
A Randomized Controlled Trial on the Wild Wild West
of Scientific Computing with Student Learners

Timothy Rafalski
rafalski@unlv.nevada.edu

University of Nevada, Las Vegas

P. Merlin Uesbeck
uesbeck@unlv.nevada.edu

University of Nevada, Las Vegas

Cristina Panks-Meloney
panksc1@unlv.nevada.edu

University of Nevada, Las Vegas

Patrick Daleiden
patrick.daleiden@unlv.edu

University of Nevada, Las Vegas

William Allee
william.allee@unlv.edu

University of Nevada, Las Vegas

Amelia Mcnamara
amelia.mcnamara@stthomas.edu

University of St Thomas

Andreas Stefik
stefika@gmail.com

University of Nevada, Las Vegas

ABSTRACT
Scientific computing has become an area of growing importance.
Across fields such as biology, education, physics, or others, people
are increasingly using scientific computing to model and under-
stand the world around them. Despite the clear need, almost no
systematic analysis has been conducted on how students in fields
outside of computer science learn to program in the context of
scientific computing. Given that many fields do not explicitly teach
much programming to their students, they may have to learn this
important skill on their own. To help, using rigorous quantitative
and qualitative methods, we looked at the process 154 students
followed in the context of a randomized controlled trial on alter-
native styles of programming that can be used in R. Our results
suggest that the barriers students face in scientific computing are
non-trivial and this work has two core implications: 1) students
learning scientific computing on their own struggle significantly
in many different ways, even if they have had prior programming
training, and 2) the design of the current generation of scientific
computing feels like the wild-wild west and the designs can be
improved in ways we will enumerate.

CCS CONCEPTS
• Mathematics of computing → Statistical software; • Ap-
plied computing → Education; • Human-centered comput-
ing→ Empirical studies in HCI ; • Software and its engineering
→ Domain specific languages.

KEYWORDS
statistics education, programming languages, scientific computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICER ’19, August 12–14, 2019, Toronto, ON, Canada
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6185-9/19/08. . . $15.00
https://doi.org/10.1145/3291279.3339421

ACM Reference Format:
Timothy Rafalski, P. Merlin Uesbeck, Cristina Panks-Meloney, Patrick Dalei-
den, William Allee, Amelia Mcnamara, and Andreas Stefik. 2019. A Random-
ized Controlled Trial on the Wild Wild West of Scientific Computing with
Student Learners. In International Computing Education Research Conference
(ICER ’19), August 12–14, 2019, Toronto, ON, Canada. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3291279.3339421

1 INTRODUCTION
Academic conferences such as ICER, like academic venues in many
fields, often use empirical data, statistics, and evidence-based rea-
soning as part of the typical publication process. Outside of academia,
politicians have encouraged the use of evidence as part of the grant
process. For example, the Every Student Succeeds Act (ESSA [26])
in the United States requires that the Department of Education uses
tiers of evidence in its decision-making process. A "Tier 1" study
under ESSA has a variety of requirements (e.g., must be a true ran-
domized controlled trial, have over 350 participants, be multi-site),
as interpreted by the the What Works Clearinghouse [46]. Other
fields, like medicine, have different standards of evidence, like the
CONsolidated Standards Of Reporting Trials (CONSORT [16]). For
these and many other important reasons, educational programs are
investing into scientific computing [11].

One interesting characteristic of scientific computing is that
the programming languages often used are made by computer
scientists, but the people using them may not be. As an example,
consider a medical doctor publishing in any of the more than 600
biomedical journals following the CONSORT evidence standard. In
these journals, they must follow specific methodologies and report
the results following very specific standards [16]. This means they,
or a lab associate, must learn scientific computing tools like SPSS, R,
or Python, or hire this portion of their research out. While learning
these languages and their tools is clearly evident, we know of no
systematic empirical investigation into how much training people
receive, the problems they face, or strategies our community can
take to help scientists in other fields gain and improve these skills.

To help begin carving out this space, we conducted an empirical
investigation into how students program in the context of scientific
computing. To inform our study, we first looked at relevant data
from the field, like the survey of Stack Overflow developers from

Session 9: Quantitative Analyses ICER '19, August 12–14, 2019, Toronto, ON, Canada

239

https://doi.org/10.1145/3291279.3339421
https://doi.org/10.1145/3291279.3339421

2017. In it, it was reported that people working in the context of
statistics or mathematics make up about 11.3% of users. The same
survey reports that, broadly, 45% of the people they surveyed used
Python, 11.2% used R, and 8.2% used Matlab [39], which suggests
that studying Python or R users would be a good first step. While
either would be interesting to investigate, given that only 21% of
Python users work in scientific computing and engineering [32],
we chose to investigate how people use alternative packages in
R [33]. We investigated four key research questions:

• RQ1: Do student programmers or non-programmers have
differences in mean completion times, measured in seconds,
when solving tasks in either the tidyverse, base R, or using
the tilde style?

• RQ2:What errors do student programmers or non-programmers
commonly make when solving tasks in R using the three
alternative styles mentioned in RQ1?

• RQ3: Does previous experience learning programming in an
undergraduate computer science sequence impact a student’s
ability to successfully solve tasks in R?

• RQ4: Given that students in education, biology, or other
fieldsmay have no training in computer science, what changes
could be made to R to make the language less error prone or
easier to use?

We then designed a 10-task experiment and recruited from in
and out of the computer science department (recruitment N = 206).
Our analytics platform tracked users every 5 seconds, providing
217,260 snapshots of student code. We then used automated tools
like the R interpreter to look at errors in these snapshots and then
separately hand-coded snapshots according to a set of qualitative
categories of misconceptions, which we derived and validated.

R as a language is supported by many additional libraries made
available on the Comprehensive R Archive Network [33]. The
archive does not restrict style and three primary ones have emerged
in the community [24]. While there is consensus one style should
be taught, there is debate about which [34, 35]. The evidence we
gathered here does not support that style had an effect on students
when first learning on their own (RQ1). Second, in terms of errors,
the barriers students face when learning on their own are not triv-
ial (RQ2). In looking carefully at student snapshots, we believe the
most likely explanation is not an individual issue, but a cornucopia
that we will outline. Third, we found that experience in formal
programming classes does help reduce errors, but accounts for only
about 3.4% of the variance in regard to time or number of errors re-
ceived (RQ3). This means experience matters less than we expected
going into the study. Finally, we suspect that many of the ways
students are struggling are byproducts of a wild wild west approach
to design (RQ4) that is used by many languages, including R. We
suspect that working toward greater overarching organization, and
re-thinking naming conventions of all of the libraries and functions,
would help.

