

Transforming Triplet Vinylnitrene into Triplet Alkylnitrene at **Cryogenic Temperatures**

Dylan J. Shields, †, || Sujan K. Sarkar, †, || H. Dushanee M. Sriyarathne, † Jocelyn R. Brown, † Curt Wentrup, * Manabu Abe, and Anna D. Gudmundsdottir*, †

Supporting Information

ABSTRACT: Photolysis of 2,3-diazidonaphthalene-1,4-dione (1) in methyltetrahydrofuran matrices forms $2-(\lambda^1$ -azaneyl)-3-azidonaphthalene-1,4-dione (vinylnitrene 32), as confirmed by electron paramagnetic resonance spectroscopy. The zero-field splitting (zfs) parameters for ³2 $(D/hc = 0.5338 \text{ cm}^{-1}, \text{ and } E/hc = 0.0038 \text{ cm}^{-1})$ reveal significant 1,3biradical character. Irradiating ³2 yields 2-(λ^1 -azaneyl)-1,3-dioxo-2,3dihydro-1*H*-indene-2-carbonitrile (alkylnitrene ³3), which has zfs parameters typical of a cycloalkylnitrene ($D/hc = 1.57 \text{ cm}^{-1}$, and E/hc = 0.00071cm⁻¹). Photolysis of 1 in argon matrices verifies that ³2 forms ³3.

The quest for sustainable chemistry has sparked interest in light as a traceless synthesis reagent. For example, vinyl azides, versatile building blocks in numerous synthetical applications, have been used in visible-light-driven reactions to prepare heterocyclic compounds.³ However, widespread employment of photoreactive vinyl azides requires an improved understanding of their complex reaction mechanisms, which depend on several factors, including vinyl azide structure, irradiation wavelength, and whether light is absorbed directly or through sensitizers.⁴ Irradiation of cyclic vinyl azides at cryogenic temperatures yields stable triplet vinylnitrenes, which have been characterized in detail.5 As cyclic vinylnitrenes are stable, they undergo secondary photoreactions (ring contraction and/or expansion) to form products (Scheme 1). Thus, cyclic vinylnitrenes are similar to triplet phenylnitrene, which undergoes ring expansion upon irradiation at cryogenic temperatures.⁶ In contrast, noncyclic vinyl azides do not yield vinylnitrenes at cryogenic temperatures, presumably because they are unstable and form ketenimine products.4a

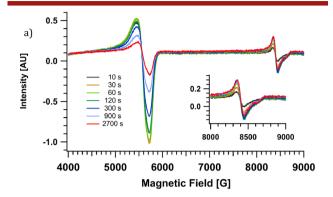
However, simple phenyl and vinyl azides exhibit different photochemistry in solution; phenyl azides form polymeric tars,8 whereas cyclic and noncyclic vinyl azides yield heterocyclic products. Understanding the factors that control the photoreactivity of vinyl azides and the corresponding triplet vinylnitrenes will aid their general use in synthetical applications.

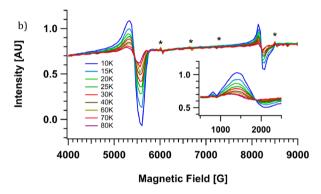
Herein, we describe the photoreactivity of 2,3-diazido-1,4naphthoquinone (1) at cryogenic temperatures. EPR and IR spectroscopy along with quantum calculations revealed that

Scheme 1

light transforms azide 1 into vinylnitrene ³2, which absorbs another photon to yield alkylnitrene ³3 (Scheme 2)

Scheme 2


Received: June 6, 2019


Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45220-0172, United States

^{*}School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia

[§]Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan

EPR spectroscopy revealed that irradiation of azide 1 results in the formation of vinylnitrene 3 2. In detail, irradiating ($\lambda = 360-440$ nm) azide 1 in a glassy methyltetrahydrofuran (mTHF) matrix at 10 K gave an EPR signal at 5358 G (Figure 1) with the following zero-field splitting (zfs) parameters,

