

Oxidant or catalyst for oxidation? The role of manganese oxides in the activation of peroxyomonosulfate (PMS)

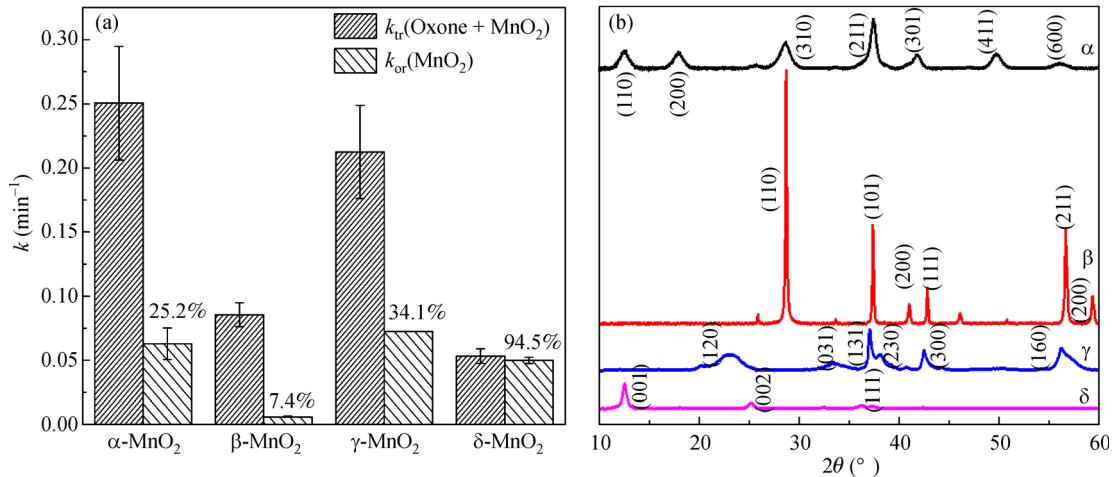
Jianzhi Huang, Huichun Zhang (✉)

Department of Civil Engineering, Case Western Reserve University, Cleveland, OH 44106, USA

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract Manganese oxides (MnO_x) have been demonstrated to be effective materials to activate Oxone (i.e., PMS) to degrade various contaminants. However, the contribution of direct oxidation by MnO_x to the total contaminant degradation under acidic conditions was often neglected in the published work, which has resulted in different and even conflicting interpretations of the reaction mechanisms. Here, the role of MnO_x (as both oxidants and catalysts) in the activation of Oxone was briefly discussed. The findings offered new insights into the reaction mechanisms in PMS- MnO_x and provided a more accurate approach to examine contaminant degradation for water/wastewater treatment.

Keywords Peroxyomonosulfate, Manganese oxides, Catalyst, Oxidant


The world is facing a water crisis, which requires affordable technologies to obtain clean water around the world. Advanced oxidation processes (AOPs) have been widely regarded as an important technology for removing various pollutants. Recently, SO_4^{2-} produced from peroxyomonosulfate (PMS) has received increasing attention due to its high redox potential (2.5–3.1 V) and longer life time (30–40 μs) than 'OH (Huang et al., 2019). In the past seven years, manganese oxides (MnO_x) have been often examined and demonstrated to be effective in Oxone activation due to their high abundance, low toxicity, and environmental friendliness. Numerous properties of MnO_x that might influence the reactivity have been investigated, such as phase structure, Mn oxidation state, particle shape, oxygen species, reduction potential, surface area, and conductivity. All of these findings enabled us to obtain a mechanistic understanding of the catalytic oxidation processes.

In MnO_2 -PMS systems, Oxone ($\text{KHSO}_5 \cdot 0.5\text{KHSO}_4 \cdot 0.5\text{K}_2\text{SO}_4$) is commonly employed to provide PMS, which can substantially lower the solution pH when buffer is not used, resulting in a significant enhancement of the direct oxidative reactivity. Recently, both the direct oxidative reactivity and catalytic reactivity were reported to be involved in the activation of Oxone by MnO_x (Huang et al., 2019). As shown in Fig. 1(a), the direct oxidative reactivity accounted for 25.2, 7.4, 34.1, and 94.5% of the total reactivity of α - MnO_2 , β - MnO_2 , γ - MnO_2 , and δ - MnO_2 at pH 3.07, respectively (Huang et al., 2019). This result indicated that direct oxidation played an important role in the total reactivity, especially for δ - MnO_2 .