The rest of this paper is as follows. First, our research team is in-
terested in the concept of evidence standards, as used in other fields.
Thus, we report this randomized controlled trial in an adapted form
of CONSORT format [16], which was designed as a standard for re-
porting randomized controlled trials. This includes first discussing

the background for this paper, then following an explicit and ex-
ternally vetted approach to reporting our methodology. Finally, we
present our results, discuss them, and conclude.

2 BACKGROUND AND RELATED WORK
Although there is still relatively little evidence-based research in
computer programming [20], there have been an increasing number
of trials and studies examining programmer behavior. This includes
studies from type systems [12, 14], inheritance [30], lambdas [45],
concurrency [27, 36], and compiler errors with and without en-
hancements [3, 6]. With the exception of a few studies examining
younger students learning experiences with programs on block-
based languages [15, 19, 47] and some on novice programmers in
their first experiences [40, 41], many of these studies have examined
undergraduate computer science students as test subjects.

As evidence-based research develops in the field of computer sci-
ence and becomes institutionally required by funding agencies like
the Department of Education [26], it is important for the community
to agree on common evidence standards, just as the CONSORT [16]
community and others have done. The CONSORT guidelines pro-
vide concrete and specific methods for reporting studies and results,
which we have followed in this paper as closely as possible. Ideally,
we would have preferred to follow CONSORT reporting exactly, but
this is not possible at ICER. To complete the requirement requires
two-phase peer review, which ICER, and to our knowledge all other
computer science conferences, do not follow. This is because an
important component of CONSORT requires trial registration and
peer review of experimental design and methods prior to running a
study, then again after it is complete. Notwithstanding our inability
to comply fully with CONSORT, we followed it quite closely.

A number of papers have been written about how novice pro-
grammers approach the problem of learning and executing the
logic of programs, including papers on human cognitive mod-
els [5, 29] and learning barriers [5, 44]. Other papers have em-
phasized the importance of statistical education research taught in
tandem with computational tools using programming languages
like R [9, 21, 25, 31]. Other research relevant to documenting novice
programmers experiences include examinations of application pro-
gramming interfaces (APIs) [43], integrated development environ-
ments (IDEs) [28], programming language pedagogy [44], com-
piler errors and messages [4, 10], and error types and frequen-
cies [7, 23, 37].

R and Python are the two main languages in use today for scien-
tific computing, according to a recent Stack Overflow survey [39].
The online learning environment for Python has allowed some re-
searchers to analyze novice programmer errors such as syntax [22]
and error frequencies [38]. R is a common first language choice
for programmers to perform data analysis [1, 17, 39]. The R com-
munity has come to consensus that teaching one programming
style is easier for novices. However, there is debate over which
style is easiest to learn [2, 8, 35]. To our knowledge, there are no
rigorous investigations into these or other issues, although some
qualitative research has taken place [18]. Tools such as RStudio are
designed to make learning R easier, although we are unaware of
formal empirical data on such claims [17, 18, 48]. To be clear, our
team is independent from the R community. As such, while we are

Session 9: Quantitative Analyses ICER '19, August 12–14, 2019, Toronto, ON, Canada

240

interested in investigating the claims of others, we have no vested
interest in the outcome of our study.

3 METHODS
In this section, we describe the coremethods of our approach. Again,
we are are following CONSORT style reporting for trials.

3.1 Trial Design
We conducted a double-blind repeated measures randomized con-
trolled trial with ten tasks on using the programming language
R. We had two fixed-factors: 1) style of using R, and 2) major of
study. For style of using R, we included the three discussed pre-
viously in our research questions: 1) the tidyverse, 2) base R, and
3) tilde style. Our intended allocation ratio for our primary factor
was 1:1:1, or an equal number across groups. Because there are
more non-computer science than computer science students on our
campus, we expected to have a larger number for our second factor
in order to recruit across a variety of majors of study. Our study
was conducted in the Fall semester of 2018 and was approved by
the UNLV IRB Ethics Board under protocol 1326857.

3.2 Participants
We recruited from lower level classes in our computer science pro-
gram that used the imperative language C++, as well as across other
majors at our university. Recruitment was conducted by giving
short speeches in front of classes during class time or via a univer-
sity research participation system. Participants were incentivized
through extra class credit or research class credit. Participants were
eligible to participate only if they had completed a statistics course
in high-school or later. All participants were provided with in-
formed consent before entering the study.

3.3 Interventions
We recorded participants completing tasks using a web-based ana-
lytics system, custom designed to track data for this experiment.
For each of the tasks, participants were given a sample data table
and an instruction set. This included a function name to call, the
column names used in a calculation, and the number of lines of code
that were required for a successful solution. They were also given a
code sample guide specific to their assigned style that provided an
example of how to complete a similar task. The guide was available
to students throughout the experiment for reference. What students
were trying to solve was standardized across experimental groups,
varied only in the R style in which they were solving it.

Every five seconds, a snapshot of each student’s code was submit-
ted to our database. Each task had a 20 minute limit, after which the
system registered a timeout event, ended the task, and prompted
the participant to the next one. These 20 minute timeouts could
plausibly lead to ceiling effects, but were necessary for two reasons.
First, IRBs consider it unethical for experiments to be too long, so as
scholars we must balance our desire to be experimentally thorough
with ethical practice. Second, if a student cannot solve the task,
there is no reason for them to continue in perpetuity.

3.3.1 Tasks. Developing tasks is a difficult part of designing any
experiment. For ours, we first analyzed both online resources for R

and the textbook by Field et al [13] to get a sense of the types of tasks
relevant in data science. Many books and resources could have been
chosen, but the one by Field et al., like many other books, contains
a variety of common analysis procedures that data scientists might
do. Next, we drafted a set of tasks and had them reviewed by a
statistician with expertise in R. We did this as a check and balance
on what we chose to test and why. We made a variety of changes
to our tasks during this process, including the decision to test our
three alternative designs in RQ1.

Next, because we were studying students, not professionals, we
did extensive pilot testing. This included three pilot tests in the
Spring of 2018. In each, we revised tasks to make sure they were
not too easy or too hard for our group, adjusted the instructions,
and interviewed our participants to learn what we should change.

We discuss the iterative process of task design to underscore
that it is always easy to dismiss tasks as not being the "right" ones,
no matter what was chosen. This is also partially justified, because
different tasks can lead to different conclusions. That said, no formal
RCTs exist in the literature that can both provide evidence on our
research questions and that use replication packets with reported
effect sizes. As such, while we think the field will need to test many
other things, our tasks 1) were carefully selected, 2) match the kinds
of tasks we see referenced in textbooks and online resources, 3) have
gone through expert feedback, 4) were vetted in three independent
pilot studies. Figure 1 provides high level descriptions of the tasks
and the full values are in our replication packet, listed at the end of
this paper.