Figure 1. EPR spectra obtained by irradiation of **1** (high-pressure Hg lamp, 360–440 nm band filter) in THF matrices as a function of (a) irradiation time and (b) temperature (noise reduction was performed on the traces; original traces are in the Supporting Information). The signals labeled with asterisks are from the cavity of the EPR spectrometer.

calculated using Wasserman's equations: $D/hc = 0.5338 \text{ cm}^{-1}$, and $E/hc = 0.0038 \text{ cm}^{-1}$. We assign this signal to vinylnitrene ³**2** because the zfs values are comparable to those reported for vinylnitrenes ³**4** and ³**5** (Scheme 3). Wentrup reported a linear relationship between D/hc values and the calculated spin

Scheme 3. zfs Parameters and Calculated Spin Densities of Nitrenes Calculated at the EPR III Level of Theory

Red numbers are the calculated spin densities

density on the N atom of triplet nitrenes. The calculated spin density $[B3LYP/6-31G+(d)]^{11}$ of vinylnitrene $^3\mathbf{2}$ places the unpaired electrons mainly on the N (1.27) and β -carbon [0.44 (Scheme 3)] atoms. As the calculated spin density on the N atom fits the trend observed for other triplet nitrenes and correlates well with the D/hc value, vinylnitrene $^3\mathbf{2}$ is best described as a delocalized nitrene with significant 1,3-biradical character. Because of conjugation with the azido moiety, vinylnitrene $^3\mathbf{2}$ has less 1,3-biradical character than vinylnitrenes $^3\mathbf{4}$ and $^3\mathbf{5}$.

As the second EPR signal at 8151 G is consistent with reported triplet alkylnitrene signals, it is assigned to alkylnitrene 3 3 (Figure 1; D/hc = 1.57 cm $^{-1}$, and E/hc = 0.00071 cm $^{-1}$). This D/hc value is similar to those reported for secondary and tertiary cycloalkylnitrenes, including cyclopentylnitrene 3 8, norbornylnitrene 3 9, and adamantylnitrene 3 10 (Scheme 3). In comparison, acyclic alkylnitrenes typically have slightly larger D/hc values (1.60-1.74 cm $^{-1})$. The calculated spin density for alkylnitrene 3 3 is localized on the N atom (1.75), correlating with the D/hc value. Furthermore, the simulated EPR spectra of vinylnitrene 3 2 and alkylnitrene 3 3 are displayed in the Supporting Information, and they fit well with the observed spectra.

Both EPR signals were present after the initial 10 s irradiation, but their intensities changed differently with irradiation time. Further irradiation decreased the intensity of the 5358 G signal but increased the intensity of the 8151 G signal, implying that vinylnitrene ³2 is the precursor of alkylnitrene ³3. Both signals broadened as the matrix was warmed to 80 K. However, the intensity was recovered upon cooling, verifying that both nitrenes are thermally stable to at least 80 K.

To clarify how alkylnitrene ³3 forms from vinylnitrene ³2, the photoreactivity of azide 1 in argon matrices was studied with IR spectroscopy. After irradiation for 35 s (xenon lamp, 360-440 nm band filter), the intensities of the characteristic azido bands of azide 1 at 2135, 2124, 2117, and 2105 cm⁻¹ were reduced (Figure 2). The multiple azido bands most likely correspond to azide 1 being trapped in different conformers or matrix sites. The intensities of the bands at 1682, 1674, 1564, 1367, 1344, and 1268 cm⁻¹ were also reduced. Concurrently, new bands with contrasting time profiles appeared, suggesting primary and secondary photoreactions. Specifically, after irradiation for 20 s, new bands appeared at 1709 and 1330 cm⁻¹ (Figure 2a), which are assigned to vinylnitrene ³2 by comparison with its calculated spectrum (Figure 2b; significant bands at 2147, 1694, and 1323 cm⁻¹ after scaling by 0.9613). 14 We theorize that the azido band of vinylnitrene ³2 is buried under those of azide 1. In addition, less intense bands were seen at 1644, 1608, 1418, 982, 978, 839, 798, 702, 677, and 657 cm⁻¹ and scaled bands of vinylnitrene ³2 at 1604, 1572, 1406, 964, 928, 833, 776, 691, 667, and 650 cm⁻¹.

