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ABSTRACT

In the summer of 2016, the International Ocean Discovery Program (IODP) Expedition 364 cored
through the post-impact strata of the end-Cretaceous Chicxulub impact crater, Mexico. Core samples
were collected from the post-impact successions for terrestrial palynological analysis, yielding a rare
Danian to Ypresian high-resolution palynological assemblage. This record constitutes one of the first
Palaeocene and Ypresian palynological assemblages from Central America or Mexico, representing a
more coastal lowland palaeoenvironment than previous studies from mainland Mexico. Although the
abundance of pollen and spores is very low in the Palaeocene carbonates, abundance increases in the
more organic-rich shale layers representing the Palaeocene-Eocene Thermal Maximum (PETM) and
later Ypresian. The spores and gymnosperm pollen identified from IODP 364, although rare compared
to the angiosperm pollen, are a diverse mix of cosmopolitan taxa, as well as some characteristic of fos-
sil Central American assemblages (e.g. Selaginellaceae), and others previously identified from the
Paleogene northern Gulf of Mexico coastal plain. The assemblage generally indicates the presence of
nearby moist to seasonally dry lowland tropical forest, with some taxa suggestive of higher elevation
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forests. Ephedroid pollen grains may be indicative of the presence of more arid conditions.

1. Introduction

At the end of the Cretaceous Period, a massive asteroid col-
lided with Earth and formed an impact crater approximately
200 km in diameter in the shallow carbonate Yucatan Platform,
Mexico. This event is generally considered to be the main
cause of the Cretaceous—Paleogene (K-Pg) mass extinction
event (Schulte et al. 2010). Despite the catastrophic nature
of the impact, the presence of trace fossils in the transitional
unit between the impact breccia and the overlying
Palaeocene limestone indicates that benthic life had returned
to the impact crater, possibly within six years after the impact,
and by 30 kyr after the impact seafloor conditions had essen-
tially returned to normal (Lowery et al. 2018). The impact cra-
ter became a depositional basin which slowly filled in with
sediment, and is no longer observable as a surface topograph-
ical feature. International Ocean Discovery Program (IODP)
borehole 364 targeted the peak ring of the Chicxulub impact
crater, an elevated ring inside the crater rim, with the goal of
investigating the impact structure as well as the post-impact
sedimentary succession (Gulick et al. 2016). Further informa-
tion about the post-impact sedimentary rocks of IODP 364,
including the biostratigraphical age model derived from fora-
minifera and calcareous nannofossils, can be found in Gulick
et al. (2017). A gravity anomaly map of the Chicxulub impact
crater is provided in Figure 1.

The post-impact rocks are a mix of carbonates and fine-
grained clastic rocks such as claystones and black shales.
The Palaeocene and Eocene benthic foraminiferal assemb-
lages indicate palaeowater depths between approximately
300 and 700 m (Gulick et al. 2017). This means that the pol-
len and spores recovered from the core have been trans-
ported from a terrestrial environment to the submerged
peak ring of the impact crater. The Yucatan Platform
appears to have been mostly submerged until the
Oligocene; however, there is some evidence in the form of
collapsed impact breccias and evaporites for subaerial
exposure in areas of the platform during the Palaeocene
(Lefticariu et al. 2006). A possible source area for the pollen
and spores in the IODP 364 core is the crater rim, which pre-
sumably formed a topographical high around the impact
basin. The terrestrial palynomorphs could also be sourced
from nearby areas of mainland Mexico to the south and
south-west of the Yucatan Platform, from modern
Guatemala or the Mexican states of Veracruz or Oaxaca.
Alternatively, some of the terrestrial palynomorphs may be
sourced from Cuba to the east. The pollen and spore
assemblages may be a mix of pollen from one or all of these
sources, although the high abundance and excellent preser-
vation in some of the younger Ypresian samples suggests a
more proximal source on the Yucatan Platform.
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Figure 1. Location of the International Ocean Discovery Program (IODP) 364 (site MOO77A) drilling location in the Yucatan Peninsula, Mexico. The upper map
shows the geographical extent of the gravity anomaly map on bottom. The position of site MOO77A is marked by a yellow triangle on the gravity anomaly map.
Gravity data courtesy of G. Christeson, A. Hildebrand, and M. Pilkington.

palynological techniques described by Traverse (2007). When
possible, two slides were made at each depth and the residue
Approximately 15-40g of sediment was taken at 149 sample retained for future use. Slides were scanned until 300 identifi-
depths from the post-impact section of the IODP 364 core and able pollen and spore grains were counted, or until the slides at
processed by Global Geolab Ltd using modifications of standard  that sample depth were fully scanned. Microscopic examination
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was conducted using an Olympus BX41 microscope for bright-
field microscopy and phase-contrast microscopy. Pollen grains
were generally photographed at 1000x magnification. Size
measurements for species were made on all specimens of the
species if fewer than 10 specimens were observed, and then
expressed as a range. If more than 10 specimens were observed,
the size ranges were based on measurements of 10 specimens
and the mean size is given in parentheses.

Occurrence information is given in terms of the total
number of specimens of the taxon observed in all samples;
for comparison, the total number of identified angiosperm
pollen, gymnosperm pollen and spores in this study is
16,247. A review of species occurrences in the literature was
greatly aided by the database of Palynodata Inc. and White
(2008). A list of the spore and gymnosperm pollen taxa, with
their botanical affinities and interpreted palaeoecology, is
given in the Supplementary materials. Quantitative counts
for all spore and gymnosperm pollen taxa in the 149 sam-
ples are also given in the Supplementary materials. None of
the gymnosperm pollen or spores described here have any
clear biostratigraphical value for the age range covered in
the IODP 364 core. Although the first observed occurrence of
many species is in the Ypresian, this is probably because the
Palaeocene section is nearly barren. Multiple species
described in this paper have a wide geographical distribution
and were present in the Mesozoic.

