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ABSTRACT: It is challenging to predict the docked
conformations of two proteins. Current methods are
susceptible to errors from treating proteins as rigid bodies
and from an inability to compute relative Boltzmann
populations of different docked conformations. Here, we
show that by using the ClusPro server as a front end to
generate possible protein−protein contacts, and using
Modeling Employing Limited Data (MELD) accelerated
molecular dynamics (MELD × MD) as a back end for
atomistic simulations, we can find 16/20 native dimer
structures of small proteins as those having the lowest free energy, starting from good−bound−backbone structures. We
show that atomistic MD free energies can be used to identify native protein dimer structures.

1. INTRODUCTION

We describe a way to improve computer predictions of the
structures of protein−protein dimers. Much work has been
done in modeling protein docking. The protein docking
community has established an event, called CAPRI (Critical
Assessment of PRediction of Interactions), for the blind testing
of docking algorithms.1−3 This has brought the challenges into
clear focus. Proteins have so many degrees of freedom of
internal and relative motion that simplifications are needed to
tame the computational combinatorial explosion.4−11 One
main simplification is to treat each protein as a rigid body.
Another simplification is to use quasi-physical “scoring
functions” instead of more physically accurate free energies.
Both introduce errors into structure prediction.12,13 Recently
the ProPOSE approach has been developed to deal with some
of these limitations allowing for flexible side chains during the
docking prediction.14 Molecular dynamics (MD) simulations
with atomistic force fields in principle represent an approach to
such limitations, but at a extremely high computational cost.
For example, using highly specialized computational resour-
ces,15 Shaw helped to refine oligomeric structures using MD16

and observed several undocking−docking events of five protein
dimers starting from the bound structure.17 To reduce the
computational cost of MD, Hou et al. used simplified coarse
grained molecular models to quite successfully compute the
binding free energy of different docking poses.18

A recently developed method called MELD (Modeling
Employing Limited Data) considerably accelerates physics
based simulations (like MD or Monte Carlo) using generic or
vaguely directive information to restrict the search space of the

problem.19,20 We call MELD × MD the application of MELD
to MD simulations. MELD × MD is useful in protein structure
determination,19 computing the poses and affinities of binding
a peptide to a protein,21,22 and the folding of small proteins in
CASP, the blind native prediction event.20,23−25 The
acceleration in MELD × MD comes from a Bayesian
integration of external information that can be probabilistic
or combinatorial and not specific.
Here, we first use the ClusPro (CP) rigid-body docking

server to estimate sets of protein−protein contacts from its 15
best docked poses.11,26−29 Those contacts are input to MELD
× MD, which then explores the internal and relative degrees of
freedom of the two proteins with replica-exchange sampling in
a physical potential function. We find that MELD × MD adds
value in predicting dimer structures by identifying the highest
computed conformational population (lowest free energy).
Our study here is limited to situations in which both proteins
are given to have roughly the correct backbone trace, so that
we can learn from our modeling the value of including the
flexibility that MD provides and of computing populations
(free energies) to pick out native dimer structures among
options. During our MELD × MD simulation the con-
formations of the side chains and the backbone are allowed to
fluctuate. Future work will investigate the use of this flexibility
to refine the monomer backbone structure during the MELD
× MD docking procedure, but this was not done here. Such
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refinement is particularly important when bound state
monomer structures are not available.

2. EXPERIMENTAL SECTION
2.1. MELD Accelerates Conformational Exploration

by Using External Information. Because a protein has so
many degrees of freedom, it is computationally expensive to
sample them and find its equilibrium states by molecular
dynamics simulations in a physical force field. It is even more
challenging to model two proteins binding to each other.
MELD is a recently developed method that can accelerate MD
simulations of proteins when there is some form of target
knowledge about the relevant states. Unlike traditional
constraining methods, MELD does not require that the
constraints be precise, accurate, or deterministic. MELD can
speed up the finding and sampling of important states using
external information that is even loose, partly wrong,
corrupted, probabilistic, or incomplete. In the present
situation, we give MELD the directive that “most of the
contacts predicted from the ClusPro rigid-body server, in one
of top 15 poses, are likely to be essentially right” and that “the
monomers should not unfold”.
Here’s how MELD uses smart springs to direct MD