Irradiation for 35 s further increased the intensity of the bands of vinylnitrene ³**2**. Concurrently, new bands appeared at 1778, 1766, 1758, 1747, 1206, and 941 cm⁻¹. These bands are assigned to alkylnitrene ³**3** by comparison with its calculated and scaled spectrum (2261, 1776, 1743, 1210, and 964 cm⁻¹). The multiplicity of the symmetric and antisymmetric carbonyl bands at 1778, 1766, 1758, and 1747 cm⁻¹ is assigned to different matrix sites for alkylnitrene ³**3**.

As no new alkyl azido bands were explicitly observed, we conclude that vinylnitrene ³2 does not form alkyl azide precursors that need to absorb another photon to yield

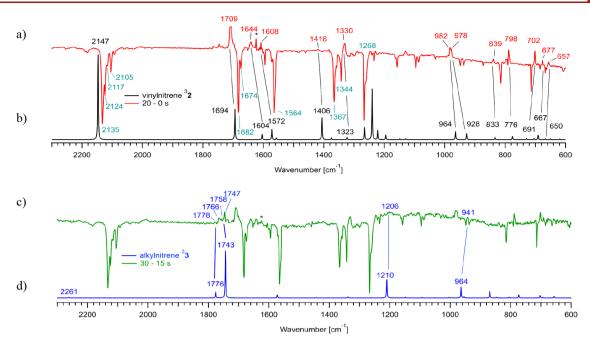


Figure 2. Differential IR spectra obtained after irradiating 1 (xenon lamp, 360-440 nm band filter) in an argon matrix at 10 K (a) from 20 to 0 s and (c) from 30 to 15 s. Calculated IR spectra [B3LYP/6-31+G(d) and scaled] for (b) 3 2 and (d) 3 3 (IR spectra after irradiation for 10, 15, 30, and 35 s are displayed in the Supporting Information; asterisks denote impurities).

alkylnitrene ³**3**. Rather, we propose that alkylnitrene ³**3** forms via α -cleavage of vinylnitrene ³**2** (Scheme 4). Although,

Scheme 4. Proposed Mechanism for the Formation of 3 from 1

biradical 3 11 could intersystem cross to form alkyl azides 13, it is unlikely because we did not observe IR bands that can be assigned to alkyl azide 13. It is also possible that vinylnitrene 3 2 forms biradical 3 12 concurrently with extruding N_2 . Furthermore, it can be theorized that vinylnitrene 3 2 forms diimino diradical 3 14, which could undergo α -cleavage to form biradical 3 12.

We performed density functional theory (DFT) calculations [B3LYP/6-31+G(d)] to further support the mechanisms in Scheme 4.¹¹ Optimization of azide 1 gave minimal energy conformers 1A and 1B, differing mainly in azide group orientation. Time-dependent density functional theory (TD-DFT) calculations of the lowest-energy conformer (1A) showed that the singlet excited state (S_1) of 1 is located 53 kcal/mol above its ground state (S_0) , whereas the first and

second triplet excited states (T_1 and T_2 , respectively) are 30 and 58 kcal/mol, respectively, above S_0 .

Following optimization, T_1 of 1 is located 30 kcal/mol above S_0 . Thus, for azide 1, the energy of optimized T_1 and that obtained from TD-DFT calculations are in good agreement. Spin density calculations showed that T_1 of 1 has a (π, π^*) configuration, as the carbon atoms of the double bond have the highest spin density [0.33 (Figure 3)].