Num Task
1 Calculate mean of a column
2 Calculate standard deviation of a column
3 Calculate sum of a column
4 Calculate mean with a built-in function
5 Calculate standard deviation with built-in function
6 Calculate sum with built-in function
7 Filter data from column
8 Filter using if else statement
9 Calculate new column using division
10 Calculate new column with subtraction

Figure 1: Description of the Tasks

Students with little to no programming experience can only
solve simple tasks without hitting ceiling effects. Thus, our tasks
had "behind the scenes" R code, which we concatenated on to the
students’ answers on our server. Students would then solve one
small, but key, piece of a task and we could observe snapshots for
what they ended up with and the process they used. An example
task is in figure 2.

Once submitted, a task’s solution code was concatenated to the
file and the code was run with R version 3.5.0 using the Rscript
command. The results from the interpreter were displayed on the
screen and recorded as an event in the database. These "events"
were recorded separately from our snapshots, so that we could tell
what users explicitly requested.

Session 9: Quantitative Analyses ICER '19, August 12–14, 2019, Toronto, ON, Canada

241

The t i l d e symbol (~) i s used to r e p r e s e n t a r e l a t i o n s h i p
between column v a r i a b l e s . The format i s
' dependent v a r i a b l e ~ independen t v a r i a b l e .
I t i s a l s o a c c e p t a b l e to use the t i l d e when no dependent
v a r i a b l e i s i n d i c a t e d . Here a r e some code examples
t h a t show the use o f the t i l d e . The f i r s t code i s an
example t h a t u se s the method 'min ' , t he t a b l e ' socce rLeague ' ,
and the column v a r i a b l e ' goa l s ' . The second i s an example
t h a t p l o t s the r e l a t i o n s h i p o f the independen t v a r i a b l e
' p l aye r ' and the dependent v a r i a b l e ' goa l s '
from the t a b l e ' socce rLeague ' .

min (~ goa l s , d a t a = soc c e rLeague)
bwplot (g o a l s ~ p l aye r , d a t a = soc ce rLeague)

(a) Sample of Tilde guide page
For each t a s k t h e r e e x i s t s a t a b l e c a l l e d
ame r i c a n S t a t s t h a t l o ok s l i k e t h i s :

p l ay e r ID year ID teamID lg ID G AB R H HR RBI SB
#1 ab r eu j o 0 2 2017 CHA AL 156 621 95 189 33 102 3
#2 a l t u v j o 0 1 2017 HOU AL 153 590 112 204 24 81 32
#3 a n d e r t i 0 1 2017 CHA AL 146 587 72 151 17 56 15
#4 and rue l 0 1 2017 TEX AL 158 643 100 191 20 88 25
#5 aok ino01 2017 HOU AL 71 202 28 55 219 5
#6 barneda01 2017 TOR AL 129 336 34 78 6 25 7
#7 b a u t i j o 0 2 2017 TOR AL 157 587 92 119 23 65 6
#8 ben inan01 2017 BOS AL 151 573 84 155 20 90 20

Using the sample s e c t i o n on the l e f t as a guide , you a r e to wr i t e a l i n e
o f R code t h a t w i l l use the sd () method to c a l c u l a t e the s t anda r d d e v i a t i o n
o f the column v a r i a b l e HR from the ame r i c a n S t a t s t a b l e .

Type your code here

(b) Sample of task page

Figure 2: Guide and Task pages

3.4 Outcomes
We have a composite primary outcome. First, we investigated how
long it took for our participants to solve tasks correctly. Our an-
alytics server ran participants’ code, allowing them to move on
if they received a correct answer. Second, we tracked errors at
every snapshot, similar to the way errors are tracked on the Black-
box project [7], in the work of Becker [4], or other more recent
examples [22]. Similarly, we looked at snapshots qualitatively to
determine what students actually did wrong, as compared to what
the interpreter output as an error.

As a secondary outcome, we were curious how student demo-
graphics impacted the results. Namely, we hypothesized that formal
training in computer science could give students an advantage. We
tracked this information through a self-reported survey, which is
included in our replication packet.

3.5 Sample Size
Power test results would be preferred to determine a reasonable
sample size for running an experiment, but we are aware of no
Randomized Controlled Trial in the literature that has explicitly
evaluated research questions like ours. Thus, we can only provide
the sample sizes we targeted, but cannot report an effect size until
after the study is conducted. We targeted approximately 200 people,
with approximately three quarters of them from outside of computer
science. We achieved our goal, recruiting 206 participants. While
participants could leave at any time, no outside stopping conditions
were needed ahead of time.

3.6 Randomization
A covariate adaptive randomization approach from Suresh [42] was
used. Participants were first binned into an experience category
based on their college year. Experience measures we have examined
suggest that college year and experience are correlated. Random
group assignment was done after participants consented. A partici-
pant was randomly assigned to one of three language styles, the
next participant was randomly assigned to one of the remaining
two, and finally the last style was assigned. This assured that the
groups were randomly assigned and balanced automatically by the
computer.

3.7 Blinding
We argue our studywas double blind, but there are limitations to our
approach. It is important to realize that any study on programming
requires that a participant can observe the code they are writing.
This means that our participants could have plausibly known that
they were solving tasks in R, if they happened to know the language.
Further, it is also possible that they could have known they were
writing code in a particular style (e.g., base R). However, follow-up
questions with our participants suggest they did not know and,
more crucially, it would be impossible to blind in totality for this
kind of study. In a sense, our participants were blind by ignorance,
but not by observation. As experimenters, we were blinded by the
fact that a computer program controlled our group assignments.
This approach is not perfect blinding, but we believe this to be
about as close as is realistically feasible.

3.8 Statistical Methods
We took several approaches for analyzing our results. First, we
used standard parametric statistics to analyze time, measured in
seconds, on task, following the recommendations of Field et al. [13]
for a repeated measures design and using partial-eta squared as a
normed effect size for RQ1. Before we ran them, we checked normal
assumptions, as is also recommended by Field et al. Second, for
the compiler errors output by the R interpreter, we took a similar
approach, although we also present descriptive statistics visually
in a graph. Third, we analyzed student code snapshots, by hand,
qualitatively. We did this because we wanted to see if we could find
any theoretical explanation for why students performed as they
did. To evaluate our qualitative coding, we conducted a standard
Kappa Analysis, which we will discuss in the results.

3.9 Additional Analysis
3.9.1 Qualitative Error Category Discovery. While documenting
what errors the R interpreter reports is interesting, the messages R
outputs can be opaque. Thus, we investigated themismatch between
what R outputs and the mistakes students seemed to actually make.
To do this, we analyzed a small selection of student snapshots to
see what kinds of mistakes they were making as a first pass. We
describe our coding specification here.