3. Morphology, nomenclature, and
botanical affinities

Morphological terminology generally follows Punt et al.
(2007). The term ‘diameter’ is used loosely in this study to
refer to shapes which are not strictly spherical, for example
in describing the equatorial diameter of trilete spores.
Botanical affinities are also provided for each species.
Whenever possible, the affinity of a described species is
given with reference to the scientific literature. In other
cases, the stated botanical affinity may be based on compari-
son with modern spores or pollen from the Center for
Excellence in Palynology (CENEX) research collection at
Louisiana State University, Baton Rouge, Louisiana, USA. For
some monolete and trilete spores for which the lower
botanical affinity is unknown, the botanical affinity is listed
as ‘Bryophyta/Pteridophyta sensu lato’, which includes the
Polypodiophyta, Lycopodiophyta, Anthocerotophyta,
Bryophyta, Marchantiophyta and any other lower plant
groups which produce monolete or trilete spores.
Whenever possible an appropriate fossil or modern genus
and species have been provided; when an appropriate spe-
cies designation is lacking for a morphotype, the morpho-
type has been identified by adding ‘sp. A’, ‘sp. B, etc. Some
genera have not been identified to the species level, and in
those cases the genus name is followed by ‘spp.” The angio-
sperm pollen will be described in a forthcoming paper.
Detailed taxonomic descriptions of the form genera and full
morphological descriptions of all taxa are provided in the
Supplementary materials. For some taxa, more extensive
discussions are also given in the Supplementary materials.
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4. Systematic palaeontology

All key palynomorphs have been photographed. The spores
are illustrated in Plate 1, Plate 2, and Plate 3, and the
gymnosperm pollen are illustrated in Plate 4.

4.1. Trilete spores
Genus Ceratosporites Cookson & Dettmann 1958

Ceratosporites sp. A
Plate 2, figures 9-10; Plate 3, figure 1

Discussion. This species is generally similar to some modern
species of Selaginella from Panama (Roubik and Moreno
1991). Jaramillo et al. (2014, p. 194) describe an echinate tri-
lete spore with affinity to Selaginella with bifurcate tips,
which they informally named ‘Echitriletes “selaginelloides”
type “bifurcatus™. This type differs in having a circular amb,
a thicker wall, and smaller spines relative to the size of the
spore. Some specimens of Neoraistrickia sp. A have reduced
ornamentation on the proximal face and may represent
gradational morphologies with Ceratosporites sp. A.
Occurrence. Ypresian; four specimens observed.

Botanical affinity. Probably Selaginellaceae (Jansonius and
Hills 1976).

Palaeoecology. Probably lowland tropical forest. The modern
genus Selaginella of the Selaginellaceae is often associated with
humid, shaded, tropical environments (Graham 1988). Akkiraz
et al. (2008) considered that fossil species of Selaginellaceae
assigned to Echinatisporites were indicative of freshwater
swamp environments; however, the Selaginellaceae are also
found in the modern deserts of Mexico (Rzedowski 2006).

Genus Cyathidites Couper 1953

Cyathidites minor Couper 1953
Plate 1, figures 4-5

Occurrence. Ypresian; two specimens observed.

Botanical affinity. Polypodiopsida, probably Cyatheaceae,
Dicksoniaceae, Gleicheniaceae, or Matoniaceae (Shuklina and
Polevova 2007).

Palaeoecology. Wakefield and Monteil (2002) listed the
palaeoenvironmental preference for Cyathidites minor speci-
mens from the Cretaceous and Paleogene of Pakistan as
back mangrove or brackish swamp, but this generalised
spore morphology is found in a variety of groups with differ-
ent habitat preferences.

Genus Deltoidospora Miner 1935

Leiotriletes Naumova 1939 ex Ishchenko 1952.
Lygodiumsporites Potonié, Thomson, & Thiergart 1950 ex
Potonié 1956.

Psilatriletes van der Hammen 1954 ex Potonié 1956.