simulations to focus around promising regions of conforma-
tional space. The springs are smart in two ways. (i) Not all
springs are active at the same time. MELD uses Bayesian
inference to parse springs into different subsets that are active
at different times. The active ones are always the ones with the
lowest spring energy (i.e., the ones that are least violated).
Switching between different sets of springs happens without
violating detailed balance. (ii) The springs energy functions are
flat-bottomed. This ensures that, when they are satisfied, no
energy is added to the force field’s Hamiltonian of the system.
Relative populations of the different regions of the conforma-
tional space that satisfy some of the external information are
consistent with the populations of unrestrained simulations
and can therefore be used to compute proper free energy
differences between them, based only on the force field.
The smart-springs approach focuses the computational effort

around regions of the conformational space that are consistent
with the data.19,20 For good sampling, MELD × MD uses the
Hamiltonian and temperature replica exchange (HTRE)
protocol.30,31 Higher temperatures correspond to moving up
the replica ladder, which leads to weakening the springs.
2.1.1. MELD × MD Setup. In this paper, we study protein

dimers. Our conformational space is the relatively limited
number of docking poses of the two monomeric proteins, in
addition to some flexibility in the internal structure of each
protein. We enforce these two conditions separately. (i) We
limit the docking space using the intermolecular contacts
proposed by CP. In the lowest energy replicas, our system is
forced to explore the conformational space that is compatible
with a fraction of the contacts predicted by CP. We do this by
computing the intermonomer contacts of the first 15 CP poses.
To avoid kinetic biases of our replica exchange protocol that
would make simulation convergence harder to reach, we
randomly remove contacts from poses until every pose has the
same number of contacts as the pose with the least contacts.
The contacts of each one of the poses are collected in different
groups and our Bayesian approach allows us to have only a
fraction (70%) of the springs of one of these groups active at
the bottom of the replica ladder at any moment. This allows
some flexibility in the final docking contacts of our poses

compared to the CP contacts that we use to create the smart
springs in the MELD simulations. (ii) Monomers should not
unfold during the simulation. We force the monomers to
maintain the native secondary structure: we weakly restrain the
position of the alpha-carbons of the first monomer around
their native monomer positions, and we enforce 80% of the
native monomer intramolecular contacts of the second
monomer to be satisfied. Our approach allows for more
flexibility in the two monomers than is currently used by other
docking approaches. In particular, the side chains are totally
free to reorient, and the structures of the main chains are free
to fluctuate around the restraints. In this work we use the same
approach for all 20 pairs of dimers, but in principle it is
possible to tune the flexibility of different parts of the systems
according to specific needs.
The restraints that drive the docking (the one at point i) are

slowly turned on while descending the replica ladder (between
α = 0.83 and α = 0.33); other restraints are on at all time. The
monomers are forced at all times to sit within a sphere of
radius RgR + 2.5RgL + 0.5 nm, where RgR and RgL are the radius
of gyration of the receptor and of the ligand, respectively. The
temperature is geometrically increased climbing the replica
ladder, from 300 at α = 0 to 550 at α = 0.6, and after the
temperature is constant. Due to the way we enforce the MELD
restraints at the highest replica, the monomers are not docked
and the ligand is free to rotate. This means that, in all our
simulations, every system copy experiences several undocking
and docking events in different poses while climbing and
descending the replica ladder.
HTRE simulations are run using 30 replicas. Replicas start

equally spaced in replica index space, but their positions are
adapted during the simulation to optimize exchanges.
Exchange between different replicas are attempted every 50,
and the simulations are 2.5 long for each replica. The initial
pair of structures is the same for all replicas, and they are
structures in which both monomers have their native bound
structure, but the two monomers are not in contact.

2.1.2. MD Simulation Parameters. All our MD simulations
are carried out using ff14SB-side force field (FF), which uses
ff99SB32 parameters for the backbone and the recent ff14SB33

parameters for the side chains. We use the GB-neck2 implicit-
solvent model.34 Simulations are run with steps of 4.5 using a
Langevin integrator with a friction coefficient of 1.0 ps−1.
Hydrogen masses are repartitioned to allow for the long time-
steps. A cutoff of 1.8 is used for all interactions. MELD is a
plugin to the OpenMM35 simulation package. Non-MELD
simulations used to test the dimer stability are run using
AMBER.36