3.9.2 Qualitative Error Categories. Our broad categories for the
errors students made are summarized in Table 1. The reader should
note that in our analysis, one might assume students made a wide
variety of errors. On inspection, however, the vast majority of

Session 9: Quantitative Analyses ICER '19, August 12–14, 2019, Toronto, ON, Canada

242

1 min (~ teamID , da t a = p l aye r ID)
2 p l aye r I d$ t e amID
3 t r an s f o rm (da t a =#$G ∗# $AB ∗# $R ∗#$H ∗#$HR ∗# $RBI ∗# $SB
4 i s =min (# 1) 1 7 1 . 2 8
5 i s =min (# 2) 1 7 0 . 8 5
6 i s =min (# 3) 1 4 9 . 1 4
7 i s =min (# 4) 1 7 5
8 i s =min (# 5) 5 4 . 5 7
9 i s =min (# 6) 8 7 . 8 5
10 i s =min (# 7) 1 0 4 3
11 i s =min (# 8) 1 5 6 . 1 4

Figure 3: This is an example of a real error from a partici-
pant’s code snapshot.

problems could be categorized into a few simple problems. This
might be because of the constrained tasks we had developed for R,
but it might also be a function of how students naturally try to use
R at first.

In either case, the first error type we called “Method or variable
name from sample page (SP).” We observed that some students
relied too heavily on the example code, copying more liberally
than would have been sensible to solve the task. For example, some
participants would leave one or more of the variable names used in
the example code untouched. An example of this type of error is
shown in figure 3 in line 1 of the participant’s submission. This uses
themin() method, shown on the sample tilde guide page, rather than
the necessary mean() method requested in the instruction for this
task. This observation suggests that there is a misunderstanding in
the use of method and variable names.

A second type of error was incorrect usage of variables. This
type of error was categorized as “Incorrect variable or variable
in the wrong place (IV).” An example in this category was when
participants selected an incorrect replacement variable name from
the data table when constructing their submissions. Other exam-
ples included incorrect replacement of a variable from the sample
code with another variable, placement of a variable in the wrong
place, and a misspelling of a variable name. Figure 3 shows two
examples of an (IV) category error on line 1. In this case, it falls
in this category because it uses the incorrect independent column
variable name (teamID rather than the necessary RBI) and because
it uses an incorrect table name (playerID rather than the necessary
americanStats). This observation suggests that there is a misunder-
standing in the placement of names within a function call.

A third type of error that was observed we categorized as “ex-
tra characters (EC).” These errors included characters like extra
commas, misused pound signs, parenthesis, brackets, or the equal
sign. An example error is shown in figure 3 on line 3. It uses several
unnecessary characters showing that the participant was unsure of
the operation that each character is responsible for (e.g. the mul-
tiple # characters which are actually "commenting out" anything
that follows the # character in that line of code). This observation
suggests that participants were not familiar with what characters
could be used in R, or what those characters meant.

The fourth type of error observed was the use of unnecessary
lines of code within the participant’s submission. This error was
categorized as “extra lines of code (EL).” The guide’s example code
occasionally provided more than one example of how the method

being introduced could be used in various situations as they per-
tained to the tasks. An example of this error was that participants
attempted to construct their submission using two lines of code
rather than a single one. Again, figure 3 is used as an example,
which contains a participant submission made up of eleven lines
of code, when only one was requested. This observation suggests
that participants were not familiar with how documentation with
examples should be used to implement code.

A final type of error observed was when participants used the
numbers from the table rather than using the instructed function.
This error was categorized as “raw numerical data (RD).” Figure 3
shows an example of this on lines 4 through 11, in which the par-
ticipant self-calculated the mean for each row of the table and
attempted to use the self-calculated values in their submission. This
observation suggests that a participant had no knowledge of how
method abstraction is implemented in programming languages.

Table 1: Qualitative Error Categories

Error Description

SP Method or variable name from sample page
IV Incorrect variable or variable in the wrong place
EC Extra characters
EL Extra lines of code
RD Raw numerical data

3.9.3 R InterpreterMessages. As part of the experiment, we recorded
all attempts to run code that were made when participants were
trying to solve the programming tasks. To take a closer look at all
diagnostic errors made in the attempts to solve the tasks, we col-
lected all unsuccessful attempts to run the programs. Each of these
events was represented as a state of the program the participant
had submitted, as well as the error message that was displayed.
From these error messages we derived a short descriptive name
of these errors to be able to more easily aggregate the events into
error statistics. This resulted in a total of 44 different diagnostic
error categories.

4 RESULTS
4.1 Participant Flow, Losses, and Exclusions
In total, there were 206 student participants recruited for our trial,
of which 41 were computer scientists, 6 were undecided, and the
rest came from other fields that might use scientific computing.
All of the students that had taken programming were recruited
intentionally from the computer science department because we
knew what kind of training they received. For students outside of
computer science, we recruited widely, with few exceptions, from
fields that were relevant to scientific computing. The students were
selected from courses in various disciplines at the University of
Nevada, Las Vegas.

Of the 206 original participants, a number of the results were
omitted from our analysis for the following reasons: (i) 19 for invalid
group assignments due to a software bug, (ii) 5 for having over 2+
years of programming experience, which we considered too much
experience to be regarded as a novice, and (iii) 28 for terminating
the study prior to finishing at least task 6. The remaining participant

Session 9: Quantitative Analyses ICER '19, August 12–14, 2019, Toronto, ON, Canada

243

count was 154, with 55 in the base R group, 52 in the tilde group,
and 47 in the tidyverse group.

The instruction guide for tasks 3 and 7 were found to be ambigu-
ous to the participants so we removed these tasks from the study
before any analysis of the data was performed.

4.2 Recruitment
The web based testing system was available online at the beginning
of November 2018 for approximately a month.

4.3 Baseline Data
Table 2 shows the demographics of our study. It includes their dis-
tribution across major, level of education, gender, spoken language,
programming experience, and academic year.

4.4 Numbers Analyzed
4.4.1 Time. Overall we analyzed 1,232 different task times, mea-
sured in seconds, each the outcome of one participant working on
one task. Of these, 440 (35.7%) events were in group base R, 416
(33.8%) were in group tilde, and 376 (30.5%) were in the tidyverse
group. Broken down by major, 328 (26.6%) events belong to CS,
while 904 (73.4%) belong to other majors. The tidyverse group had
the highest mean time (M=657, SD=534), with the tilde style having
the second highest mean time (M=621, SD=519), leaving the base
R group with the lowest mean time (M=537, SD=508). Comparing
the majors, computer science had a lower mean task time (M=439,
SD=488) than the other majors (M=661, SD=522).