Deltoidospora spp.
Plate 1, figures 1-3

Discussion. This study will follow Jardine (2011) in not iden-
tifying species of Deltoidospora.
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Plate 1. Trilete spores from International Ocean Discovery Program (IODP) 364. 1. Deltoidospora sp. 505.88 mbsf, slide 2, EFS R22/0. 2. Deltoidospora sp. 548.96
mbsf, slide 1, EFS P40/0. 3. Deltoidospora sp. 514.14 mbsf, slide 1, EFS T29/2. 4. Cyathidites minor. 510.90 mbsf, slide 1, EFS T29/2. 5. Cyathidites minor. 510.90 mbsf,
slide 1, EFS P33/4. 6. Undulatisporites mineri. 544.11 mbsf, slide 1, EFS N26/4. 7. Undulatisporites mineri. 572.75 mbsf, slide 2, EFS U44/1. 8. Undulatisporites elsikii.
607.22 mbsf, slide 2, EFS G18/3. 9. Gleicheniidites senonicus. 607.22 mbsf, slide 2, EFS $38/0. 10. Punctatriletes sp. A. 582.78 mbsf, slide 2, EFS Q13/1. 11. Foveotriletes
crater. 582.78 mbsf, slide 2, EFS P26/2. 12. Foveotriletes crater. 582.78 mbsf, slide 2, EFS V18/0. 13. Kuylisporites waterbolkii. 533.27 mbsf, slide 1, EFS Q30/2. 14.
Retitriletes sp. A. 606.60 mbsf, slide 2, EFS H31/3. 15. Retitriletes sp. B. 607.04 mbsf, slide 2, EFS X21/2. 16. Rugutriletes sp. A. 563.21 mbsf, slide 1, EFS S27/2. Scale
bar = 10 um.
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Plate 2. Trilete spores from International Ocean Discovery Program (IODP) 364. 1. Hamulatisporis hamulatis. 582.78 mbsf, slide 1, EFS V47/0. 2. Gemmatriletes sp. A.
577.73 mbsf, slide 2, EFS P31/0. 3. Gemmatriletes aff. G. clavatus. 564.86 mbsf, slide 1, EFS U19/2. 4. Verrucosisporites sp. A. 607.18 mbsf, slide 1, EFS 041/0. 5.
Verrucosisporites sp. A. 607.22 mbsf, slide 2, EFS U43/0. 6. Verrucosisporites sp. A. 607.22 mbsf, slide 2, EFS J42/0. 7. Echinatisporis sp. A. 539.43 mbsf, slide 1, P23/2.
8. Echinatisporis sp. A. 556.58 mbsf, slide 1, EFS R37/1. 9. Ceratosporites sp. A. 505.88 mbsf, slide 2, EFS N43/0. 10. Ceratosporites sp. A. 505.88 mbsf, slide 2, EFS
Q25/4. Scale bar = 10 um.
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Plate 3. Trilete and monolete spores from International Ocean Discovery Program (IODP) 364. 1. Ceratosporites sp. A. 540.89 mbsf, slide 1, EFS T41/0. 2.
Neoraistrickia sp. A. 516.00 mbsf, slide 1, EFS U24/0. 3. Neoraistrickia sp. A. 574.35 mbsf, slide 1, EFS V16/0. 4. Neoraistrickia sp. A. 539.43 mbsf, slides 1, EFS T33/2.
5. Raistrickia sp. A. 555.07 mbsf, slide 1, EFS 042/1. 6. Raistrickia sp. A. 576.04 mbsf, slide 1, EFS S33/1. 7. Laevigatosporites haardtii. 564.86 mbsf, slide 1, EFS U34/1.
8. Laevigatosporites haardtii. 563.29 mbsf, slide 1, EFS Q35/2. 9. Microfoveolatosporis cf. M. fromensis. 592.23 mbsf, slide 1, EFS T32/2. 10. Reticuloidosporites pseudo-
murii. 582.78 mbsf, slide 2, EFS V24/0. 11. Reticuloidosporites pseudomurii. 582.78 mbsf, slide 2, EFS V16/1. 12. Polypodiisporonites sp. A. 556.58 mbsf, slide 1, EFS
Q46/0. Scale bar = 10 um.




Occurrence. Ypresian; 78 specimens observed. The genus
Deltoidospora is common and globally distributed in the
Mesozoic and Cenozoic (Palynodata Inc. and White 2008).
Botanical affinity. Polypodiidae, possibly Acrostichum
(Pteridaceae) or Antrophyum (Pteridaceae). The botanical affinity
is somewhat difficult to determine, as psilate, trilete spores are
produced by a variety of ferns. The specimens illustrated here
are similar to spores produced by the modern genera
Acrostichum and Antrophyum; Graham (1989) noted that
although Acrostichum spores tend to have a more scabrate
exine than Antrophyum spores, the distinction between the two
genera is difficult to make with fossil spores. It is also difficult
to distinguish Acrostichum spores from Lygodium spores (Jarzen
and Dilcher 2006). Ramirez-Arriaga et al. (2005) affiliated similar
spores assigned to Deltoidospora with the Cyatheaceae. Jardine
(2011) suggested a probable affinity with the Cyatheaceae,
Lygodiaceae, or Schizaeaceae for thick-walled specimens of
Deltoidospora that have not been identified to the species level.
Of the psilate trilete spores described from modern Panama by
Roubik and Moreno (1991), these specimens most closely
resemble Acrostichum danaifolium Langsd. & Fisch.
Palaeoecology. A botanical affinity with either Acrostichum
or Antrophyum would indicate moist conditions, with
Acrostichum suggesting a more lowland coastal environment,
and Antrophyum suggesting a more upland moist forest
(Graham 1989, 1995; Jarzen and Dilcher 2006).

Genus Echinatisporis Krutzsch 1959

Echinatisporis sp. A
Plate 2, figures 7-8

Discussion. This species is morphologically similar to
Ceratosporites sp. A, from which it differs by having an
ornamented proximal face and non-tuberculate spines. Jaramillo
et al. (2014) described a similar type from the Neogene of
Panama which they informally named ‘Echitriletes “selaginelloides”
type “muelleri”, differing mainly in having a triangular amb.
Occurrence. Ypresian; 27 specimens observed.

Botanical affinity. Selaginellaceae; these specimens are
morphologically similar to spores identified as Selaginella
from the Oligocene-Miocene of Mexico (Graham 1999).
Palaeoecology. Probably lowland tropical forest (see palaeo-
ecology section for Ceratosporites sp. A).

Genus Foveotriletes van der Hammen 1954 ex Potonié
1956 emend.

Emended description. Foveolate, trilete spores. Foveolae are
here defined as more or less rounded depressions more than 1
pum in diameter, generally separated from adjacent foveolae by a
distance greater than their diameter (Punt et al. 2007).

Foveotriletes crater Stover & Partridge 1973
Plate 1, figures 11-12

Discussion. As Stover and Partridge (1973) noted, this spe-
cies is quite similar to Kuylisporites waterbolkii, except in lack-
ing the equatorial scutula.