2.1.3. Dimer Selection and System Flexibility. Our aim is
to show how a physically accurate (but also computationally
expensive) approach can accurately identify the native state of
dimers when more simple docking protocols fail to do so. Of
the 49 small dimers we identified from the PDB37 that are
stable in our simulation condition (see SI 1 for an in depth
description of the procedure used to screen PDB dimers),
vanilla CP (i.e., the CP run using the standard setting of the
web server) is able to correctly dock 34 of them (i.e., the CP
TOP1 structure is native-like). Our test set was comprised of
the 15 dimers that CP failed to correctly predict, and 5 out of
the 34 it correctly predicts. For 19 of these 20 systems CP did
provide at least a good structure in the first 15 CP guesses, for
the twentieth dimer we provided MELD also native contacts.
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In this way we show how our free-energy-based prediction can
add value when it is needed.
Including protein flexibilities is critical for good estimates of

the free energy. We enforce weak restraints on the receptor α
carbon positions, and we enforce a fraction of the native
contacts within the ligand. Backbone α carbon RMSDs of the
receptor and the ligand go easily up to 2.5 Å (see SI Figure 3),
and the side chains are totally free to reorient. While it is true
that the starting conformation of the monomers are theirs
bound structures, this structure evolves quickly to a few
angstroms away in the MD protocol. CP predictions are the
ones that are mostly influenced for using the bound structure
of the monomers, but we use bound-complex docking as a
reliable source of intermolecular contacts. In principle, we can
use any source of information (experimental or computational)
as long as we can define the confidence associated with such
information. Also we note that we use a vanilla approach to
CP. A more thoughtful use of CP might yield to better results,
but this is outside the scope of this paper. Future work will
explore how to use less reliable sources of information
compared to bound docking (like template based docking or
experimental data), and the simultaneous docking and
refinement of monomer structures (e.g., starting from protein
structure prediction or apo structures instead of holo
structures). In this initial work, we are interested in showing
how well we can predict native-like dimer structures using a
free energy based method. The flexibility of the proteins in the
simulations presented here goes exclusively toward the
evaluation of accurate free energies of the docking poses.

3. RESULTS
The quality of our predictions is discussed in the context of the
metrics used by the CAPRI community; the reported values in
this paper are calculated using the DockQ software.38 For
heterodimers, the ligand RMSD (LRMSD) is the ligand (i.e.,
the shorter chain) backbone RMSD computed after super-
imposing the receptor (i.e., the longer chain) backbone. For
most of our structures, which are homodimers, we consider the
receptor to be the first chain and the ligand to be the second
one in the native dimer PDB file. For the computation of the
interface RMSD (iRMSD), an interface residue is defined as
any residue that has a heavy atom less than 10 Å away from an
heavy atom of a residue that belongs to the other monomer
chain in the native structure. We also report the percentage of
true positive (fTP) and false positive (fFP) contacts, where
contacts are defined with a more restrictive 5 Å heavy-atom
distance cut off. We report also the CAPRI score and the
DockQ score, which are a combination of the RMSD and
contact distance parameters.
3.1. Using Information from CP, MELD × MD

Successfully Docks 16/20 Dimers. Our predictions are
obtained by clustering the trajectories of the five lowest
replicas in the HTRE simulation. The first 250 ns of each
trajectory (i.e., the first 5000 exchange attempts) are
considered to be equilibration period for the systems and
therefore are discarded from this analysis. We cluster the
frames using the DBSCAN algorithm39 implemented in
sklearn.40 As the distance metric between structures, we use
the LRMSD computed on the backbone alpha carbons. For a
structure to be included in a cluster, it should have a maximum
distance of 3 Å from core structures in the same cluster. A
structure is considered a core structure of a cluster when it has
at least 200 neighbors. In SI 4 we show the small effect

different clustering parameters and methods have on our
predictions. The centroid of each cluster is then selected as
representative structure, and our predictions are ranked
according to cluster population, i.e. MELD × MD TOP1
(abbreviated as MELD TOP1) structure is the centroid of the
most populated cluster. No information about the native
structures or the CP poses enters the clustering protocol,
making this effectively a prediction.
We assess the quality of our predictions by comparing the

structure of the centroid of our most populated cluster (i.e.,
MELD TOP1 prediction) with the crystal structure of the
native protein. We use this seemingly restrictive definition of
success (only TOP1) because a correct ranking of the poses is
a necessary feature of free energy based methods. In section
3.1.3 we will investigate the origin of the four failed predictions
and provide suggestions to fix these failures.
Figure 1 shows our results. Each box shows the native

structure of the dimer in white, with the receptor depicted as
surface and the ligand as a semitransparent cartoon. For each
system the ligand position and structure of the MELD TOP1
prediction is represented by a blue cartoon. Boxes are colored
in green if the CAPRI score is at least acceptable. The five
systems on the left of the figure are the ones that CP