The optimized structure of vinylnitrene $^3\mathbf{2}$ has the C_{β} – C_{γ} bond with single-bond character [1.45 Å (Scheme 1)]. As mentioned above, the unpaired electron density is mainly on the nitrene nitrogen (1.30) and β -carbon (0.45) atoms, with additional small contributions from the terminal nitrogen atom of the azido group (0.21) and the γ -carbonyl oxygen atom (0.16). The optimized structure of alkylnitrene $^3\mathbf{3}$ is characteristic of triplet alkylnitrenes, as the C–N bond has single-bond character (1.42 Å). Similarly, spin density calculations confirmed that the unpaired electrons are centralized on the nitrogen atom, as expected for triplet alkylnitrenes.

Calculated stationary points on the pathway for forming vinylnitrene ³2 from azide 1 and its transformation to alkylnitrene ³3 are shown in panels a and b in Figure 3. The calculated transition state barrier for T₁ of 1 to release N₂ and form vinylnitrene 3 **2** is only 6 kcal/mol above T₁ of **1** and thus easily accessible. We propose that vinylnitrene 3 **2** undergoes α cleavage to form biradical ³11, which extrudes N₂ to give biradical ³12, followed by ring closure to triplet alkylnitrene ³3. As the calculated transition state barrier for forming biradical ³11 is located 24 kcal/mol above vinylnitrene ³2, this process is feasible photochemically. As the calculated transition state barriers for forming biradical ³12 and alkylnitrene ³3 are smaller (12 and 0.3 kcal/mol, respectively), the calculations support the transformation of vinylnitrene ³2 into alkylnitrene ³3 as shown in Figure 3. It should be noted that we could not locate the transition state for vinylnitrene ³2 forming radical 12

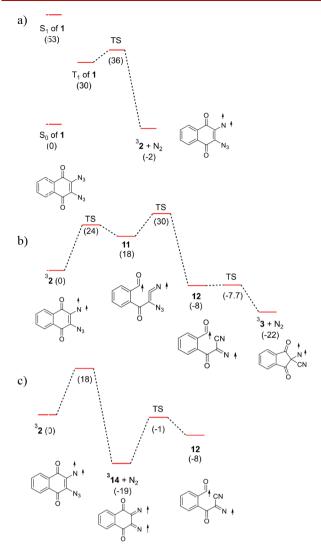


Figure 3. Calculated [B3LYP/6-31+G(d)] stationary points on the energy surface of (a) 1 forming ${}^3\mathbf{2}$ and (b) ${}^3\mathbf{2}$ forming ${}^3\mathbf{3}$. Energies are in kilocalories per mole.

in a concerted manner. Although this does not rule out the concerted mechanism, it does not seem likely.

Figure 3c displays the calculated stationary points for the transformation of vinylnitrene ³2 to biradical ³12 through diimino diradical ³14. The calculated transition state barrier for diimino diradical ³14 forming vinylnitrene ³2 is 18 kcal/mol, whereas the barrier for diimino diradical 14 yielding biradical ³12 is 18 kcal/mol. Although this transformation is feasible photochemically and could result in alkylnitrene ³3, it is highly unlikely, because diimino diradical ³14 is more stable than vinylnitrene ³2 and it was not observed with IR (see the Supporting Information) or EPR spectroscopy.

This is the first reported transformation of a triplet vinylnitrene to a triplet alkylnitrene, which is remarkable as there are very few methods available to form triplet alkylnitrenes. This limitation stems from the fact that direct photolysis of alkyl azides does not yield singlet alkylnitrenes that intersystem cross to their triplet counterparts. Instead, the singlet excited state of alkyl azides is theorized to rearrange in a concerted manner to form imine products. Thus, our results open the possibility of forming

alkylnitrenes via the phototransformation of triplet vinylnitrenes.

Interestingly, azide 1 reacts differently from diazido naphthalene and phenyl derivatives, which upon irradiation in cryogenic matrices form the corresponding triplet monoarylnitrenes but undergo secondary photolysis to release another N_2 molecule, yielding diimino diradicals (Scheme 5).