Occurrence. Ypresian; seven specimens observed. Foveotriletes
crater has previously been identified exclusively from the
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Cenozoic of Australia and New Zealand (Palynodata Inc. and
White 2008), although it is possible morphologically similar spores
have been identified elsewhere under other species names.
Botanical affinity. Probably Cnemidaria Pres| (Cyatheaceae),
possibly Lycopodiaceae. The resemblance to Kuylisporites
waterbolkii suggests affinity with Cnemidaria, also known as
Hemitelia Brown (Pocknall and Mildenhall 1984; Cieraad and
Lee 2006); however, Hill (2017) gave the botanical affinity as
Lycopodium (Lycopodiaceae).

Palaeoecology. The probable botanical affinity of this spe-
cies with Cnemidaria suggests a similar palaeoecology to
that of Kuylisporites waterbolkii, namely montane forest.

Genus Gemmatriletes Pierce 1961

Gemmatriletes aff. G. clavatus Brenner 1968
Plate 2, figure 3

Discussion. Gemmatriletes clavatus is somewhat similar to
this specimen, but in G. clavatus the clavae are not as well
developed and the exine is thicker.

Occurrence. Ypresian; one specimen observed.

Botanical affinity. Bryophyta/Pteridophyta sensu lato.

Gemmatriletes sp. A
Plate 2, figure 2

Discussion. Spores somewhat similar to this species have been
assigned to Bullasporis, for example unspeciated Bullasporis
specimens described and illustrated by Frederiksen (1980b) and
Jardine (2011), which differ from this species most obviously in
having bullae which are evenly distributed over the spore sur-
face and in having indistinct laesurae without labra.
Occurrence. Ypresian; one specimen observed.

Botanical affinity. Bryophyta/Pteridophyta sensu lato. Mildenhall
et al. (2014) give the botanical affinity for the somewhat similar
species  Gemmatriletes  multiglobus as ~ Grammitidaceae.
Alternatively, Gemmatriletes sp. A is also morphologically similar
to papillate species of Selaginella, for example Selaginella labordei
(Zhou et al. 2015, fig. 12 D-F), as well as spores of the modern
Actiniopteris radiata (). Koenig ex Sw.) Link (van Campo 1974).

Genus Gleicheniidites Ross 1949 emend. Skarby 1964

Gleicheniidites senonicus Ross 1949
Plate 1, figure 9

Occurrence. Danian-Ypresian; two specimens observed.
Gleicheniidites senonicus is a very common and globally dis-
tributed form genus in the Mesozoic and Cenozoic
(Palynodata Inc. and White 2008). Gleicheniidites senonicus
has been identified from Eocene strata in Deep Sea Drilling
Project (DSDP) Site 94 along the Campeche Escarpment
(Barron 2015; Barron et al. 2017).

Botanical affinity. Gleicheniaceae (Jardine 2011).
Palaeoecology. Possibly montane forest. Graham (1999)
noted that Gleichenia (Gleicheniaceae) is a common plant of
the modern evergreen cloud scrub in Mexico. Alternatively,
Wakefield and Monteil (2002) gave the palaeoecology for
Cretaceous and Paleogene specimens of G. senonicus from
Pakistan as freshwater marsh.
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Genus Hamulatisporis Krutzsch 1959 emend. Srivastava 1972

Hamulatisporis hamulatis Krutzsch 1959
Plate 2, figure 1

Occurrence. Ypresian; one specimen observed.

Botanical affinity. Lycopodiaceae (Nichols 2002); Srivastava
(1972) noted that modern spores of Lycopodium adpressum
Lloyd & Underw. (syn. Lycopodium appressa) compare well
with the form genus Hamulatisporis.

Palaeoecology. Possibly lowland tropical forest or swamp.
The modern Lycopodium adpressum is commonly found on
moist banks and the borders of swamps, mainly near the
coast (Britton and Brown 1913). Graham (1976, 1988, 1999)
described the palaeoecology of Lycopodium spores from
Central America variously as lowland moist tropical forest,
lower montane moist forest, deciduous forest, evergreen to
semi-evergreen selva, and evergreen cloud scrub.

Genus Kuylisporites Potonié 1956

Kuylisporites waterbolkii Potonié 1956
Plate 1, figure 13

Occurrence. Ypresian; one specimen observed. The extant
genus Cnemidaria produces morphologically similar spores and
currently inhabits Central America, the Caribbean, and northern
South America (Mohr and Lazarus 1994). In the early
Paleogene, K. waterbolkii was mainly restricced to the
Australasian  floral province (Mohr and Lazarus 1994;
Palynodata Inc. and White 2008), with the first regular South
American occurrences in the early Oligocene (C. Jaramillo, per-
sonal communication, 2019). Before the identification of this
Ypresian specimen, the oldest published Central American or
Caribbean occurrence of this spore type was from the
Oligocene of Puerto Rico (Graham and Jarzen 1969).

Botanical affinity. Cnemidaria C. Presl (Cyatheaceae) or
Cyathea Smith; Romero Valero (2014) gave the taxonomic
affinity as Hemitelia Brown, but this study will follow the tax-
onomy of Graham and Jarzen (1969) and Mohr and Lazarus
(1994). Lehnert (2012) relegated Cnemidaria to an unranked
clade in the genus Cyathea, and noted that Cnemidaria-type
spores are also found outside of this clade, in the Cyathea
decurrens (Hooker) Copeland group.

Palaeoecology. Probably montane forest (Trujillo and Roche
2009; Romero Valero 2014); extant Cnemidaria predominantly
inhabits elevations between 500 and 2000 m (Mohr and
Lazarus 1994).