Figure 1. Correct predictions of the native structures of 16/20
dimers. (Green) Successful MELD TOP1 predictions. (Red)
Unsuccessful. (Green, 5 left panel) Predictions are also ones that
CP ranks correctly. The receptor of the native structure is depicted as
white surface, and the ligand is depicted as transparent white cartoon.
We only show the structure and position of the ligand of our
prediction (solid blue cartoon).
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successfully ranked (i.e., the CP TOP1 is the best pose
predicted by CP according to LRMSD metric). As it is possible
to notice when CP is successful in predicting a close to native
pose we are also successful in predicting the docking pose.
When CP fails, we are often able (11/15 cases) to correctly
predict a structure close to native, making our method
complementary to what is in the field. In Table 1 we report
LRMSD, iRMSD, fTP, fTN, CAPRI, and DockQ scores for the
MELD TOP1 predictions of the 20 dimers. Out of the 16
successes according to the CAPRI score: 2 are acceptable, 13
are medium, and 1 is high quality. This suggests that, for these
systems, a physically accurate model that allows for an accurate
representation of the entropy and energy fluctuations of the
different poses is key to obtain an accurate ranking of the
structures. The relatively high LRMSD of 1Z09 is due to a
rearrangement of a ligand α helix. This rearrangement happens
away from the interface so it does not dramatically affect the
quality of the docking prediction.
Two factors contribute to the quality of our MELD TOP1

prediction. (i) We use the size of structure population as a
proxy for a free energy evaluation. Thanks to the quality of the
force field and solvent model, we are able to use/identify the
most native set of CP intermolecular contacts, and to
successfully dock 16/20 dimers. (ii) MELD ensures that our
system sits in the vicinity of one of the first 15 CP poses (in
terms of intermolecular contacts). The FF is then allowed to
explore the conformational space surrounding the sets of
contacts. This allows physics to identify better poses than the
(vanilla) rigid docking protocol we used to predict contacts in
13/16 cases. Identifying a good set of contacts and letting
physics explore the allowed conformational space to provide a

good structure is a two step process in all our predictions, but
we will look at them separately in sections 3.1.1 and 3.1.2. In
section 3.1.3, we look at why we fail to predict the docked
conformations of four systems correctly.

3.1.1. MELD “Picks” Out Which ClusPro Contacts Are
Native. MD is grounded in physics. MELD focuses MD in
order to sample only certain regions of the conformational
space without biasing the relative probability of the allowed
conformations. It is therefore possible to use the relative
population of different structural clusters in our trajectory to
identify the lowest free energy cluster (i.e., the most
populated). Since we allow our simulation to explore only
dimer conformations that share contacts with one of the first
15 CP poses, we could say that we are able to rerank CP poses.
However, in this work we allow the system some freedom to
move around CP predicted contacts. So it is not straightfor-
ward to use our simulations as a pure CP reranking tool. In
principle, by limiting the search space around CP docking
poses it is possible to make MELD × MD an almost “pure CP
poses reranking method”.
Figure 2 shows an example. For 2A2Y, the TOP1 CP

structure (central column) has the dimer on the other side of
the protein from the native crystal structure(left column). In
the simulation, MELD × MD attempts to dock the two
monomers according to the contacts from the 15 different CP
poses. The fact that at the end of the simulation the centroid of
the most populated cluster is extremely similar to the native
structure (right column) shows how MELD was able to
identify the best set of contacts to drive the monomer docking.
Figure 3 shows how we consistently pick out the best pose
between the 15 ones suggested by CP. It is possible to track