Scheme 5. Diimino Diradicals

These diimino diradicals have singlet ground states, but as the singlet–triplet energy gap is small, the triplet states have been extensively characterized by EPR spectroscopy. We did not observe formation of triplet or singlet diimino diradical 14 from vinyl azide 1 (Scheme 5) because the carbonyl group makes α -cleavage of vinylnitrene ³2 feasible, resulting in rearrangement to triplet alkylnitrene ³3 rather than formation of diimino diradical 14.

In conclusion, we have demonstrated that irradiation of azide 1 yields vinylnitrene ³2, which is stable at cryogenic temperatures. However, ³2 transforms photochemically to triplet alkylnitrene ³3, thus establishing a new method for forming triplet alkylnitrenes at cryogenic temperatures, which have potential in high-spin assemblies. However, for general use of vinyl azides in synthesis, secondary photolysis must be avoided. Further studies to characterize the fate of alkylnitrene ³3 at cryogenic temperatures will be undertaken by our laboratory.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.9b01950.

Experimental procedures, characterization of azide 1, theoretical calculations, argon and mTHF matrices, and simulated EPR spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: Anna.Gudmundsdottir@uc.edu.

ORCID ®

Curt Wentrup: 0000-0003-0874-7144 Manabu Abe: 0000-0002-2013-4394

Anna D. Gudmundsdottir: 0000-0002-5420-4098

Author Contributions

D.J.S. and S.K.S. contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank the National Science Foundation (CHE-1800140) and OSC (PES0597). D.J.S., S.K.S., and H.D.M.S. acknowledge Doctoral Enhancement Fellowships. D.J.S. acknowledges an Ann P. Villalobos/Laws Fellowship. H.D.M.S. acknowledges a Lange fellowship from the Department of Chemistry of the University of Cincinnati. J.R.B. is grateful for an NSF-REU fellowship (CHE-1659648). M.A. gratefully acknowledges financial support by JSPS KAKENHI (Grant JP17H03022). The authors thank Zoe Zorn for technical support.