Genus Neoraistrickia Potonié 1956

Neoraistrickia sp. A
Plate 3, figures 2-4

Discussion. The Chicxulub occurrences of Neoraistrickia sp. A
and Raistrickia sp. A are the first Cenozoic records of these
genera (Palynodata Inc. and White 2008). It is unlikely that
these spores are reworked from older deposits because no
other exclusively Mesozoic palynomorphs have been
observed in the assemblage; also, the morphology of this
species resembles some modern species of Selaginella. This

species has similar ornamentation to Ceratosporites sp. A,
which is distinguished by lacking ornamentation on the
proximal face, and Raistrickia sp. A, which is distinguished by
having a more circular amb. These morphologies appear to
be transitional with one another to some extent, and all
have probable botanical affinity with the Selaginellaceae.
Occurrence. Ypresian; six specimens observed.

Botanical affinity. Probably Selaginellaceae, because of the
similarity of this type to extant species of Selaginella (Zhou
et al. 2015).

Palaeoecology. Probably lowland tropical forest (see palaeo-
ecology section for Ceratosporites sp. A).

Genus Punctatriletes Pierce 1961

Punctatriletes sp. A
Plate 1, figure 10

Discussion. Graham (1988) described somewhat similar
punctate-foveolate spores and assigned them to Lycopodium;
his specimens differed mainly in having a psilate prox-
imal face.

Occurrence. Ypresian; one specimen observed.

Botanical affinity. Bryophyta/Pteridophyta sensu lato, pos-
sibly Lycopodiaceae (see discussion).

Genus Raistrickia Schopf, Wilson & Bentall 1944

Raistrickia sp. A
Plate 3, figures 5-6

Discussion. Raistrickia sp. A is similar to a photograph of an
undescribed spore identified as Selaginella from the Lower
Miocene of Panama (Graham 1988), specifically in having
blunt-tipped projections, although it is unclear from the
photograph whether the projections are tuberculate.
Occurrence. Ypresian; six specimens observed.

Botanical affinity. Probably Selaginellaceae (Knox 1950).
Palaeoecology. Probably lowland tropical forest (see palaeo-
ecology section for Ceratosporites sp. A).

Genus Retitriletes Pierce 1961

Retitriletes sp. A
Plate 1, figure 14

Discussion. These specimens are morphologically similar to
trilete, reticulate forms of Lycopodium (Lycopodiaceae)
spores. The reticulum is quite delicate, and more clearly
observable in phase-contrast microscopy. Fossil spores with
affinity to Lycopodium in the fossil record of Central America
(Graham 1976, 1988, 1989) are commonly punctate-foveolate
rather than reticulate, although Graham and Jarzen (1969)
briefly described some reticulate Lycopodium spores from the
Oligocene of Puerto Rico. Their specimens, however, appear
more thick-walled and have more conspicuous laesurae.
Ramirez-Arriaga et al. (2005) described an unnamed species
of Retitriletes, but their species was much larger (59-84 pum)
than Retitriletes sp. A.

Occurrence. Ypresian; two specimens observed.

Botanical affinity. Probably Lycopodiaceae (see discussion).



Palaeoecology. Possibly lowland tropical forest or swamp
(see palaeoecology section for Hamulatisporis hamulatis).

Retitriletes sp. B
Plate 1, figure 15

Discussion. The single observed specimen of this type is dis-
tinguished from Retitriletes sp. A most obviously by its prom-
inent labra. An alternative generic assignment is to
Ischyosporites Balme 1957, as the reticulum is somewhat
irregular, but the distal side of the spore is not clearly arched
and thickened in the single observed specimen.

Occurrence. Ypresian; one specimen observed.

Botanical affinity. Bryophyta/Pteridophyta sensu lato, pos-
sibly Lycopodiaceae; the unusual morphology of the speci-
men precludes a confident assignment of botanical affinity.

Genus Rugutriletes Pierce 1961

Rugutriletes sp. A
Plate 1, figure 16

Discussion. This species is somewhat similar to spores of the
modern Pteris grandifolia L. (Polypodiaceae), particularly in hav-
ing a cingulum and a proximal face with verrucae and rugulae
partially fused into ridges paralleling the laesurae (Palacios-Rios
et al. 2017). However, the distal face of the spore in P. grandifo-
lia is verrucate to rugulate, and in Rugutriletes sp. A the distal
face is psilate. This species cannot be placed in Hamulatisporis
because that genus is described as strongly rugulate or hamu-
late. An alternative generic assignment for this species is
Verrucosisporites, but the dominant sculptural elements in
Rugutriletes sp. A are rugulae rather than verrucae.
Occurrence. Ypresian; one specimen observed.

Botanical affinity. Bryophyta/Pteridophyta sensu lato, pos-
sibly Pteris L. (Polypodiaceae) (see discussion).
Palaeoecology. Possibly lowland tropical forest. Modern
Pteris in Central America currently inhabits riparian or shaded
lowland tropical forest (Palacios-Rios et al. 2017).

Genus Undulatisporites Pflug in Thomson & Pflug
1953 emend.

Haradisporites Singh & Kumar 1972.

Emended description. Trilete miospores < 200 um in diam-
eter or longest dimension. Laesurae with raised, sinuous or
undulating labra, which may or may not extend to the equa-
tor. No torus or zona is present. The surface sculpture is psi-
late, scabrate, or granulate, lacking prominent sculptural
elements. Amb rounded convexly triangular.

Undulatisporites elsikii Frederiksen 1973 sensu lato
Plate 1, figure 8

Discussion. The Chicxulub specimen has a slightly broader
labrum than U. elsikii sensu stricto.