Table 1. Correct Predictions of the Native Structures of 16/20 Dimersa

MELD TOP1 CP TOP15

PDB id LRMSD Å iRMSD Å fTP % fFP %
CAPRI
score

DockQ
score no. LRMSD Å iRMSD Å fTP % fFP %

CAPRI
score

DockQ
score

3DGP 1.7 1.5 73 18 M 0.73 0 6.2 2.1 74 32 A 0.58
2CNP 2.0 2.1 73 28 M 0.67 0 4.4 1.9 70 22 M 0.63
2L0P 2.7 2.7 81 44 M 0.65 0 3.7 1.4 80 28 M 0.73
2MMA 4.7 2.4 71 56 M 0.59 0 6.0 3.4 25 82 A 0.36
2GZU 5.5 3.4 78 47 A 0.55 0 2.8 1.6 71 10 M 0.69
2A2Y 1.8 0.8 91 19 H 0.88 2 3.8 1.3 95 28 M 0.78
2LYJ 2.0 1.2 77 24 M 0.78 5 6.0 3.1 61 47 A 0.49
1NS1 2.2 1.7 73 35 M 0.70 3 4.9 2.2 51 53 M 0.52
1ZZF 2.3 1.4 87 21 M 0.78 6 3.7 1.4 90 28 M 0.76
2N74 2.3 2.6 72 42 M 0.64 1 4.3 2.5 57 59 M 0.54
1EV0 2.6 2.3 89 27 M 0.70 1 4.0 2.0 57 35 M 0.58
2B87 3.4 1.7 90 24 M 0.73 4 5.5 2.2 50 39 A 0.50
4QR0 3.9 2.8 67 49 M 0.57 3 4.8 2.1 43 44 M 0.51
4RZK 4.8 1.2 85 23 M 0.74 1 9.0 1.7 67 46 M 0.52
1CFP 6.8 4.4 41 79 A 0.37 10 8.0 4.8 33 68 A 0.32
1Z09 15.1 1.7 90 36 M 0.53 1 2.9 1.2 78 15 M 0.76
1H0X 11.2 4.3 38 79 I 0.28 13 6.3 2.6 53 59 A 0.47
1R7H 17.2 12.8 8 92 I 0.10 1 2.6 1.8 73 29 M 0.68
2EZX 25.6 12.5 10 94 I 0.07 4 2.7 1.0 96 23 M 0.85
3TOE 24.3 12.9 2 98 I 0.05 7 20.7 10.2 0 100 I 0.06

aWe give the RMSD of the ligand (LRMSD) and the interface (iRMSD) amino acids, the fraction of true (fTP) and false positive (fFP)
intermolecular contacts, the CAPRI classification of the predicted model (H = high, M = medium, A = acceptable, I = incorrect), and the DockQ
score. The first column of the CP TOP15 prediction (i.e., the best structure in the first 15 CP poses) reports the CP ranking of the structure with
the lowest LRMSD value compared to native (ranking index is zero based). Bold PDB ID represent systems for which MELD × MD predicts the
dimer structure with a higher DockQ score than the CP TOP15 prediction. 3T0E is highlighted in italic because neither MELD × MD nor CP are
able to correctly predict the structure. CP is able to correctly identify the native structure of the first five dimer. The last four systems are the ones
for which our protocol fails to predict the native structure. The 11 systems in between are dimers that we successfully predict.
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which pose in the first 15 CP poses is favored by the FF by
counting how often a pose is active in the lowest 5 replicas
during our simulations. The histogram bars in Figure 3 show
the relative populations of the first 15 CP poses in our MELD
× MD simulations; the red lines identify the CP TOP15 (by
LRMSD) for each system. It is possible to see how MELD ×
MD is able to consistently identify the best pose. 2LYJ, 1NS1,
4QR0, 2B87, and 1CFP have more than one good pose
(LRMSD < 6.5 Å) within the first 15 predicted structures,
making the populations split between those. Due to the relative
relaxed way we enforce the restraint, there is some uncertainty
in selecting which pose is active. First we compute the
intermolecular contacts from the CP predictions. Then we
force all poses to have the same number of contact as the pose
with the fewest contacts by randomly removing contacts from
poses that have more contacts. This is necessary to avoid
kinetic bias in selecting poses along the RE ladder that could
make convergence harder. Finally we enforce 70% of the
contacts as active. This allows quite some freedom to explore
around the original CP poses, making it relatively easy for
similar poses to be selected because the FF can explore the
same conformational space starting from different poses. This
is not a problem for the clustering protocol we use to select the
MELD TOP1 pose because it does not use any CP
information, but it makes difficult to use this MELD × MD
protocol as a purely CP reranking method.
3.1.2. MELD × MD Often Gives Better Structures than

