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ABSTRACT: A current challenge is to compute the native
structures of proteins from their amino acid sequences. A
main approach of bioinformatics is threading, in which a
protein to be predicted is computationally threaded onto
protein fragments of similar sequence having an already
known structure. However, ~15% of proteins cannot be
folded in this way; this has been called the glass ceiling, and
the proteins are called nonthreadables. For these, physical
molecular dynamics (MD) modeling is promising because it
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does not require templates. We find that MD, when used with an accelerator called MELD, can fold many nonthreadables. For
41 nonthreadable proteins with fewer than 125 residues, MELD-accelerated MD (MELD X MD) folds 20 of them to better
than 4 A error. In 10 cases, MELD X MD succeeds even when the force field does not properly encode the native state. In 11
cases, MELD X MD foretells its own success; seeing large Boltzmann populations in the simulations predicts it has converged to
the correct native state. MELD X MD acceleration can be applied to a broad physical protein modeling range.

1. INTRODUCTION

Computer modeling of proteins is valuable for understanding
biological mechanisms of action, dynamical motions, biological
function, and protein folding and binding and for designing
ligands as drugs. An important challenge for computational
methods, and a useful test bed, is to predict the native folded
structure of a protein from its amino acid sequence. There are
many methods, but they tend to range between two limits. (i)
In bioinformatics, an early step in predicting an unknown
protein structure is to find another protein, the template, that
has a similar sequence and a known structure in the Protein
Data Bank (PDB).' In threading, a particular sequence is
scored for suitability with known structural fragments from a
database of different folds. These database-dependent methods
are often relatively successful when the level of homology is
high. (ii) In physical molecular dynamics (MD) simulations,
no such template is required because computations are fully
self-contained within the physics of the model, but physical
modeling is limited by some imperfections in force fields and
the need for extensive computing resources. MD has not yet
been a practical way to compute folded structures of proteins.

However, we recently developed an accelerator for MD
simulations, called MELD (modeling employing limited
data).”> MELD-accelerated MD (MELD X MD) accelerates
the search for important states when some limited (and often
vague) information is available. For example, MELD X MD
has been able to fold small proteins,”* including in the blind
competitive event critical assessment of structure prediction
(CASP),™" given only the knowledge that proteins have
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hydrophobic cores, are compact, and have secondary
structure. ¢ 1% Here, we test MELD X MD in another
situation that requires a physics-based method. In particular,
~15% of proteins cannot be threaded onto known templates
and cannot be predicted using bioinformatics-based threading
methods."” Skolnick has called this limitation a glass ceiling
and the proteins nonthreadable. Here, we ask if MELD X MD
is capable of predicting the native structures of nonthreadable
proteins. We describe here a number of successes, but we also
comment on the challenges and current limitations.

2. METHODS

2.1. Modeling Employing Limited Data. MELD
accelerates MD simulations, obeys detailed balance, and
satisfies Boltzmann’s law. MELD X MD is also a Bayesian
inference method, where the force field-generated structural
ensemble is the prior, heuristics from general knowledge about
proteins provide the likelihood, and the resulting structural
ensemble is the posterior distribution. Data that are sparse,
ambiguous, or unreliable can be effectively used in MELD X
MD to limit conformational searching and accelerate
simulations. Besides protein folding, MELD X MD also has
applications in identifying pathways, determining protein—
protein interactions, and ligand binding in drug discovery.”’

2.2. Folding Simulations with MELD x MD. MELD X
MD uses Hamiltonian, temperature-replica exchange molecular
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Figure 1. Subset of nonthreadables that were selected for MELD X MD. Nonthreadables were filtered out to eliminate sequences least likely to be
folded by MELD X MD. A set of 41 protein monomers with fewer than 125 residues, a low net charge, and a high secondary structure content were

selected for MELD X MD simulations.