However, we surprisingly found that among 62 journal articles published in the past seven years, 36 of them (58% as of 05/25/2019) did not consider the contribution of direct oxidation by the MnO_x under acidic conditions (i.e., MnO_x as oxidants), and only attributed the overall reactivity to catalytic reactivity (i.e., MnO_x as catalysts). This might have resulted in different and even conflicting interpretations of the involved mechanisms. For instance, some studies obtained the XPS spectra to show that Mn (III) was partially transformed to Mn(IV) after the reaction (Khan et al., 2018), whereas others reported that Mn(IV) was partially converted to Mn(III) (Luo et al., 2015). However, all of these studies attributed the changes to the catalytic reactivity only. We believe that the contradictory results were because of the different contributions of catalytic versus direct oxidative reactivity. It has been shown that in the PMS- MnO_2 systems, the catalytic reaction resulted in increasing Mn(IV)% and decreasing Mn(III)%, whereas the direct oxidation led to the opposite results (Huang et al., 2019). Therefore, depending on the relative contributions of direct vs. catalytic oxidation, the changes in the abundance of different Mn species would be expected to be different. Given the growing interest in the PMS- MnO_x systems, we believe it is timely to point out this important overlook, so future researchers could obtain more accurate understanding of the reactivity and

Received May 31, 2019

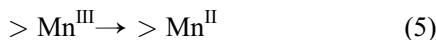
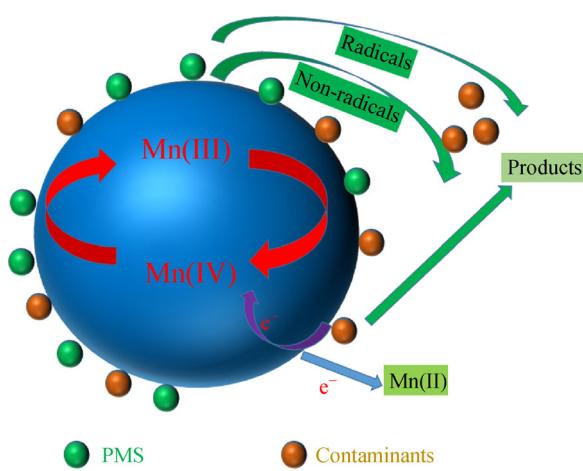

E-mail: hjz13@case.edu

Fig. 1 (a) Pseudo-first-order reaction rate constants of bisphenol A (BPA) degradation by Oxone-MnO₂ (total reactivity: k_{tr}) and MnO₂ (direct oxidative reactivity: k_{or}) at pH 3.07; (b) XRD patterns of different structures of MnO₂ (Huang et al., 2019).

mechanisms of Mn-based catalysts.

In fact, long before the increasing number of research examining the activation of PMS by MnO_x as catalysts, MnO_x had been widely investigated as oxidants themselves in direct oxidation of different contaminants. The detailed reaction mechanisms of aromatic compounds (ArXH) by MnO₂ (denoted as $>\text{Mn}^{\text{IV}}$) are summarized in Eqs. (1)–(5) (Zhang et al., 2008), where either the precursor complex formation (Eq. 1) or the electron transfer reaction (Eq. 2) is the rate limiting step. It has been well-known that the oxidative reactivity of MnO_x increased substantially with decreasing pH, mainly because pH can affect the reduction potential and surface charge of MnO_x, which in turn affected the oxidative reactivity. Moreover, the surface properties of MnO_x can affect their direct oxidative reactivity, and it has been revealed that the amount of surface Mn(III) was key to the direct oxidative reactivity at pH 5 (Huang et al., 2018).

Therefore, the reported contaminant degradation in PMS-MnO_x in many previous papers was in fact a sum of both catalytic oxidation by PMS/MnO₂ and direct oxidation by MnO₂. The relative contribution of direct vs. catalytic oxidation depends on the nature of the MnO_x (Huang et al., 2019). Based on the XRD spectra (Fig. 1(b))


and HRTEM (Huang et al., 2019), α -, β -, and γ -MnO₂ are crystalline MnO₂, while δ -MnO₂ is a less crystalline MnO₂. It was found that the crystallinity of MnO_x was a dominant factor in determining whether MnO_x reacted as an oxidant or a catalyst in the activation of Oxone. For δ -MnO₂, the major role of Oxone was actually to lower the solution pH (just like any other acids) to lead to the higher reactivity of the MnO₂. Therefore, the major role of δ -MnO₂ was an oxidant in PMS-MnO₂, while that of β -MnO₂ was a catalyst because it was poorly reactive as a direct oxidant. α - and γ -MnO₂ acted as both oxidants and catalysts. The less crystalline or amorphous structures might have destabilized MnO_x thermodynamically, which made them stronger oxidants but weaker catalysts (Sabri et al., 2018).