Vanilla CP. As noted above, we enforce only 70% of the
intermolecular contacts of any given poses, and we do not add
a penalty for any additional intermolecular contact formed.
This means that we allow some freedom for the monomers to

explore the space around the contacts of the CP poses. An
interesting example of this is shown in Figure 4. In this case,
the CP TOP1 prediction is acceptable according to CAPRI
metrics. MELD × MD correctly identifies that the set of
contacts belonging to the CP TOP1 pose are closest to native
and provides a structure that satisfies 76% of such contacts.
The force field is then able to pick up and go the last mile in
docking the dimer into a better structure, one that has a
medium CAPRI score, a better rank than the CP pose we use to
provide this set of contacts. A similar process happens in all the
predictions, and only in 3 of the 16 successful predictions
MELD × MD predicts slightly worse docking poses than
vanilla CP does (see Table 1). This highlights also the quality
of the FF for studying dimers.

3.1.3. Failures. The four failures to predict correct dimer
conformations are linked with failures of the protocol we use,
or with limitations of the physical model used to describe the
system. The 3T0E prediction suffered a nonconverged RE
simulation. Figure 5 show that the different simulations of the
RE protocol did not explore a similar set of conformations.
1R7H is also partially affected by a not totally converged RE
simulation. 1R7H and 3T0E are the only two systems for
which the population of the MELD TOP1 prediction is below
60% of the overall number of clustered frames. As in protein
folding, low MELD cluster populations seem to flag systems

Figure 2. MELD can identify the correct set of contacts to use. The
left column shows the native structure of the 2A2Y dimer both using a
3D view and a map of the position of native contact on the first
monomer. Here the first monomer is approximated as a sphere and it
is represented as a map using a Mollweide projection41 (see SI 5). In
the central column we see the CP TOP1 prediction. In this case, CP
places the second monomer on the wrong side of the protein. All
contacts are FP and therefore are shown in red on the map
representation. The wrong position of the dimer is reflected in the
three metrics reported below the map. The centroid of the most
populated MELD × MD cluster (right column) is strikingly similar to
the native structure. The map shows that most of the contact are TP
(shown in green). Comparing native and the MELD × MD contact
map shows that the MELD × MD contacts are also in the right
position. Metrics comparing the MELD × MD prediction with the
native structure also show excellent agreement. MELD selected the
best set of contacts.

Figure 3. We can successfully rerank CP poses. The histograms show
for each of the 20 systems how often one of the first 15 CP poses is
active in the lowest 5 replicas of our MELD × MD simulations (i.e.,
the relative population of the first 15 CP poses). The red lines identify
for each system the CP TOP15 (by LRMSD). In most cases, MELD
× MD is able to consistently identify the best pose. 2LYJ, 1NS1,
4QR0, 2B87, and 1CFP have more than one good pose (LRMSD <
6.5 Å) within the first 15 predicted structures, so the MELD × MD
populations tend to split between those.
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for which the answer is uncertain. In 2EZX and 1R7H the
ligands change conformations, making docking in our
simulation time scale impossible to converge. For example,
let us say that the monomers look like two hands, and the
dimer native structure looks like a handshake. To achieve a
correct docking the two hands must be open when the docking
is attempted. It is impossible to dock correctly the two
monomers if when undocked the ligand closes like a fist. This
is what happens to the 2EZX and 1R7H systems. The
information that is in place fails to keep the hand open, since
the contacts of an open hand are a subset of the contacts of a
closed one and the FF/solvent model favors a closed
conformation of the ligand. A possible way to recover this is
to penalize the formation of too many new intramolecular
contacts, or to use a full intramolecular distances matrix instead
of only a contact matrix to limit ligand conformation
explorations. Interestingly, Figure 2 shows how the most
often active sets of CP information for these two systems are in
both cases the ones of the CP TOP15 structures. It is
reasonable to assume that limiting ligand conformations for
these two systems will recover the correct predictions. We
briefly note here that properly tuning the flexibility of receptors
and ligands has an important effect on MELD × MD ability to
successfully dock dimers. Flexibility increases the size of the
search space to explore. Rigidity might hinder moves that can
in some case be necessary to wrap monomers around each
other. In this paper we present a uniform approach for all the
20 test cases that works for most of them, but some docking
attempts would benefit from individualized approaches.
Finally, 1H0X prediction fails because the FF favors a different
docking pose. A small bump in the third panel of the LRMSD
probability highlights that the systems visits a set of native-like
conformations, but this cluster appears not be the one favored
by the FF. In SI 3 we show how the 16 systems that MELD ×
MD correctly predicts are not affected by the limitation
discussed here.
In Table 2 we look at the same quantities presented in Table

