

 Check out the beta version of the [next ACM DL](#)

Understanding Metropolitan Crowd Mobility via Mobile Cellular Accessing Data

Full Text: [!\[\]\(17413706fd4997a1a4bdf85c6864eee1_img.jpg\) Html](#) [!\[\]\(f419710cbe076aa30a9c6c031b5cbe84_img.jpg\) PDF](#) [!\[\]\(2726020a4107bdc9042b257034f90eb3_img.jpg\) Get this Article](#)

Authors: [Hancheng Cao](#) [Beijing National Research Center for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing, China](#)

2019 Article
Research
Refereed

[Jagan Sankaranarayanan](#) [University of Maryland, College Park, MD](#)

[Jie Feng](#) [Beijing National Research Center for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing, China](#)

[Yong Li](#) [Beijing National Research Center for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing, China](#)

[Hanan Samet](#) [University of Maryland, College Park, MD](#)

Bibliometrics

- Citation Count: 0
- Downloads (cumulative): 31
- Downloads (12 Months): 31
- Downloads (6 Weeks): 31

Tools and Resources

 [Buy this Article](#)

 [Recommend the ACM DL to your organization](#)

 [Request Permissions](#)

 [TOC Service:](#) [!\[\]\(cdc5d03852d90f3a0d1df88fd5fca224_img.jpg\) Email](#) [!\[\]\(2d0e2388c5813d8a3a70734d8b66a310_img.jpg\) RSS](#)

 [Save to Binder](#)

 [Export Formats:](#) [BibTeX](#) [EndNote](#) [ACM Ref](#)

Share: [!\[\]\(206536f97fdb267876a3a10ea42b0254_img.jpg\)](#) [!\[\]\(0a97c303ab0f1db4c2ac6786237bbdb9_img.jpg\)](#) [!\[\]\(ed713e04abdf3c00594ab28d4cc6a1f9_img.jpg\)](#)

[Author Tags](#) ▾

Published in:

· Journal

ACM Transactions on Spatial Algorithms and Systems (TSAS) [archive](#)

Volume 5 Issue 2, August 2019 [Issue-in-Progress](#)

Article No. 8

[ACM](#) New York, NY, USA

[table of contents](#) doi:>[10.1145/3323345](https://doi.org/10.1145/3323345)

 [Contact Us](#) | Switch to [single page view](#) (no tabs)

[Abstract](#) [Authors](#) [References](#) [Cited By](#) [Index Terms](#) [Publication](#) [Reviews](#) [Comments](#) [Table of Contents](#)

Understanding crowd mobility in a metropolitan area is extremely valuable for city planners and decision makers. However, crowd mobility is a relatively new area of research and has significant technical challenges: lack of large-scale fine-grained data, difficulties in large-scale trajectory processing, and issues with spatial resolution. In this article, we propose a novel approach for analyzing crowd mobility on a "city block" level. We first propose algorithms to detect homes, working places, and stay regions for individual user trajectories. Next, we propose a method for analyzing commute patterns and spatial correlation at a city block level. Using mobile cellular accessing trace data collected from users in Shanghai, we discover commute patterns, spatial correlation rules, as well as a hidden structure of the city based on crowd mobility analysis. Therefore, our proposed methods contribute to our understanding of human mobility in a large metropolitan area.

Powered by **THE ACM GUIDE TO COMPUTING LITERATURE**

The ACM Digital Library is published by the Association for Computing Machinery. Copyright © 2019 ACM, Inc.
[Terms of Usage](#) [Privacy Policy](#) [Code of Ethics](#) [Contact Us](#)