dynamics (H,T-REMD)*"** with the AMBER ff14SBside**
force field in the GBneck2 implicit solvent (igb = 8),**
powered by OpenMM?™” to run on graphical processor units
(GPUs). Each MELD X MD run was performed with 30
replicas ranging in temperature from 300 to 450 K, using
Langevin dynamics, and a 4.5 fs time step with the hydrogen
mass adjusted to 4.0 Da, but keeping the heavy atom and
hydrogen pair mass the same. MELD X MD builds an initial
extended structure from the sequence using tleap from
AmberTools17.”® Sets of restraints that impose secondary
structure, hydrophobic contacts, and hydrogen bonding
between f-strand pairs are tabulated from sequence
information. Of all possible restraints generated, only a fraction
are enforced at each time step; the energies of the restraints are
calculated at each exchange step, and the lowest-energy
restraints in each replica are activated. Secondary structure
restraints are predicted with PSIPRED;” all predictions for
helices and sheets are accepted, and 70% of the lowest-energy
PSIPRED-generated restraints are active at each time step. Sets
of hydrophobic and hydrogen bond restraints are generated;
hydrophobic pairing is enforced so that there are 1.2 contacts
per residue, and secondary structure strand pairing is enforced
at 45%. The H,T-REMD is implemented as follows. At high
temperatures, the restraints have low force constants and are
zero at the highest temperature, while at lower temperatures,
the force constants are increased. Exchange between replicas
happens by the metropolis Monte Carlo method. Detailed
explanations of MELD can be found in ref 3 or 2.

We simulated 41 nonthreadable proteins starting from an
extended conformation using MELD X MD. Each system was
run for at least 1 us; 1GYZ, IHYW, 1KAF, 1PCO, 1IRQ6, 1A6S,
1EOQ, and IND9 were run for 1.5 ys. The computational cost
varied with protein size, but for every 1 us of sampling, the
nonthreadables used ~3000 XK node hours on the Blue
Waters sustained petascale computing resource at the National
Center for Supercomputing Allocations.

2.3. Selecting Nonthreadable Candidates for MELD x
MD. We selected nonthreadable proteins from the three
databases at http://cssb2.biology.gatech.edu/threading/
download.html."” These databases contain proteins identified
by Skonlick and Zhou as having a template modeling score
(TM score)*® of <0.4, below the value used to determine
whether two proteins have the same fold.”” The number of
unique nonthreadable sequences across the three lists was
found to be 898:676 from HHpred,sO’31 637 from SP?>? and
719 from PROSPECTOR_4.>* Nonthreadable proteins come
in a variety of sizes, from 30 to 3440 amino acids in length
(though only five are longer than 215 amino acids), cover
more than 700 Pfam families, contain a range of secondary
structure features, and fold to low- and high-contact order
structures (Figure 1 of the Supporting Information). Running
MELD X MD simulations on all 898 nonthreadables was not
computationally feasible, so a smaller set was selected by
filtering out proteins that MELD X MD is not currently

optimized to fold. Protein sequences selected for MELD X
MD included fewer than 125 residues, were single-chain
monomers, had net charges of <+5, had an at least 50%
secondary structure composition (as predicted by PSIPRED),
had no missing residues, and were not known to be membrane
proteins. After the pre-MELD filter had been applied, the list
was reduced to 41 MELD X MD candidate proteins (Figure
1). The filter eliminated 318 nonthreadables on the basis of
size and 370 on the basis of low secondary structure content.
The remaining sequences were filtered out because they
formed multimers or complexes with other molecules.

2.4. Force Field Stability Tests. The quality of our
modeling results depends on the quality of the force field.
Therefore, to establish whether any successes or failures of our
modeling were due to a lack of sampling by MELD X MD or
flaws in the force field, we first ran control experiments. We ran
non-MELD X MD single-trajectory MD simulations (hereafter
termed MD runs or stability tests to differentiate them from
MELD X MD runs) of each protein starting from its known
native conformation to determine whether the native state of
the protein was stable in the force field and solvent model that
we used in MELD X MD. Stability tests were run for 41
MELD X MD candidates with AMBER pmemd.cuda.”*** For
these MD runs, we used the native structure downloaded from
the PDB as the starting conformation. The ff14SBside protein
force field was used with the GBneck2 implicit solvent, the
same as in MELD X MD folding simulations. Systems were
minimized with 5000 steps of steepest descent followed by
5000 steps of conjugate gradient. The MD systems were each
run for 500 ns of production. Temperature REMD (T-REMD)
was performed for systems 1PCO and 10QK, starting from the
native conformation, with ff14SBside and GBneck2 using
AMBER pmemd.cuda, from 300 to 450 K (12 replicas for
1PCO and 14 for 10QK).