4.4.2 Qualitative Validation. Once we had derived the errors we
thought people made, we conducted a Kappa Analysis of the snap-
shots. Notably, we had two independent reviewers code a randomly
selected 10% of our sample snapshots. Once complete, we then
conducted a Cohen’s Kappa, receiving a score of 0.7674 and a raw
agreement of 92.83%. To remind the reader, Kappa ranges between 0
and 1 and is a chance-corrected measure of reliability between two
reviewers. A score of 0.7674 would be generally high agreement. We
determined that the Kappa score was sufficient, so reviewers then
independently coded the remaining snapshots. In points of coding
disagreement, the reviewers reviewed the differences, revised the
coding specification, and agreed on a final coding.

4.4.3 Qualitative Analysis. We performed qualitative error analysis
as described in subsection 3.9.1. From the 1,232 events we had
to exclude each instance where qualitative assessment was not
possible (e.g., the snapshot was blank) and after these exclusions,
there were 1,112 events. Of these, 403 (36.2%) were in group base R,
365 (32.8%) in tilde, and 344 (30.9%) in tidyverse. There were 297
(26.7%) of these events associated with participants in CS majors
and 815 (73.3%) with the other majors. The results are summarized
in Figure 4, which shows the number of errors in relation to the
total possible errors for each of the 5 error categories.

There was a possibility that each of the 5 errors could be found in
each task (for an example see figure 3), so the following percentages
reflect in how many of the tasks a specific error was found and they
do not add up to 100%. We found that 468 of the events contained
the error IV, which means that we found this error in 42.1% of all
tasks. Further, we found that 25% of all possible instances contained

Table 2: Participant Demographics

Degree Sought n
Computer Science 33
Computer Engineering 8
Engineering (Other than Computer) 7
Counseling 7
Psychology 9
Biology 3
Education 71
Hospitality 3
Accounting 2
Other Liberal Arts 11
Undecided 6

Total 154

Education n
High School/GED 13
Some College / University 75
Associates Degree 19
Bachelors Degree 32
Advanced Degree 12
NA 3

Total 154

Gender n
Female 95
Male 59

Total 154

Primary Language n
English 120
Non-English 34

Total 154

Programming Experience (yrs) n
0 105
1 36
2 13

Total 154

School Year n
Freshman 12
Sophomore 43
Junior 45
Senior 11
Graduate or Above 40
None of the above 3

Total 154

the error EC with 278 instances and error EL was found 130 times
which means that 11.7% of tasks contained this error. The SP error
was found in 11.7% of the tasks (n=130), and lastly, the RD error
was found in 112 events which means it was found in 10.1% of tasks.

4.4.4 R Interpreter Messages. We analyzed 2609 error events as
reported by the R interpreter. 1119 (42.9%) of the errors were pro-
duced by group base R, 827 (31.7%) were produced by group tilde,
and the tidyverse group produced 663 (25.4%). When looking from
the perspective of major, 441 of the errors were produced by partic-
ipants in the CS major (16.9%), while the 2168 (83.1%) remaining
errors were produced by the participants in other majors. On av-
erage, participants produced 17 errors (M= 17, SD=22.7) over the
course of the experiment. Group base R produced the most (M=20.8,

Session 9: Quantitative Analyses ICER '19, August 12–14, 2019, Toronto, ON, Canada

244

base R tilde tidyverse

IV EC EL SP RD IV EC EL SP RD IV EC EL SP RD

0

10

20

30

40

50

Error Category

P
e
rc

e
n
ta

g
e

Major CS Other

Figure 4: Percent of tasks by participant with qualitative
errors by style and major. SP=Copied sample, IV=Incorrect
variable, EC=Extra characters, EL=Extra lines, RD=Raw nu-
merical data

SD=24.1) errors per person, followed by tilde (M=15.9, SD=22.2),
and the tidyverse (M=13.9, SD=21.4).

0

20

40

60

unknown identifier

unexpected input

function not defined

argument missing

condition not correct type

Error

F
re

q
u
e
n
c
y

Group base R tilde tidyverse

Figure 5: This figure displays the R interpretermessages out-
put by R.

The frequency of the 4 most common errors per group can be seen
in figure 5. While the 3 most common errors are shared across all
3 groups, “argument missing” was the fourth most common error
for base R and tilde, while “condition not correct type” was the
fourth most common error in the tidyverse group. The majority of
errors that were reported seemed to be triggered by the individual
R libraries used and differed depending on which libraries were
involved. This made it difficult to judge the root cause of the error
across groups. It also made it difficult to determine a direct mapping
between the qualitative assessment of errors, made by inspecting
the code by hand (as discussed in subsection 3.9.1), and the recorded
error categories.

4.5 Outcomes and Estimation
In this section, we will present the inference analysis of the experi-
ment outcomes time, qualitative errors, and quantitative errors.

4.5.1 Task Completion by Time. Figure 6 is a plot of paired boxplots,
in a grid by task number and code style of the task completion. If a
participant did not enter any code and still timed out on a task, an
entry of the maximum time (1200 seconds) was used.

A repeatedmeasures ANOVAof the completion timewith between-
subjects factors style and major, and within-subjects factor task,
suggests that we observed no significant difference between styles
in R F (2, 148) = 0.74, p = 0.480, η2p = 0.007 at significance level
α = 0.05. The difference between majors is significant F (1, 148) =

1 2 4 5 6 8 9 10

b
a
s
e
 R

tild
e

tid
y
ve

rs
e

CS Other CS Other CS Other CS Other CS Other CS Other CS Other CS Other

0

400

800

1200

0

400

800

1200

0

400

800

1200

C
o
m

p
le

ti
o
n
 T

im
e
 i
n
 S

e
c
o
n
d
s

Major CS Other

Figure 6: Comparison of Task Completion Times

7.35, p = 0.008, η2p = 0.034, as is the difference between tasks
F (7, 1036) = 20.35, p < 0.001, η2p = 0.038. There is also a sig-
nificant interaction effect between style and task F (14, 1036) =
9.82, p < 0.001, η2p = 0.037. All numbers here and going forward
are reported with Greenhouse-Geisser correction applied if they
failed the sphericity test, as is standard practice.

4.5.2 Qualitative Errors. To further analyze the qualitative error
assessments, we ran a repeated measures ANOVA of the number of
qualitative errors, using style, type of error, and major as between-
subjects factors to compare whether the error distributions are
distinct. The results show that style is not significantly different
F (2, 730) = 2.642, p = 0.071, η2p = 0.007, while major is significant
F (2, 730) = 26.077, p < 0.001, η2p = 0.034. Further, the type of error
is significant as well F (4, 730) = 27.134, p < 0.001, η2p = 0.129.
None of the interactions were significant.

