix in other models ( Pathak and

umar, 2012 ). Additionally, the distance travelled by the simulated

ells lies in the range of invasion observed in the experimental

odels, and supports observations that tumor cells selectively

nd collectively migrate towards higher concentrations of oxygen

 Kenney et al., 2016 ). The average tumor cell velocity observed

n all simulations lies in the physiological range of speeds for

umor cells traveling in 3D hydrogels ( Andasari et al., 2018 ). The

ncrease in tumor cell population in the in silico model is ∼4%

n the 22% ECM condition regardless of the presence of EndMT-

erived activated fibroblasts. The vertical velocity of activated

umor cells decreased with an increase in substrate stiffness from

5% ECM to 75% ECM, but increased at 100% ECM. This could be

ue to an increase in traction resulting from increased interaction

ith the surrounding matrix ( Lauffenbur ger and Horwitz, 1996 ).

owever, the overall velocity of tumor cells increases with an

ncrease in substrate stiffness. This can be due to the presence

f a larger population of non-activated tumor cells than activated

ells, thus allowing non-activated tumor cells to influence the

verall movement of the cells. As the activation of cells depends

n the distance they have travelled, and the cell speeds, the

ercentage of activated tumor cells also displays a similar biphasic

elationship. 

The mechanobiology of cancer cell invasion depends on the

ntra- and extracellular regulation of cell adhesions, protrusions,

nd tractions. Invasion begins when tumor cells degrade the

urrounding tissue through invadopodia, which are actin-rich pro-

rusive structures ( Carey et al., 2012a; Parri and Chiarugi, 2010 ).

his degradation occurs via matrix metalloproteinase (MMP)-

riven proteolysis ( Kumar et al., 2016 ), and the microtubule

nd actin cytoskeletons. On a biochemical level, Rho GTPases

nd the Rac1/WAVE2/Arp2/3 and RhoA/ROCK pathways play a

ole in tumor invasion, by inducing protrusions and inhibiting

ctomyosin-dependent contractility ( Carey et al., 2012b ). When

he protrusions are created, integrins on the tumor cell surface

ttach to ECM ligands and decide the direction in which the tumor

hould further migrate. This results in a bidirectional signaling net-

ork between the ECM and cytoskeleton of the tumor cells, which

rives mechanotransduction, molecular switching, and signal

ransduction, thus playing an important role in cancer progression.

his signaling network includes receptor tyrosine kinases, such

s focal adhesion kinase (FAK), which control the mechanical and

iochemical interactions of the tumor cells with the surrounding

issue ( Carey et al., 2012b ). Some studies speculate that cytokines

ecreted by CAFs regulate the remodeling of the actin cytoskeleton

hrough Rho GTPases such as Rac1, RhoA, and Cdc42 ( Basquin

nd Sauvonnet, 2013; Parri and Chiarugi, 2010 ). This would be a
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plausible explanation as to why the presence of cancer-associated

fibroblasts increases tumor cell activation and migration. While

we see slight differences in tumor cell activation and migration

in the two simulated scenarios (i.e. with and without EDAFs), the

lack of a clear difference could be because the signaling path-

ways affected by microenvironmental factors and their resulting

cytoskeletal remodeling are not modeled. However, cell-ECM adhe-

sion combined with the degradation of ECM due to MDEs allows

cells to preferentially migrate along the ECM cells, i.e. into the

extracellular matrix. Thus, while integrin-ligand interactions play a

role in cell migration, cytoskeletal remodeling due to CAF-secreted

cytokines induces higher tumor cell migration. 

The basement membrane is important for maintaining tissue

homeostasis, as cells use mechanotransduction to alter their

characteristics to respond to ECM properties ( Carey et al., 2012b ).

A study by Alexander et al. (2008) found that the increase in

ECM stiffness increased the number and activity of invadopodia

through the extracellular signal-receptor kinases (ERK) and FAK

and p130Cas signaling molecules. The overactivation of FAK and

ERK destabilizes cell-cell adhesions, enhances cell contractility,

and regulates transcriptional responses to mechanical signals

( Alexander et al., 2008 ). Tumor invasion also increases through the

amplification of integrins and phosphoinositide 3-kinase (PI3K)

signaling, which occurs due to the matrix crosslinking that is a

result of the stiffening of the tumor microenvironment ( Levental

et al., 2009; Schrader et al., 2011 ). Furthermore, β-integrin and

FAK are known to regulate tumor cell proliferation in a stiffness-

dependent manner ( Schrader et al., 2011; Reid et al., 2017 ). In-

creased matrix stiffness is also responsible for regulating the STAT3

pathway, which gets activated in response to cytokines and growth

factors ( Schrader et al., 2011 ). The conclusions from the simula-

tions align with the molecular and biochemical findings from sci-

entific literature ( Fig. 5 B). In the computational model, an increase

in substrate stiffness causes increased tumor cell-ECM interactions,

which results in a higher secretion of MDEs. This in turn, induces

more ECM degradation. Along with increased cell migration, this

creates more space in the surrounding matrix for tumor cells to

multiply, thus resulting in an increase in tumor cell population. 

The functional role of EDAFs in a tumor microenvironment

differs from cancer-associated fibroblasts (CAFs) derived from

other sources as a result of their varied origins. These differences

in origin result in varied plasticity, biomarkers, signaling cues, and

therapeutic potential ( LeBleu and Kalluri, 2018; Tao et al., 2017 ).

For example, EDAFs are positive for biomarkers of alpha-smooth

muscle actin ( αSMA), fibroblast specific protein-1 (FSP-1), and

the endothelial cell-tyrosine kinase receptor Tie2, unlike CAFs

derived from epithelial-to-mesenchymal transformation (EMT),

resident fibroblasts, or bone marrow ( Zeisberg et al., 2007; LeBleu

and Kalluri, 2018; Cortez et al., 2014; Okada et al., 1997 ). These

markers allow EndMT-derived activated fibroblasts to exert con-

tractile forces ( αSMA) ( Marsh et al., 2013 ) and facilitate malignant

progression and recruit macrophages (FSP-1) ( Marsh et al., 2013;

Park et al., 2016 ). Moreover, Tie2 are receptors for angiopoietins,

which regulate angiogenesis and tumor progression. In addition,

the binding initiate several signaling cascades which result in cell

differentiation, proliferation, and cell-ECM interactions ( Imanishi

et al., 2007; Makinde and Agrawal, 2008 ). To elaborate on the phe-

nomena caused by EDAFs, the next phase of the study will create a

more physiologically-relevant stromal tissue by incorporating resi-

dent fibroblasts and biochemical factors in the extracellular matrix.

5. Conclusions 

The in silico model presented here simulates EndMT in a tumor

microenvironment, which is related to specific cellular behavior

and chemical transport. The cellular mechanobiology observed
ccurately mimics what is seen in vitro tissue models. This

ork supports the mechanobiological theories of the biochemical

ignaling pathways which induce the observed behavior and elu-

idates the biomechanical and biochemical role of EndMT-derived

ctivated fibroblasts in the tumor microenvironment. Coupling

he multiscale model with a network model of the underlying

ignaling pathways can offer insight into the factors that play

 significant role in the interactions of EndMT-derived activated

broblasts with tumor cells as well as the extracellular matrix.

ogether, it can provide an efficient approach to evaluate the role

f EndMT in cancer, facilitate the design further in vitro experi-

ents, assess the role of therapeutics, including possible therapy

esistance due to the intricate signaling network. 
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