Occurrence. Ypresian; one specimen observed.

Botanical affinity. Probably Polypodiaceae (Frederiksen
1980b), although Galvan-Escobedo et al. (2015) assigned
specimens of Undulatisporites that had not been identified to
the species level to the Ophioglossaceae.
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Undulatisporites mineri (Singh & Kumar 1972) comb. nov.
Plate 1, figures 6-7

Basionym. Haradisporites mineri Singh & Kumar 1972, photo-
graphs of holotype specimen in Plate 1, figures 1-2.
Discussion. Because Haradisporites is here considered a junior
synonym of Undulatisporites, H. mineri is transferred to
Undulatisporites. Singh and Kumar (1972) originally described U.
mineri as a psilate trilete spore with a thin exine, a rounded tri-
angular amb, and sinuous laesurae with raised labra which
extend at least 3/4 of the distance to the edge of the spore.
Undulatisporites mineri has a thinner exine than Undulatisporites
elsikii (1.0-1.5um thick), Undulatisporites microcutis Pflug in
Thomson & Pflug 1953 (> 3um thick), and Undulatisporites
undulapolus Brenner 1963 (1.5-2.0 um thick). The labra are also
narrower in U. mineri than in U. elsikii. Undulatisporites sinuosis
Groot & Groot 1962 is somewhat similar, but the laesurae reach
the equator and the exine is faintly scabrate rather than psilate.
Occurrence. Ypresian; two specimens observed. This is the
first published occurrence of U. mineri outside the Mesozoic of
India (Palynodata Inc. and White 2008); the presence of this
species in the Ypresian of Central America may be the result
of morphological convergence. Similar unnamed psilate trilete
spores with undulating laesurae have been described from
the Eocene of Panama (Graham 1985, figs. 9-10).

Botanical affinity. Probably Polypodiaceae; also possibly
Ophioglossaceae, assuming a similar botanical affinity to
Undulatisporites elsikii.

Genus Verrucosisporites Ibrahim 1933 emend. Smith 1971
Verrucosisporites sp. A Plate 2, figures 4-6

Discussion. Verrucosisporites sp. A is similar to Echinatisporis
sp. A, but the spines are sparsely distributed or, rarely,
absent. It is possible that Echinatisporis sp. A and
Verrucosisporites sp. A are spores produced by a single spe-
cies or a species complex in the Selaginellaceae.
Occurrence. Thanetian; 14 specimens observed.

Botanical affinity. Bryophyta/Pteridophyta sensu lato, pos-
sibly Selaginellaceae.

4.2. Monolete spores
Genus Laevigatosporites Ibrahim 1933 emend. Schopf
et al. 1944

Laevigatosporites haardtii (Potonié & Venitz 1934) Thomson &
Pflug 1953
Plate 3, figures 7-8

Laevigatosporites gracilis Wilson & Webster 1946.
Laevigatosporites ovatus Wilson & Webster 1946.

Occurrence. Ypresian; 11 specimens observed.
Laevigatosporites haardtii is a common and globally distrib-
uted species in the Cenozoic (e.g. Lenoir and Hart 1988;
Vajda and Raine 2003, Palynodata Inc. and White 2008; Smith
et al. 2018), with some Mesozoic occurrences (e.g.
Palynodata Inc. and White 2008; Garzon et al. 2012; Akyuz
et al. 2016). Its nondescript morphology is similar to that of
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modern Gleicheniaceae and Polypodiaceae spores from
Panama (Roubik and Moreno 1991).

Botanical affinity. Probably Polypodiales (Jardine 2011); also
possibly losetaceae (Knox 1950).

Palaeoecology. Akkiraz et al. (2008) considered that L. haard-
tii indicated lowland freshwater swamp environments. Graham
et al. (2000) noted with some reservation that similar mono-
lete, psilate spores assigned to Laevigatosporites may indicate
the development of marsh or swamp habitats. Ferns produc-
ing Laevigatosporites spores were the first pioneers to recover
following the Chicxulub impact, and these spores often dom-
inate within the K-Pg fern spike (e.g. Nichols et al. 1986;
Nichols and Johnson 2008; Vajda et al. 2001; Vajda and Raine
2003). However, Laevigatosporites haardtii was not observed in
the Palaeocene section, possibly due to poor preservation.

Genus Microfoveolatosporis Krutzsch 1959

Microfoveolatosporis cf. M. fromensis (Cookson 1957) Harris
1965
Plate 3, figure 9

Discussion. This specimen differs from the type species,
Microfoveolatosporis pseudodentatus Krutzsch 1959, in lacking
a two-layered wall structure. This specimen is quite similar to
a specimen of Microfoveolatosporis fromensis photographed
by Scholtz (1985), who stated that M. fromensis is indistin-
guishable from spores of the modern Actinostachys pennula
(Sw.) Hook. (Schizaeaceae).

Occurrence. Ypresian; one specimen observed.

Botanical affinity. Schizaeaeceae (see discussion).

Genus Polypodiisporonites Potonié 1931

Polypodiisporonites sp. A
Plate 3, figure 12

Discussion. The type species, Polypodiisporonites favus
Potonié 1931, differs in possessing a negative reticulum.
Polypodiisporonites alienus (Potonié 1931) Frederiksen 1980
and Polypodiisporonites afavus (Krutzsch 1959) Frederiksen
1980 are larger (> 40pum long). Polypodiisporites usmensis
(van der Hammen 1956) Khan & Martin 1972 has higher ver-
rucae (approx. 1um) than this specimen. Polypodiisporites
minimus (Couper 1960) Khan & Martin 1971 emend. Pocknall
& Mildenhall 1984 is similar in size to Polypodiisporonites sp.
A, but again the verrucae are higher (approx. 1 um).
Occurrence. Ypresian; one specimen observed.