4.5.3 R Interpreter Messages. A repeated measures ANOVA of the
number of R interpreter errors with between-subjects factor group
and major, and within subjects factor task shows that there is no
significant difference between styles in R F (2, 148) = 0.657, p =
0.520, η2p = 0.003. The difference between majors is significant
F (1, 148) = 4.166, p = 0.04, η2p = 0.010, as is the difference between
tasks F (7, 1036) = 8.424, p < 0.01, η2p = 0.035 and there is a
significant interaction effect between task and style F (14, 1036) =
5.033, p < 0.01, η2p = 0.042. The amount of errors in each task
and group, split by whether the participants were CS majors can
be seen in figure 7.

5 DISCUSSION
5.1 Limitations
We think there are several important limitations of our study. First,
we looked at potential scientists at the beginning of their career,

Session 9: Quantitative Analyses ICER '19, August 12–14, 2019, Toronto, ON, Canada

245

1 2 4 5 6 8 9 10

b
a

s
e

 R
tild

e
tid

y
ve

rs
e

CSOther CSOther CSOther CSOther CSOther CSOther CSOther CSOther

0

10

20

30

0

10

20

30

0

10

20

30

Major

N
u

m
b

e
r

o
f

E
rr

o
rs

Major CS Other

Figure 7: Number of Errors by Syntax Group and Major

learning on their own in an undergraduate setting. We suspect
many learning scientific computing must learn this way, but this
is not the case for everyone. Students in statistics, or other areas,
may obtain training and thereby have different outcomes.

Second, we want to be careful in saying that while we found
very little evidence that the alternative styles of using R measurably
benefited students, this is not the same thing as saying there was no
difference. While we wanted to test with novices first, we acknowl-
edge that packages like the tidyverse have a design philosophy
that differs a lot from base R and might benefit different groups in
different ways. As such, experts doing different kinds of tasks may
have different outcomes than our students did.

5.2 Generalizability
We have already mentioned that studying students may not be pre-
dictive of expert performance, nor would we expect it to be. How-
ever, other issues may impact how our study generalizes. Namely,
the tasks that we had students complete were rather small. It is
possible that larger tasks would have produced different results.
However, we suspect many students in this experience range could
not complete large and complex tasks at all. This is true in typical
programming classes as well, which is why we often scaffold what
students are learning.

5.3 Interpretation
In terms of our first research question (RQ1), whether styles made
a difference, at N = 154, we were unable to conclude that it impacted
our participants error rate or mean completion times. Qualitatively,
we also found no evidence that the errors students were making
were different. That said, we find it interesting that in tasks 4 and 5,
we see the base R group did have significantly more errors. Given
the significant interaction, more research is needed to determine
how, and in what way, style in R is task dependent.

For (RQ2), the most common kind of error was the misnaming
or misplacement of a variable name. This might indicate a lack of
understanding of how different features are mapped to names in the
programming language. The second most common error was extra
characters. We theorize thus that syntax and naming conventions
might be a significant initial barrier in R. While we did not test
this formally, this might also imply that cheat sheets on special
characters could be helpful as a teaching tool for the language.

For (RQ3), it is clear that computer science students with train-
ing in an imperative language like C++ did make fewer errors and
completed tasks in less time. However, the differences were not
universal and very small, which surprised us. For example, in Task
4, it took computer science students in the base R group longer
to complete the tasks than our non-majors with no programming
training at all. Even when computer science students outperformed
the non-majors, as was normal, the effect only explained approxi-
mately 3.4% of the variance.

For (RQ4), we have two recommendations for the designers of R.
First, error causes were not clear to our users. A good example is the
use of phrases like “unexpected input,” which often did not give our
users enough information to solve their problems. We recommend
trying to make the causes of errors more clear, following the advice
of existing literature on the topic (e.g., Becker [3]).

Second, the design of some libraries in R sometimes "feels" messy
and unorganized as a whole. We observed in our qualitative data
that the sometimes peculiar naming conventions were a struggle
for our users. We think our data provides evidence that R’s users
would benefit from 1) better naming conventions across the board
that diminish the use of single letter variables, shortened words,
and acronyms and 2) a re-thinking of the overarching organization
of the statistical routines in R. For example, perhaps functions in
the language could be named to imply what the function does,
as opposed to honoring the mathematician that invented it. The
former could be used to mentally categorize ideas in a mental model,
while the latter must be raw memorized across the board. In any
case, R’s designers have the difficult job of trying to make the field
of statistics understandable in code. Reorganizing and renaming
would not fix everything, but likely would have diminished some
of the challenges we observed.

6 CONCLUSION
In this paper we have presented a randomized controlled trial with
154 participants, comparing three different styles of programming
in R. We found that there was no significant difference between
the styles regarding completion time, qualitatively assessed errors,
or R interpreter errors. We did find differences when comparing
participants who had some computer science training compared to
participants without. This suggests that learning programming in
one language can help with learning R, but also shows the initial
effect size is small. Finally, we documented that users made a variety
of errors in R. We suggest that improving R error messages and
re-thinking the naming conventions and organizational structure
of the language could help make R easier for novices to use.

6.1 Protocol
The code and replication packet for this study can be cloned from
https://bitbucket.org/stefika/replication.

6.2 Funding
This work was funded by the National Science Foundation under
grants #1640131, #1644491, #1738259.

Session 9: Quantitative Analyses ICER '19, August 12–14, 2019, Toronto, ON, Canada

246

https://bitbucket.org/stefika/replication

REFERENCES
[1] Ben Baumer, Mine Cetinkaya-Rundel, Andrew Bray, Linda Loi, and Nicholas J.

Horton. 2014. R Markdown: Integrating A Reproducible Analysis Tool into
Introductory Statistics. arXiv:1402.1894 [stat] (Feb. 2014). arXiv:stat/1402.1894

[2] Benjamin Baumer, Daniel Kaplan, and Nicholas J. Horton. 2017. Modern Data
Science with R. CRC Press,Taylor & Francis Group, CRC Press is an imprint of
the Taylor & Francis Group, an informa business, Boca Raton.

[3] Brett A. Becker. 2016. An Effective Approach to Enhancing Compiler Error
Messages. In Proceedings of the 47th ACM Technical Symposium on Computing
Science Education (SIGCSE ’16). ACM, New York, NY, USA, 126–131. https:
//doi.org/10.1145/2839509.2844584

[4] Brett A. Becker and Catherine Mooney. 2016. Categorizing Compiler Error
Messages with Principal Component Analysis. In 12th China-Europe International
Symposium on Software Engineering Education (CEISEE 2016), Shenyang, China,
28-29 May 2016.