2.5. Seeded MELD x MD Simulations. For proteins that
never sample native conformations in any of the MELD X MD
ensembles, we seeded new MELD X MD simulations with the
native structure to test whether the problem was insufficient
sampling or the force field. The only difference between these
simulations and the MELD X MD folding simulations
described above is that the lowest-temperature replica started
from the native conformation rather than from the extended
conformation.

2.6. Ensemble Processing. We postprocessed trajectories
with a combination of scripts included with MELD X MD and
CPPTRAJ*® from AmberTools17. For MELD X MD
simulations, trajectories from the five lowest-temperature
replicas were clustered using the average-linkage hierarchical
agglomerative algorithm with € 2 A. The conformational
clustering was based on the root-mean-square deviation
(RMSD) of Car and Cf3 atoms of secondary structure residues,
as predicted by PSIPRED. The first 250 ns of trajectory frames
was omitted for clustering. Representatives from the top five
clusters were assessed in terms of their similarity to the native
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Figure 2. MELD X MD predictions vs true experimental natives. (Blue) MELD X MD predicted structures, folded from fully extended. (Gray)
True natives from the PDB. Also given are the PDB identification numbers, sequence lengths in italics (>100-mers are underlined), and the root-
mean-square deviations (RMSD) in angstroms of the MELD X MD structure from the PDB reference. The RMSD was calculated for residues in

secondary structure elements.

state by calculating the RMSD of Ca and Cf atoms of residues
in predicted secondary structure elements from the exper-
imental PDB structure. Cluster representatives with RMSDs of
<4.0 A were considered folded to native. MD and T-REMD
stability tests were analyzed with CPPTRA]J.

3. RESULTS AND DISCUSSION

3.1. MELD x MD Folds Nonthreadable Proteins. We
find that MELD X MD successfully folded 20 of our 41
nonthreadable targets (Figure 2 and Table 1 of the Supporting
Information). We refer to proteins that MELD X MD
successfully folded as “folders” and the rest as “nonfolders”.
Of the 20 folders, 14 folded to structures having the single
lowest free energy. For the other six, the true native was among
the three lowest-free energy conformations.

3.2. MELD x MD Often Foretells When It Succeeds
with Large Populations. An important challenge is to know
in advance when to trust that a computer simulation may have
found the native state. The power of physical modeling, such as
force field-based MD, is that it gives free energies and, hence,
populations. Therefore, when MELD X MD converges on a
state with a large population, it is evidence that the force field
“thinks” it has found the state with the lowest free energy
among all the states it has sampled. Indeed, we found this to be
a good sign of success. When MELD X MD cluster
populations exceeded 40%, the structure it found was within
4.0 A of native in all cases but one (Figure 3). Therefore, for
blind predictions, this criterion is a good measure of
confidence that the simulation has found the native state.
When we see smaller conformational populations, it is
inconclusive (Figure 2 of the Supporting Information).

3.3. MELD x MD Rescues 10 Predictions for Which
the Native Protein Is Not Stable in the Force Field.
MELD X MD is just a search strategy, in principle always
limited by the quality of the force field on which it relies. If a
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Figure 3. Large populations from MELD X MD foretell its success.
Proteins that have large MELD X MD cluster populations fold to the
native structure (low RMSD). Protein IND9 is an exception (see the
text). MELD X MD also folded some proteins to native that had small
cluster populations, but usually small populations imply non-native
folds or a lack of convergence.