Botanical affinity. Probably Polypodiaceae; Jardine (2011)
gave the probable botanical affinity as Polypodiaceae for a
visually similar specimen of Polypodiosporonites that had not
been described or assigned to a species. Verrucate monolete
spores are found in modern Polypodiaceae and Schizaeaceae
from Panama (Roubik and Moreno 1991).

Palaeoecology. Possibly lowland tropical forest or swamp;
Wakefield and Monteil (2002) give a suggested palaeoecol-
ogy of tropical fern swamp for the similar species P. afavus
from the Cretaceous-Tertiary of Pakistan.

Genus Reticuloidosporites Pflug in Thomson & Pflug 1953

Reticuloidosporites pseudomurii Elsik 1968
Plate 3, figures 10-11

Discussion. Elsik (1968) described the surface sculpture in
Reticuloidosporites pseudomurii as foveolate, but Frederiksen
(1980a) considered that the species was reticulate on the
basis that the lumina are much wider than the muri.
Leffingwell (1970) and Pocknall and Nichols (1996) have
described this species as being verrucate and rugulate as
well as foveolate; the specimens observed in this study are
foveolate but not clearly verrucate or rugulate.

Occurrence. Ypresian; four specimens observed.

Botanical affinity. Bryophyta/Pteridophyta sensu lato.

4.3. Gymnosperm pollen

Genus Cycadopites Wodehouse 1933 ex Wilson &
Webster 1946

Cycadopites follicularis Wilson & Webster 1946
Plate 4, figure 9

Discussion. The single specimen of this type has a slightly
thinner exine and is slightly smaller than C. follicularis as ori-
ginally described, but otherwise is a close morpho-
logical match.

Occurrence. Ypresian; one specimen observed. Cycadopites
follicularis is common and globally distributed in the
Mesozoic and Cenozoic (Palynodata Inc. and White 2008).
Botanical affinity. Cycadaceae (Wodehouse 1933).
Palaeoecology. Probably lowland tropical forest. Akkiraz
et al. (2008) considered that Cycadopites spp. indicated low-
land-riparian palaeoenvironments. Wakefield and Monteil
(2002) considered that Cycadopites spp. indicated freshwater
lowland marsh.

Genus Ephedripites Bolkovitina 1953 ex Potonié 1958 emend.
Krutzsch 1961

Ephedripites (Distachyapites) eocenipites (Wodehouse 1933)
Krutzsch 1961 sensu lato
Plate 4, figure 1

Discussion. This species is distinguished from other ephe-
droid pollen grains in the assemblage by having fused plicae
with branched pseudosulci. A broad species concept for
Ephedripites eocenipites is used here, which includes speci-
mens smaller than the original size range given by
Wodehouse (1933) of 57-74 um in length.

Occurrence. Ypresian; five specimens observed. Ephedripites
eocenipites is common and globally distributed in the
Mesozoic and Cenozoic (Palynodata Inc. and White 2008).
Botanical affinity. Ephedraceae, probably Ephedra.
Palaeoecology. Dry and warm tropical scrub. Modern
Ephedra is a xerophytic plant, but the palynological record
indicates a greater ecological range for this group in the
geological past. Frederiksen (1985) provides an extensive dis-
cussion on the palaeoecology of fossil pollen referable to the
Ephedraceae. A great variety of Ephedripites were recovered
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Plate 4. Gymnosperm pollen from International Ocean Discovery Program (IODP) 364. 1. Ephedripites eocenipites. 545.67 mbsf, slide 1, EFS V33/1. 2. Ephedripites
(Ephedripites) sp. 533.27 mbsf, slide 1, EFS W44/0. 3. Ephedripites (Ephedripites) sp. 555.07 mbsf, slide 1, EFS Q46/0. 4. Ephedripites (Ephedripites) sp. 509.17 mbsf,
slide 1, EFS P32/1. 5. Gnetaceaepollenites sp. A. 569.50 mbsf, slide 1, EFS Q39/1. 6. Gnetaceaepollenites sp. A. 519.31 mbsf, slide 2, EFS S29/2. 7. Gnetaceaepollenites
sp. A. 525.48 mbsf, slide 1, EFS L36/0. 8. Gnetaceaepollenites sp. B. 547.42 mbsf, slide 2, EFS Q14/1. 9. Cycadopites follicularis. 563.29 mbsf, slide 1, EFS R24/2. 10.
Class Pinopsida. 569.50 mbsf, slide 1, EFS R36/1. 11. Class Pinopsida. 592.23 mbsf, slide 2, EFS J41/1. Scale bar = 10 pum.




12 V. SMITH ET AL.

from a Turonian section from Tanzania, during an interval of
time that was clearly warm and relatively dry, as indicated
notably by the rarity of humidity-dependent bryophytes and
pteridophytes (Warny et al. 2018). Akkiraz et al. (2008) con-
sidered that Eocene Ephedra and Ephedripites were indicative
of back-mangrove estuarine environments; this study will fol-
low Ramirez-Arriaga et al. (2014) and Warny et al. (2018) in

considering that Ephedripites spp. indicates dry and
warm scrub.
Ephedripites (Ephedripites) spp.
Plate 4, figures 2-4
Discussion. The taxonomy of Ephedripites subgenus

Ephedripites is complex; many species have overlapping defi-
nitions, and arguably the group is oversplit. This subgenus
was not assigned to species due to its taxonomic complexity
and the lack of any clear biostratigraphical or palaeoeco-
logical rationale for splitting the subgenus.