1, computed over the MELD TOP10 structure for the four
systems where MELD × MD fails to predict native, and for
1Z09, for which a change in the structure of the ligand affects
some of the score. All the systems affected by a change in the
ligand structure (1Z09, 1R7H, and 2EZX) have small
population clusters of medium quality that improve on the
metrics of the TOP1 prediction. This means that when the
system samples a correct ligand structure, MELD ×MD is able
to correctly dock the dimer. These correct ligand structures are
simply sampled too rarely compared to incorrect ones, causing
native docking poses not to be the most populated ones.
It is likely that limiting the flexibility of the ligand in our

docking protocol would allow these three systems to be
predicted correctly. It is also known that biologically relevant
homodimers have a high degree of symmetry,42,43 and this
implies that the structure of the two monomers needs to be
similar. We can in principle use this knowledge to skim our
predictions in order to eliminate homodimer predictions with
significantly disparate monomer structures. We show in SI 6
that by doing so we can recover the correct predictions of these
three dimers without affecting the prediction quality of the
other successes.
1H0X and 3T0E are not dramatically affected by a structural

rearrangement of the ligand, and they do not sample structure
close to native. Failure in predicting the native state of these

Figure 4. MELD × MD can provide better docking poses than CP.
The left column show the native structure of the 2MMA dimer both
using a 3D view and a map of the position of native contact on the
first monomer. In the central column the CP TOP1 prediction is
shown. In this case CP places the second monomer almost correctly;
in fact from the map it is clear that this pose has 7 TP and 6 FP
contacts. CAPRI ranks such pose as acceptable docking. MELD is able
to use the contact of this pose for the docking process, but since we
allow enough freedom to the system it predicts the final structure
(right column) has 9 TP contacts and reducing the number of FP to 3
compared to native. The improvement of the CAPRI ranking from
acceptable to medium reflects the benefit of this flexible approach.

Figure 5. Failed predictions result from unconverged replica exchange
or force field problems. We show several RMSD distributions for the
four systems we fail to correctly predict (rows). The first column
addresses the convergence of the RE protocol. Here are distributions
of LRMSD for the 30 simulations of each RE run against a randomly
selected structure from the simulation. The more similar are the
traces, the more the RE simulation is converged. For 3TOE (and
partially also for 1R7H) the traces vary extremely, implying a
nonconverged RE simulation. The second column shows the RMSD
distributions of the structure of the monomers of each dimer
(receptor in gray and ligand in black) compared to their native bound
structure. For 1R7H and 2EZX, the high ligand RMSD values (>4 Å
to the right of the vertical red line) highlight important structural
rearrangements of the second monomers during the simulations.
Those rearrangements prevent the correct docking of the dimer. The
last column shows the distribution of the LRMSD against native for
the four systems. 1H0X visits the native conformation (<5 Å to the
left of the vertical red line), but it is not the most populated state. In
this case the FF/implicit solvent model combination favors another
structure.
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monomer is linked to issue of convergence of the REMD
protocol and to limitations in the force field and solvent model.
3.2. We Can Apply Our Protocol to an Example CASP/