simulated protein is put into the true experimental native
structure and if that structure is not stable in the force field, we
should not expect a sampling strategy like MELD X MD to fix
it. However, remarkably, we find that MELD X MD correctly
identifies the native states of 10 proteins that are not stable in
the force field (Figure 4 and Figure 3 of the Supporting
Information). For example, initiating 1AA3 in its true native
state in stability tests leads to its complete unfolding to
structures 10 A from native, but MELD X MD starting from
unfolded found the correct native state and populated it. There
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Figure 4. MELD X MD distributions of folding compared to MD of native structures. (Top left) Example in which the native structure is stable in
the force field and MELD X MD samples it well. (Top right) The force field gives the wrong structure, and MELD X MD finds the wrong structure.
(Bottom left) The force field gives the wrong structure, but MELD X MD rescues it and finds the right structure. (Bottom right) The native
structure is stable in the force field, but MELD X MD does not sample it. The number of occurrences of each type is given in parentheses. (Silver)
True natives. (Blue) MELD X MD prediction. (Yellow) f-Sheets of true native. In short, in half of the cases, MELD X MD finds good native
structures, and in the other half, force field errors cannot be rescued by MELD X MD.

were also nine other examples. The reason, apparently, is that
external knowledge of secondary structures and a hydrophobic
core were sufficient to help the force field find the correct
native state.

However, not surprisingly, MELD X MD cannot always
rescue force field failures. For example, 1W09 has a proline in
the middle of the third helix. Typically, this predicts helix
breaking. MELD X MD generated a kinked third helix.
However, the true native structure has three straight helices.
The force field problems shown with 29 nonthreadables that
sample non-native ensembles provide additional data for
benchmarking new protein force fields. Especially interesting
for force field development might be the 10 proteins that
MELD X MD folded despite the force field favoring other
conformations. This indicates that secondary structure
propensities are likely at fault and the restraints used in
MELD X MD for secondary structure help push those
conformations to higher energies. In addition, two all-3
proteins, 1PCO and 10QK, were failures of insufficient
MELD X MD sampling, not the force field. Both proteins
were mostly in low-RMSD conformations at 300 K in the T-
REMD stability tests, indicating that the force field was not the
reason MELD X MD did not populate these native
conformations (Figure 4 of the Supporting Information).

3.4. MELD x MD Sometimes Cannot Rescue a
Prediction from Poor Secondary Structure Predictions.
We found only one example in which predicting a large-
population state did not correctly predict the native state
(Figure 3 and Figure S of the Supporting Information). Upon
further inspection, we found that the PSIPRED secondary
structure prediction failed to predict the f-sheets present in the
native conformation. Instead of PSIPRED predicting faafoa
for IND9, PSIPRED predicted aaa. The result was that
MELD X MD folded IND9 to a structure 5.2 A from native,
with secondary structures that agreed with the PSIPRED
prediction. Therefore as a test, we reran IND9 in MELD X
MD, giving it only the correct native secondary structures this
time. The best prediction was still non-native, now 5.1 A from
native. It was somewhat improved but with helices that were
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longer than those of the native form. The force field is known
to overstabilize helices.”>***” Even so, by a different measure,
the global distance test (GDT),* the structure was found to be
closer to native when given the correct secondary structures
(Figure S of the Supporting Information). In short, while we
know that MELD X MD can rescue structures from wrong
input knowledge sometimes, it cannot always.

3.5. MELD x MD Found and Sampled Most Native
Structures Well. MELD X MD is an efficient search strategy
that was previously shown to decrease folding time on 20 fast
folding proteins by up to S orders of magnitude compared to
those seen with single-trajectory, “traditional” molecular
dynamics.” Here, we show that MELD X MD finds native
states of nonthreadables within 1 ps per replica simulation
time. In fact, many fold to native within 250 ns per replica
sampling time (see Figure 6 of the Supporting Information),
although sampling was extended to see whether others would
eventually find native or move away from native with an
increased level of sampling.

For 15 proteins that never sampled native in the original
MELD X MD runs, only one protein folded to native in seeded
MELD X MD simulations (Table 2 of the Supporting
Information). This suggests that the force field was responsible
for 14 of these nonfolders, while sampling was an issue for
1LN4. The PSIPRED secondary structure predictions fed into
the original MELD X MD simulation of 1LN4 were quite
accurate, but the lowest-free energy structure was 10.5 A from
native with a helix in place of 2. In addition, the three other /-
sheets were not properly paired. This suggests a combination
of problems in 1LN4: the force field is stabilizing a over f, and
MELD X MD is not properly pairing the other f-sheets. A
possible improvement for MELD X MD is a better f-strand
pairing scheme. Ultimately, however, we found that by seeding
1S new MELD X MD simulations with their true native
structures, only one folded to native, indicating problems with
the force field rather than sampling for those proteins.