REFERENCES

- (1) Schultz, D. M.; Yoon, T. P. Solar Synthesis: Prospects in Visible Light Photocatalysis. *Science* **2014**, 343, 1239176.
- (2) (a) Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic Azides: An Exploding Diversity of a Unique Class of Compounds. Angew. Chem., Int. Ed. 2005, 44, 5188–5240. (b) Fu, J.; Zanoni, G.; Anderson, E. A.; Bi, X. A-Substituted Vinyl Azides: An Emerging Functionalized Alkene. Chem. Soc. Rev. 2017, 46, 7208–7228. (c) Hayashi, H.; Kaga, A.; Chiba, S. Application of Vinyl Azides in Chemical Synthesis: A Recent Update. J. Org. Chem. 2017, 82, 11981–11989. (d) Lei, W.-L.; Feng, K.-W.; Wang, T.; Wu, L.-Z.; Liu, Q. Eosin Y- and Copper-Catalyzed Dark Reaction to Construct Ene-Γ-Lactams. Org. Lett. 2018, 20, 7220–7224. (e) Kanchupalli, V.; Katukojvala, S. [1 + 1+3] Annulation of Diazoenals and Vinyl Azides: Direct Synthesis of Functionalized 1-Pyrrolines through Olefination. Angew. Chem., Int. Ed. 2018, 57, 5433–5437.
- (3) (a) Farney, E. P.; Yoon, T. P. Visible-Light Sensitization of Vinyl Azides by Transition-Metal Photocatalysis. *Angew. Chem., Int. Ed.* **2014**, 53, 793–797. (b) Lei, W.-L.; Wang, T.; Feng, K.-W.; Wu, L.-Z.; Liu, Q. Visible-Light-Driven Synthesis of 4-Alkyl/Aryl-2-Aminothiazoles Promoted by in Situ Generated Copper Photocatalyst. *ACS Catal.* **2017**, 7, 7941–7945. (c) Yang, J.-C.; Zhang, J.-Y.; Zhang, J.-J.; Duan, X.-H.; Guo, L.-N. Metal-Free, Visible-Light-Promoted Decarboxylative Radical Cyclization of Vinyl Azides with N-Acyloxyphthalimides. *J. Org. Chem.* **2018**, 83, 1598–1605.
- (4) (a) Rajam, S.; Murthy, R. S.; Jadhav, A. V.; Li, Q.; Keller, C.; Carra, C.; Pace, T. C. S.; Bohne, C.; Ault, B. S.; Gudmundsdottir, A. D. Photolysis of (3-Methyl-2*H*-Azirin-2-Yl)-Phenylmethanone: Direct Detection of a Triplet Vinylnitrene Intermediate. *J. Org. Chem.* 2011, 76, 9934–9945. (b) Rajam, S.; Jadhav, A. V.; Li, Q.; Sarkar, S. K.; Singh, P. N. D.; Rohr, A.; Pace, T. C. S.; Li, R.; Krause, J. A.; Bohne, C.; Ault, B. S.; Gudmundsdottir, A. D. Triplet Sensitized Photolysis of a Vinyl Azide: Direct Detection of a Triplet Vinyl Azide and Nitrene. *J. Org. Chem.* 2014, 79, 9325–9334. (c) Osisioma, O.; Chakraborty, M.; Ault, B. S.; Gudmundsdottir, A. D. Wavelength-Dependent Photochemistry of 2-Azidovinylbenzene and 2-Phenyl-2*H*-Azirine. *J. Mol. Struct.* 2018, 1172, 94–101.
- (5) (a) Sarkar, S. K.; Sawai, A.; Kanahara, K.; Wentrup, C.; Abe, M.; Gudmundsdottir, A. D. Direct Detection of a Triplet Vinylnitrene, 1,4-Naphthoquinone-2-ylnitrene, in Solution and Cryogenic Matrices. *J. Am. Chem. Soc.* **2015**, *137*, 4207–4214. (b) Sarkar, S. K.; Osisioma, O.; Karney, W. L.; Abe, M.; Gudmundsdottir, A. D. Using Molecular Architecture to Control the Reactivity of a Triplet Vinylnitrene. *J. Am. Chem. Soc.* **2016**, *138*, 14905–14914.
- (6) (a) Hayes, J. C.; Sheridan, R. S. The IR Spectrum of Triplet Phenylnitrene. On the Origin of Didehydroazepine in Low Temperature Matrices. *J. Am. Chem. Soc.* **1990**, *112*, 5879–5881. (b) Leyva, E.; Platz, M. S.; Persy, G.; Wirz, J. Photochemistry of Phenyl Azide: The Role of Singlet and Triplet Phenylnitrene as Transient Intermediates. *J. Am. Chem. Soc.* **1986**, *108*, 3783–3790.
- (7) Zhang, X.; Sarkar, S. K.; Weragoda, G. K.; Rajam, S.; Ault, B. S.; Gudmundsdottir, A. D. Comparison of the Photochemistry of 3-

Methyl-2-Phenyl-2*H*-Azirine and 2-Methyl-3-Phenyl-2*H*-Azirine. *J. Org. Chem.* **2014**, *79*, 653–663.