[5] A. F. Blackwell. 2002. First Steps in Programming: A Rationale for Attention In-
vestmentModels. In Proceedings IEEE 2002 Symposia on Human Centric Computing
Languages and Environments. 2–10. https://doi.org/10.1109/HCC.2002.1046334

[6] Neil C. C. Brown and Amjad Altadmri. 2017. Novice Java Programming Mistakes:
Large-Scale Data vs. Educator Beliefs. ACM Trans. Comput. Educ. 17, 2, Article 7
(May 2017), 21 pages. https://doi.org/10.1145/2994154

[7] Neil Christopher Charles Brown, Michael Kölling, Davin McCall, and Ian Ut-
ting. 2014. Blackbox: A Large Scale Repository of Novice Programmers’ Ac-
tivity. In Proceedings of the 45th ACM Technical Symposium on Computer Sci-
ence Education (SIGCSE ’14). ACM, New York, NY, USA, 223–228. https:
//doi.org/10.1145/2538862.2538924

[8] Jennifer Bryan and Hadley Wickham. 2017. Data Science: A Three Ring Circus
or a Big Tent? arXiv:1712.07349 [stat] (Dec. 2017). arXiv:stat/1712.07349

[9] Mine Çetinkaya-Rundel and Colin Rundel. 2018. Infrastructure and Tools for
Teaching Computing Throughout the Statistical Curriculum. The American Statis-
tician 72, 1 (Jan. 2018), 58–65. https://doi.org/10.1080/00031305.2017.1397549

[10] Paul Denny, Andrew Luxton-Reilly, and Dave Carpenter. 2014. Enhancing Syntax
Error Messages Appears Ineffectual. In Proceedings of the 2014 Conference on
Innovation & Technology in Computer Science Education (ITiCSE ’14). ACM, New
York, NY, USA, 273–278. https://doi.org/10.1145/2591708.2591748

[11] David Donoho. 2017. 50 Years of Data Science: Jour-
nal of Computational and Graphical Statistics: Vol 26, No 4.
https://www.tandfonline.com/doi/full/10.1080/10618600.2017.1384734.

[12] Stefan Endrikat, Stefan Hanenberg, Romain Robbes, and Andreas Stefik. 2014.
How do api documentation and static typing affect api usability?. In Proceedings
of the 36th International Conference on Software Engineering. ACM, 632–642.

[13] Andy P. Field, Jeremy Miles, and Zoë Field. 2012. Discovering statistics using R.
Sage, London; Thousand Oaks, Calif.

[14] Lars Fischer and Stefan Hanenberg. 2015. An empirical investigation of the
effects of type systems and code completion on api usability using typescript and
javascript in ms visual studio. In ACM SIGPLAN Notices, Vol. 51. ACM, 154–167.

[15] Diana Franklin, Charlotte Hill, Hilary A Dwyer, Alexandria K Hansen, Ashley
Iveland, and Danielle B Harlow. 2016. Initialization in Scratch: Seeking knowledge
transfer. In Proceedings of the 47th ACM Technical Symposium on Computing
Science Education. ACM, 217–222.

[16] The CONSORT Group. [n. d.]. CONSORT: Transparent Reporting of Trials.
http://www.consort-statement.org/. Accessed: 2017-10-13.

[17] Nicholas J Horton and Johanna S Hardin. 2018. Challenges and Opportunities for
Statistics and Data Science Undergraduate Major and Minor Degree Programs.
(2018), 6.

[18] Carl Howe. 2019. The Next Million R users. https://resources.rstudio.com/
rstudio-conf-2019/the-next-million-r-users. In rstudio::conf.

[19] Christopher D Hundhausen, Sean F Farley, and Jonathan L Brown. 2009. Can
direct manipulation lower the barriers to computer programming and promote
transfer of training?: An experimental study. ACM Transactions on Computer-
Human Interaction (TOCHI) 16, 3 (2009), 13.

[20] Kaijanaho Kaijanaho. 2015. Evidence-based programming language design : a
philosophical and methodological exploration. University of Jyväskylä, Finnland.
http://urn.fi/URN:ISBN:978-951-39-6388-0

[21] Daniel Kaplan. 2017. Teaching Stats for Data Science. The American Statistician
72, 1 (2017), 89–96. https://doi.org/10.1080/00031305.2017.1398107

[22] Tobias Kohn. 2019. The Error Behind The Message: Finding the Cause of Error
Messages in Python. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (SIGCSE ’19). ACM, New York, NY, USA, 524–530.
https://doi.org/10.1145/3287324.3287381

[23] D.McCall andM. Kölling. 2014. Meaningful Categorisation of Novice Programmer
Errors. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings. 1–8.
https://doi.org/10.1109/FIE.2014.7044420

[24] Amelia McNamara. 2018. R Syntax Comparison Cheatsheet. https://github.com/
rstudio/cheatsheets/raw/master/syntax.pdf.

[25] DeborahNolan and Jamis Perrett. 2016. Teaching and LearningData Visualization:
Ideas and Assignments. The American Statistician 70, 3 (July 2016), 260–269.

https://doi.org/10.1080/00031305.2015.1123651
[26] U.S. Department of Education. [n. d.]. Every Student Succeeds Act(ESSA).

https://www.ed.gov/essa?src=rn. Accessed: 2017-03-29.
[27] Victor Pankratius and Ali-Reza Adl-Tabatabai. 2014. Software engineering with

transactional memory versus locks in practice. Theory of Computing Systems 55,
3 (2014), 555–590.

[28] Fernando Perez and Brian E. Granger. 2007. IPython: A System for Interactive
Scientific Computing. Computing in Science & Engineering 9, 3 (2007), 21–29.
https://doi.org/10.1109/MCSE.2007.53

[29] James Prather, Raymond Pettit, Kayla McMurry, Alani Peters, John Homer, and
Maxine Cohen. 2018. Metacognitive Difficulties Faced by Novice Programmers
in Automated Assessment Tools. In Proceedings of the 2018 ACM Conference
on International Computing Education Research - ICER ’18. ACM Press, Espoo,
Finland, 41–50. https://doi.org/10.1145/3230977.3230981

[30] Lutz Prechelt, Barbara Unger, Michael Philippsen, and Walter Tichy. 2003. A
controlled experiment on inheritance depth as a cost factor for code maintenance.
Journal of Systems and Software 65, 2 (2003), 115–126.