Occurrence. Ypresian; 29 specimens observed. Ephedripites
subgenus Ephedripites is common and globally distributed in
the Mesozoic and Cenozoic (Palynodata Inc. and
White 2008).

Botanical affinity. Ephedraceae, probably Ephedra.
Palaeoecology. Likely indicative of dry and warm climate.
See the palaeoecology section for Ephedripites eocenipites.

Genus Gnetaceaepollenites Thiergart 1938 emend.
Jansonius 1962

Gnetaceaepollenites sp. A
Plate 4, figures 5-8

Discussion. This species is synonymous with grains identi-
fied as ‘Ephedripites subgenus Spiralipites spp.” by Jardine
(2011, p. 226), although this study follows Han et al. (2016)
in assigning these grains to the genus Gnetaceaepollenites.
Many of these specimens are probably also conspecific with
Ephedra voluta Stanley 1965, which has been regularly identi-
fied from the Paleogene of the Gulf Coastal Plain (Palynodata
Inc. and White 2008). Gnetaceaepollenites sp. B is distin-
guished by having plicae with a sinusoidal pattern.
Occurrence. Ypresian; 90 specimens observed.
Botanical affinity. Ephedraceae, possibly
(Jardine 2011).

Palaeoecology. Probably an arid tropical scrub environment.
See the palaeoecology section for Ephedripites eocenipites.

Ephedra

Gnetaceaepollenites sp. B
Plate 4, figure 8

Discussion. This species is similar to Ephedripites
(Distachyapites) zigzagus Sun & He 1980, and a grain identi-
fied as ‘Ephedra sp. 1" by Frederiksen et al. (1983), in possess-
ing plicae which undulate in a sinusoidal pattern. This
specimen differs from those two species most notably in
having plicae which are not fused at the tips of the grain. A
new species has not been erected because only one speci-
men was observed.

Occurrence. Ypresian; one specimen observed.

Botanical affinity. Ephedraceae.
Palaeoecology. Probably arid tropical scrub. See the palaeo-
ecology section for Ephedripites eocenipites.

Class Pinopsida
Plate 4, figures 10-11

Discussion. The general morphology of most of these speci-
mens is similar to that of modern Pinus pollen, particularly in
the grain size and the shape of the sacci. This study will fol-
low Pocknall and Nichols (1996), Nichols (2002), and Jardine
(2011) in not assigning species names to bisaccate pollen
grains referable to the Class Pinopsida.

Occurrence. Danian-Ypresian; 37 specimens observed.
Botanical affinity. Pinopsida, probably Pinaceae, possibly Pinus.
Palaeoecology. Probably montane forest. More specifically,
upland evergreen forest (Pinus forest), according to Ramirez-
Arriaga et al. (2014); however, Frederiksen (1985) cautioned
that some modern species of Pinus live in lowland swamps,
and may have lived in similar environments in the Paleogene.

5. Conclusions

Palynological analysis of Danian-Ypresian post-impact rocks
from the IODP 364 core yielded a diverse assemblage of 23
plant spore taxa and six gymnosperm pollen taxa. The spore
and gymnosperm pollen assemblage exhibits a low relative
abundance in comparison to the angiosperm pollen assem-
blage, representing only about 2% of the total pollen and
spore counts. The low relative abundance of spores is sug-
gestive of generally arid or seasonally dry environmental con-
ditions, similar to modern conditions in the northern Yucatan
Peninsula, Mexico. None of the gymnosperm pollen or spores
had any clear biostratigraphical value in the core interval.
Most species were not observed in the Palaeocene section of
the core due to low abundance, with the exception of
Gleicheniidites senonicus and bisaccate Pinopsida pollen, which
were both observed in the Danian. Palaeoecologies suggested
by the spore and gymnosperm pollen assemblage include
lowland tropical forest, estuarine or mangrove environment,
warm and dry tropical scrub, and montane forest.

The bolide impact at the end of the Cretaceous Period
caused a mass extinction in plants, with approximately
18-30% of plant genera and families and 57% of species dis-
appearing at the K-Pg boundary in North American localities
(McElwain and Punyasena 2007). In North Dakota, at least
30% of the Cretaceous palynoflora became extinct at the
K-Pg boundary (Nichols and Johnson 2002). A distinctive
post-impact recovery assemblage dominated by fern spores
has been observed in North America (e.g. Tschudy et al.
1984; Wolfe and Upchurch 1986; Nichols et al. 1992), Japan
(Saito et al. 1986), New Zealand (e.g. Vajda et al. 2001, 2004;
Vajda and Raine 2003; Ferrow et al. 2011), and Gorgonilla
Island, Colombia (Bermudez et al. 2018; Renne et al. 2018).

In the IODP 364 core, the oldest sample with observed
terrestrial palynomorphs, specifically two specimens of
Deltoidospora, is at 615.50 mbsf. Foraminiferal biostratigraphy
constrains the age of this sample depth to between 65.25



and 65.72 Ma (Gulick et al. 2017). The initial terrestrial floral
recovery following the bolide impact has therefore not been
observed in the IODP 364 core, and the spore and gymno-
sperm pollen record in the Palaeocene is too scarce to draw
any definite conclusions about the overall Palaeocene assem-
blage. The low abundance in the Palaeocene section may be
related to poor preservational conditions for palynomorphs
or low terrestrial input to the crater basin, or a combination
of these two factors. This is likely to be the case elsewhere
in the crater basin as well. Palynological analysis of more
inland sections to the south along the buried Chicxulub cra-
ter rim or outside the impact crater in the Yucatan Peninsula
may provide better conditions for observation of the initial
post-impact floral recovery in the future.
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