3.6. What Protein Properties Determine Whether
MELD x MD Can Fold Them or Not? Here, we describe
which proteins are foldable, and which are not, by MELD X
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MD (Figure S). First, we looked at protein size. Folding
succeeded for proteins ranging in size from 46 to 108 amino
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Figure S. Features that do not determine MELD X MD success.
Histograms of sequence and structural features for nonthreadable
proteins (purple) folded by MELD X MD compared to those (green)
not folded by MELD X MD with (solid line) a smoothed estimate of
the distributions from kernel density estimation. For the features we
examined, none could be used to predict MELD X MD success a
priori.

acids and failed for proteins ranging in size from 49 to 110
amino acids. Therefore, size, at least in this range, is not a
critical determinant. However, not surprisingly, successes were
greater for sequences in the range of 5S0—75 amino acids.
Previous studies with MELD X MD have folded up to 97
amino acids with heuristics-informed restraints (same input as
in this study) and up to 212 with experimental data-informed
restraints.” Folding 1RSE (105 amino acids) and 1KAF (108
amino acids) demonstrates that MELD X MD goes beyond
100-mers without experimental data or co-evolutionary
information. Importantly, MELD X MD folded 1RSE to
within 2.5 A, with a cluster population of 85%.

We looked at net charge. Proteins having a small net charge,
ranging from —S to +5, were equally likely to fold or not fold,
indicating that this range of charges was tolerable. Proteins
with higher net charges were prefiltered out to avoid known
problems with implicit solvent models such as the one we use
here.”’

We also looked at the protein contact order, a measure of
how nonlocal the average contacts are. Larger contact order
proteins tend to fold more slowly,” indicating that it is
physically more difficult for the protein to find its native state
in test tubes. However, MELD X MD folded proteins with
relatively high contact orders (Table 3 of the Supporting
Information). The relative contact order of the native state
PDB structure was determined using Plaxco’s® perl script and
the default 6 A heavy atom cutoff. MELD X MD folded
proteins 1HDN, 1J27, and 1KNG6, which had relative contact
orders of 0.18, 0.19, and 0.21, respectively, which are all higher
than 0.17, the highest contact order for a nonfolder. This
shows that MELD X MD is not limited by proteins with both
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high contact order and sequence lengths approaching 100
amino acids, because 1HDN, 1J27, and 1KNG6 had 85, 98, and
73 residues, respectively, though both MELD X MD folders
with more than 100 amino acids (1KAF and 1RSE) had
relative contact orders close to 0.10.

We also looked at whether the quality of the secondary
structure predictions that were input into MELD X MD was a
predictor of folding success or failure. We used PSIPRED-
predicted secondary structure to enforce secondary structure
restraints for a-helices, f-sheets, and f-sheet strand pairing.
The PSIPRED restraints for the set of MELD X MD
candidates matched quite well with the native secondary
structure content of these nonthreadables. The distributions of
secondary structures were similar for folders and nonfolders,
although folders had more a-helical content in the range of
50—75% and more p-sheets compared to nonfolders. Poor
PSIPRED predictions were overridden by MELD X MD in
some cases but not in others. For example, PSIPRED was 70%
accurate in predicting secondary structure for 1AA3, a protein
that MELD X MD was able to fold. In contrast, PSIPRED was
96% accurate for 2EZK; however, the lowest-RMSD structure
that MELD X MD sampled was only 4.2 A, and the lowest-
RMSD cluster representative was 6.6 A, because of force field
deficiencies.

4. CONCLUSIONS

We have shown that molecular dynamics force field
simulations, accelerated by a Bayesian method called MELD
X MD, predict well the native structures of 20 nonthreadable
proteins that are smaller than 125-mers. These are proteins
that cannot currently be folded by bioinformatics-based
threading methods. A virtue of such physics-based simulations
is that they give free energies and state populations, which
gives a confidence measure in advance that the method is
finding the right structure. Proteins may have features that
make them more or less likely to fold with our method, but
none were identified in this study. MELD X MD may be useful
for leveraging physics-based modeling for molecules or actions
that are larger than can otherwise be handled by normal MD
alone.
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