[31] Purdue University, Pete Pascuzzi, Megan Sapp Nelson, and Purdue University.
2018. Integrating Data Science Tools into a Graduate Level Data Management
Course. Journal of eScience Librarianship 7, 3 (Dec. 2018), e1152. https://doi.org/
10.7191/jeslib.2018.1152

[32] PyCharm. 2016. Python Developers Survey 2016:Findings. https://www.jetbrains.
com/pycharm/python-developers-survey-2016/

[33] R Core Team. 2019. Comprehensive R Archive Network. http://cran.r-project.
org/.

[34] David Robinson. 2014. Don’t teach built-in plotting to beginners (teach ggplot2).
http://varianceexplained.org/r/teach_ggplot2_to_beginners/.

[35] David Robinson. 2017. Teach the tidyverse to beginners. http://varianceexplained.
org/r/teach-tidyverse/.

[36] Christopher J. Rossbach, Owen S. Hofmann, and Emmett Witchel. 2010. Is
Transactional Programming Actually Easier?. In Proceedings of the 15th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP
’10). ACM, New York, NY, USA, 47–56. https://doi.org/10.1145/1693453.1693462

[37] Tom Schorsch. 1995. Cap: An Automated Self-Assessment Tool To Check Pascal
Programs For Syntax, Logic And Style Errors.

[38] Rebecca Smith and Scott Rixner. 2019. The Error Landscape: Characterizing
the Mistakes of Novice Programmers. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education - SIGCSE ’19. ACM Press, Minneapolis,
MN, USA, 538–544. https://doi.org/10.1145/3287324.3287394

[39] StackOverflow. 2017. Developer Survey Results 2017. https://insights.
stackoverflow.com/survey/2017

[40] Andreas Stefik and Susanna Siebert. 2013. An Empirical Investigation into
Programming Language Syntax. ACM Transactions on Computing Education 13,
4 (Nov. 2013), 1–40. https://doi.org/10.1145/2534973

[41] Andreas Stefik, Susanna Siebert, Melissa Stefik, and Kim Slattery. 2011. An
Empirical Comparison of the Accuracy Rates of Novices Using the Quorum, Perl,
and Randomo Programming Languages. In Proceedings of the 3rd ACM SIGPLAN
Workshop on Evaluation and Usability of Programming Languages and Tools -
PLATEAU ’11. ACM Press, Portland, Oregon, USA, 3. https://doi.org/10.1145/
2089155.2089159

[42] KP Suresh. 2011. An overview of randomization techniques: an unbiased assess-
ment of outcome in clinical research. Journal of human reproductive sciences 4, 1
(2011), 8.

[43] Kyle Thayer. 2018. Using Program Analysis to Improve API Learnability. (2018),
2.

[44] Kyle Thayer and Andrew J. Ko. 2017. Barriers Faced by Coding Bootcamp
Students. In Proceedings of the 2017 ACM Conference on International Computing
Education Research - ICER ’17. ACM Press, Tacoma, Washington, USA, 245–253.
https://doi.org/10.1145/3105726.3106176

[45] Phillip Merlin Uesbeck, Andreas Stefik, Stefan Hanenberg, Jan Pedersen, and
Patrick Daleiden. 2016. An Empirical Study on the Impact of C++ Lambdas and
Programmer Experience. In Proceedings of the 38th International Conference on
Software Engineering (ICSE ’16). ACM, New York, NY, USA, 760–771. https:
//doi.org/10.1145/2884781.2884849

[46] U.S. Department of Education Institute of Education Sciences. 2019. What Works
Clearinghouse Procedures and Standards Handbook (3.0 ed.). U.S. Department of
Education.

[47] David Weintrop and Uri Wilensky. 2015. Using Commutative Assessments to
Compare Conceptual Understanding in Blocks-based and Text-based Programs..
In ICER, Vol. 15. 101–110.

[48] Karlijn Willems. 2013. R and Education: A Survey on the Use of R in Education.
https://www.datacamp.com/community/blog/survey-on-r-and-education.

Session 9: Quantitative Analyses ICER '19, August 12–14, 2019, Toronto, ON, Canada

247

http://arxiv.org/abs/stat/1402.1894
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1109/HCC.2002.1046334
https://doi.org/10.1145/2994154
https://doi.org/10.1145/2538862.2538924
https://doi.org/10.1145/2538862.2538924
http://arxiv.org/abs/stat/1712.07349
https://doi.org/10.1080/00031305.2017.1397549
https://doi.org/10.1145/2591708.2591748
https://resources.rstudio.com/rstudio-conf-2019/the-next-million-r-users
https://resources.rstudio.com/rstudio-conf-2019/the-next-million-r-users
http://urn.fi/URN:ISBN:978-951-39-6388-0
https://doi.org/10.1080/00031305.2017.1398107
https://doi.org/10.1145/3287324.3287381
https://doi.org/10.1109/FIE.2014.7044420
https://github.com/rstudio/cheatsheets/raw/master/syntax.pdf
https://github.com/rstudio/cheatsheets/raw/master/syntax.pdf
https://doi.org/10.1080/00031305.2015.1123651
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1145/3230977.3230981
https://doi.org/10.7191/jeslib.2018.1152
https://doi.org/10.7191/jeslib.2018.1152
https://www.jetbrains.com/pycharm/python-developers-survey-2016/
https://www.jetbrains.com/pycharm/python-developers-survey-2016/
http://cran.r-project.org/
http://cran.r-project.org/
http://varianceexplained.org/r/teach_ggplot2_to_beginners/
http://varianceexplained.org/r/teach-tidyverse/
http://varianceexplained.org/r/teach-tidyverse/
https://doi.org/10.1145/1693453.1693462
https://doi.org/10.1145/3287324.3287394
https://insights.stackoverflow.com/survey/2017
https://insights.stackoverflow.com/survey/2017
https://doi.org/10.1145/2534973
https://doi.org/10.1145/2089155.2089159
https://doi.org/10.1145/2089155.2089159
https://doi.org/10.1145/3105726.3106176
https://doi.org/10.1145/2884781.2884849
https://doi.org/10.1145/2884781.2884849

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methods
	3.1 Trial Design
	3.2 Participants
	3.3 Interventions
	3.4 Outcomes
	3.5 Sample Size
	3.6 Randomization
	3.7 Blinding
	3.8 Statistical Methods
	3.9 Additional Analysis

	4 Results
	4.1 Participant Flow, Losses, and Exclusions
	4.2 Recruitment
	4.3 Baseline Data
	4.4 Numbers Analyzed
	4.5 Outcomes and Estimation

	5 Discussion
	5.1 Limitations
	5.2 Generalizability
	5.3 Interpretation

	6 Conclusion
	6.1 Protocol
	6.2 Funding

	References