- (8) (a) Platz, M. S. Comparison of Phenylcarbene and Phenylnitrene. *Acc. Chem. Res.* **1995**, 28, 487–92. (b) Gritsan, N. P.; Platz, M. S. Kinetics, Spectroscopy, and Computational Chemistry of Arylnitrenes. *Chem. Rev.* **2006**, 106, 3844–3867.
- (9) Wasserman, E.; Snyder, L. C.; Yager, W. A. ESR of the Triplet States of Randomly Oriented Molecules. *J. Chem. Phys.* **1964**, *41*, 1763–1772.
- (10) Wentrup, C. Flash Vacuum Pyrolysis of Azides, Triazoles, and Tetrazoles. *Chem. Rev.* **2017**, *117*, 4562–4623.
- (11) (a) Becke, A. D. Density-Functional Thermochemistry. Iii. The Role of Exact Exchange. *J. Chem. Phys.* **1993**, *98*, 5648–5652. (b) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1988**, *37*, 785–789.
- (12) (a) Ferrante, R. F. Spectroscopy of Matrix-Isolated Methylnitrene. J. Chem. Phys. 1987, 86, 25–32. (b) Gritsan, N. P.; Likhotvorik, I.; Zhu, Z.; Platz, M. S. Observation of Perfluoromethylnitrene in Cryogenic Matrixes. J. Phys. Chem. A 2001, 105, 3039–3041. (c) Singh, P. N. D.; Mandel, S. M.; Sankaranarayanan, J.; Muthukrishnan, S.; Chang, M.; Robinson, R. M.; Lahti, P. M.; Ault, B. S.; Gudmundsdottir, A. D. Selective Formation of Triplet Alkyl Nitrenes from Photolysis of B-Azido-Propiophenone and Their Reactivity. J. Am. Chem. Soc. 2007, 129, 16263–16272.
- (13) (a) Wasserman, E.; Smolinsky, G.; Yager, W. A. Electron Spin Resonance of Alkyl Nitrenes. J. Am. Chem. Soc. 1964, 86, 3166–3167. (b) Kvaskoff, D.; Bednarek, P.; George, L.; Waich, K.; Wentrup, C. Nitrenes, Diradicals, and Ylides. Ring Expansion and Ring Opening in 2-Quinazolylnitrenes. J. Org. Chem. 2006, 71, 4049–4058. (c) Radziszewski, J. G.; Downing, J. W.; Wentrup, C.; Kaszynski, P.; Jawdosiuk, M.; Kovacic, P.; Michl, J. Geometrical Isomers of a Bridgehead Imine: (E)- and (Z)-2-Azabicyclo[3.2.1]Oct-1-Ene, and 2-Azabicyclo[2.2.2]Oct-1-Ene. J. Am. Chem. Soc. 1985, 107, 2799–2801. (d) Radziszewski, J. G.; Downing, J. W.; Jawdosiuk, M.; Kovacic, P.; Michl, J. 4-Azahomoadamant-3-Ene: Spectroscopic Characterization and Photoresolution of a Highly Reactive Strained Bridgehead Imine. J. Am. Chem. Soc. 1985, 107, 594–603.
- (14) Foresman, J. B.; Frisch, Æ. Exploring Chemistry with Electronic Structure Methods, 2nd ed.; Gaussian, Inc.: Pittsburgh, PA, 1996.
- (15) (a) Sankaranarayanan, J.; Bort, L. N.; Mandel, S. M.; Chen, P.; Krause, J. A.; Brooks, E. E.; Tsang, P.; Gudmundsdottir, A. D. Orbital-Overlap Control in the Solid-State Reactivity of β -Azido-Propiophenones: Selective Formation of *cis*-Azo-Dimers. *Org. Lett.* **2008**, *10*, 937–940. (b) Muthukrishnan, S.; Ranaweera, A. A. U. R.; Gudmundsdottir, A. D. Triplet Alkyl Nitrenes. In *Nitrenes and Nitrenium Ions*; Falvey, D. A., Gudmundsdottir, A. D., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, 2013.
- (16) (a) Harder, T.; Bendig, J.; Scholz, G.; Stösser, R. On the Existence of Conjugated Dinitrenes at 77 K. J. Am. Chem. Soc. 1996, 118, 2497–2498. (b) Minato, M.; Lahti, P. M. Characterizing Triplet States of Quinonoidal Dinitrenes as a Function of Conjugation Length. J. Am. Chem. Soc. 1997, 119, 2187–2195. (c) Sato, T.; Niino, H.; Arulmozhiraja, S.; Kaise, M.; Yabe, A. Preparation of 1,5-Dinitrenonaphthalene in Cryogenic Matrices. Chem. Commun. 2001, 749–750.