CAPRI Case. In section 3.1 we showed the success of our
protocol in predicting the structure of dimers when we provide
good information. Good information comes from the CP
contacts prediction based on bound-complex docking and on
exploring monomer conformations close to their bound
structures (albeit some ligands are able to evolve to structures
up to 10 Å away during the simulation). This is consistent with
the aim of this paper to use flexibility to evaluate correctly the
relative stability of the different binding poses. In principle, the
flexibility we introduce in the system can at the same time be
used to refine the monomer structures (side chains and
backbone). To test to which extent our protocol is able to
handle monomer structural refinement, we use the CAPRI
T120 target, from the joint CAPRI round 37 - CASP 12
competition.13,44 As starting structure for the monomers we
use the model # 1 submission of the Zhang-Server group
(TS479),45 based on I-TASSER46−48 for the two monomers
(T0921 and T0922). The monomers have a RMSD to their
native structure of 3.0 and 3.4 Å, respectively. We feed these to
vanilla CP and we then use the predicted contacts to limit the
search space of our simulation. As the initial structure of our
simulation we use the two predicted monomer structures not
in contact. We run our MELD × MD simulation using the
same protocol as described above. Table 3 shows a summary of
the TOP1, TOP3, and TOP5MELD predictions and the
TOP15 CP prediction. Our protocol is not optimized to
handle the uncertainty of the monomer structures or in the
intermonomer contacts. It is therefore not surprising that we
fail to predict a MELD TOP1 structure close to native.
However, we did identify some acceptable structures (2 and 3),
and the first acceptable structure is ranked higher than the best
CP structure (3). This small improvement on the CP
prediction is promising. We recognize that, while this result
is promising, future work (well outside the scope of this paper)

is needed to fully assess the value that MELD × MD provides
in more challenging conditions where monomers need to
change their shapes to successfully dock. Different classes of
problems fit this description: in template based docking
monomers need refinement, in docking from monomer apo
structure some structural rearrangement is in order, and in
unstructured protein docking a folding-like process is necessary
upon docking.

4. CONCLUSIONS
We describe a method that gives improved protein−protein
structure predictions. It starts with the 15 best structures
produced by the ClusPro rigid-docking server. It then uses the
interprotein contacts predicted by CP for each structure as
restraints that are imposed probabalistically within the MELD
Bayesian method. MELD-accelerated MD then gives improved
dimer structures and produces populations (free energies) that
are predictive of which dimer conformation is the best of the
lot. The protocol we presents performs well if we start with the
monomers having the bound backbone conformation but also
demonstrates some improvement when the backbone con-
formation come from predictions as demonstrated in CASP/
CAPRI example. In this last case, more aggressive sampling of
the monomer structure would benefit the prediction. While the
MELD × MD component is computationally expensive,
nevertheless this approach is a promising way to compute
good protein−protein binding structures.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jctc.8b01208.

Detailed information about the following: how we
choose the 20 dimers, how to understand the metric
used in the paper in the context of flexible protein
docking, the convergence of the simulations, the effect of
different clustering approaches on the quality of the

Table 2. Same Quantities as in Table 1 for the MELD TOP10 Cluster for the Four Systems That MELD ×MD Fails to Predict
(1H0X, 1R7H, 2EZX, 3T0E) and for the 1Z09 Systema

MELD TOP10

PDB id no. LRMSD Å iRMSD Å fTP % fFP % CAPRI score DockQ score

2EZX 2 2.2 2.0 69 25 M 0.66
1R7H 8 3.2 3.2 63 31 M 0.563
1Z09 1 3.4 1.4 86 19 M 0.747
1H0X 0 11.2 4.3 38 79 I 0.282
3TOE 1 14.9 6.2 32 83 I 0.206

aA good structure of the ligand is crucial for correct docking predictions. Three systems (1Z09, 1R7H, 2EZX) sample native-like dimer structures
often enough for them to be identified by the clustering protocol, but they are not frequent enough to be the most populated clusters of the
simulations (i.e., MELD TOP1).

Table 3. Same Quantities as in Table 1 for the CAPRI TS479 Prediction Based on Zhang-Server Monomer Structure
Predictiona

prediction no. LRMSD Å iRMSD Å fTP % fFP % CAPRI score DockQ score

MELD TOP1 0 17.8 11.5 7 80 I 0.09
MELD TOP3 2 8.6 5.5 13 82 A 0.23
MELD TOP5 3 8.4 5.3 15 78 A 0.24
CP TOP15 3 5.8 4.2 22 68 A 0.33

aA different protocol is needed if the monomers needs refining. The protocol we used is not optimized to handle the high uncertainty of the
information we input. It is therefore not surprising that we are unable to identify the most native docking pose in this case. Nonetheless the first
acceptable structure is ranked 2 in MELD, while it is ranked 3 in vanilla CP. This improvement is promising.
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results, how we draw the protein map, and how to use
symmetry to improve predictions (PDF)
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