The crystallinity of MnO_x also influenced the generation of radicals in the PMS-MnO_x systems. It was shown that SO₄²⁻, ·OH and ¹O₂ were all generated in PMS-crystalline MnO₂, while only ¹O₂ was generated in PMS-less crystalline MnO₂ (Huang et al., 2019). Moreover, a non-radical mechanism based on the direct electron transfer between PMS-MnO₂ and the contaminant was reported in the activation of Oxone by an amorphous MnO₂ (Wang et al., 2018). Therefore, it seems that SO₄²⁻ and ·OH were only produced when crystalline MnO₂ was the catalyst, although further research is needed to verify this conclusion.

In addition, pH can influence the role of MnO_x in the activation of Oxone because the direct oxidation was negligible as compared with the catalytic reactivity at near neutral and alkaline pH (Huang et al., 2019). Therefore, the major role of MnO_x in Oxone-MnO_x is a catalyst under those pH conditions. To accurately quantify the catalytic reactivity of MnO_x in the activation of Oxone, it is better to employ appropriate buffers to maintain the solution pH; otherwise, the addition of Oxone will significantly lower

the pH to within the acidic range. If no buffer is used for various reasons, then the solution pH of the MnO_x control experiments for quantifying the direct oxidative reactivity of MnO_x should be adjusted to the same value as that in the Oxone- MnO_x system.

In conclusion, it is essential to consider the role of MnO_x as both oxidants and catalysts (Scheme 1) to better understand the reaction mechanisms, products, and reactivity of Oxone- MnO_x . The direct oxidative reactivity of MnO_x has been overlooked in a number of recent studies, which requires us to carefully re-interpret some of the reported results obtained under acidic conditions.

Scheme 1 Reaction mechanisms in the degradation of contaminants by PMS- MnO_x .

Acknowledgements This material is based upon work supported by the National Science Foundation under Grants CBET-1762691 and

CHE-1808406 to H. Zhang.

References

Huang J, Dai Y, Singewald K, Liu C C, Saxena S, Zhang H (2019). Effects of MnO_2 of different structures on activation of peroxymonosulfate for bisphenol A degradation under acidic conditions. *Chemical Engineering Journal*, 370: 906–915

Huang J, Zhong S, Dai Y, Liu C C, Zhang H (2018). Effect of MnO_2 phase structure on the oxidative reactivity toward bisphenol A degradation. *Environmental Science & Technology*, 52(19): 11309–11318

Khan A, Wang H, Liu Y, Jawad A, Ifthikar J, Liao Z, Wang T, Chen Z (2018). Highly efficient $\alpha\text{-Mn}_2\text{O}_3@\alpha\text{-MnO}_2\text{-500}$ nanocomposite for peroxymonosulfate activation: Comprehensive investigation of manganese oxides. *Journal of Materials Chemistry. A, Materials for Energy and Sustainability*, 6(4): 1590–1600

Luo S, Duan L, Sun B, Wei M, Li X, Xu A (2015). Manganese oxide octahedral molecular sieve (OMS-2) as an effective catalyst for degradation of organic dyes in aqueous solutions in the presence of peroxymonosulfate. *Applied Catalysis B: Environmental*, 164: 92–99

Sabri M, King H J, Gummow R J, Lu X, Zhao C, Oelgemöller M, Chang S L Y, Hocking R K (2018). Oxidant or catalyst for oxidation? A study of how structure and disorder change the selectivity for direct versus catalytic oxidation mediated by manganese (III, IV) oxides. *Chemistry of Materials*, 30(22): 8244–8256

Wang L, Jiang J, Pang S Y, Zhou Y, Li J, Sun S, Gao Y, Jiang C (2018). Oxidation of bisphenol A by nonradical activation of peroxymonosulfate in the presence of amorphous manganese dioxide. *Chemical Engineering Journal*, 352: 1004–1013

Zhang H, Chen W R, Huang C H (2008). Kinetic modeling of oxidation of antibacterial agents by manganese oxide. *Environmental Science & Technology*, 42(15): 5548–5554