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Abstract

Self-consistent field theory (SCFT) is a powerful tool for discovering
new nanostructures in self-assembling block polymers. However, the relia-
bility of the resulting predictions depend strongly on the Flory-Huggins
interaction parameters yx;; used to quantify the excess free energy of mix-
ing of different blocks i and j arising from segment-segment interactions.
The problem is especially significant for multiblock polymers, owing to
the multitude of x;; parameters and the sensitivity of the resulting phase
behavior when the x;; do not differ substantially for different block pairs.
To illuminate this issue, we examine how the SCFT-predicted phase be-
havior of a poly(styrene)-b-poly(isoprene)-b-poly(styrene)’-b-poly(ethylene
oxide) (SIS'O) tetrablock terpolymer changes depending on the method
used to estimate the trio of ;; parameters for this chemistry. SIS'O is
an ideal model system for our purposes, as it exhibits a large number of
poly(ethylene oxide) sphere-forming phases, emerging from the segrega-
tion of the poly(ethylene oxide) block due to the relatively high values
of xso and xjo, accompanied by subtle matrix segregation effects arising
due to the smaller x;s between poly(isoprene) and poly(styrene). We first
use X1s, X170, and xso available in literature estimated using mean-field
theory order—disorder transitions of the relevant diblock polymers. As this
method is expected to lead to significant errors in y;; that propagate into the
SCFT predictions, we also consider two fluctuation-corrected approaches to
extract x;; from diblock polymer data, namely (i) fitting the order-disorder
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transition temperature to that predicted by molecular dynamics simulations
and (ii) renormalized one-loop theory predictions for the structure factor
of the disordered state. While even the fluctuation-corrected x parameters
do not lead to SCFT phase behavior that exactly matches experiments, the
SCFT calculations using the molecular dynamics-fitted x parameters cor-
rectly predict stable Frank-Kasper A15 and ¢ phases. The results presented
here highlight the challenges in predictively modeling the phase behavior
of multiblock polymers using SCFT, a critical task for the discovery of new
multiblock polymer materials.

Keywords: block polymer, Flory-Huggins theory, self-consistent field
theory, phase behavior

1. Introduction

Block polymers self-assemble at nanometer length scales to form a wide
variety of periodically ordered structures. Professor Takeji Hashimoto, to
whom this article is dedicated in celebration of his extraordinary career in
polymer science, contributed a wealth of foundational knowledge regard-
ing the structure and properties of this class of soft materials. Even the
simplest block polymers, the AB diblocks, form at least eight different mor-
phologies [1, 2, 3, 4]. Multiblock polymers, comprising three or more blocks,
offer a platform for creating a much larger array of ordered structures [5].
For example, linear ABC triblock terpolymers already have more than 30
known ordered phases [6, 7, 8, 9, 10, 11, 12, 13]. Varying the architecture
from linear ABC to star ABC provides access to many more intriguing
morphologies including quasicrystals [14, 15, 16, 17]. The freedom to select
different block chemistries, and independently vary block lengths, further
adds to the extraordinary design opportunities provided by this class of
macromolecules [5].

Clearly, synthesizing a massive library of multiblock polymers with
varying block compositions, chemistries, and architectures in the hope of
discovering new ordered structures is inefficient and expensive. Hence,
the discovery of new materials within such a vast molecular design space
needs to be steered using theory and computation. Among various meth-
ods available, self-consistent field theory (SCFT) represents an efficient
approach for exploring large parameter spaces [18, 19, 20, 21, 22]. How-
ever, the success of an SCFT-driven materials design program relies heavily
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Figure 1: Comparison of Flory-Huggins interaction parameter xs for poly(isoprene) and
poly(styrene) reported by different publications [27, 28, 29, 30]. These parameters are
obtained by performing experiments on PI-PS diblock copolymers. Here we note that it is
important to use a common repeat unit volume when making such a comparison, and so
all the above parameters are transferred to a chosen reference volume, vf = 118 A3,

on the input parameters used to perform the calculations. In particular,
the Flory—Huggins parameter y;; describing the net interaction between
two chemically distinct monomeric segments i and j is of paramount im-
portance [23]. These parameters are typically obtained from the phase
behavior of the corresponding diblock polymer, although simulation-based
methods for predicting x continue to advance [24, 25, 26]. As illustrated
in Fig. 1 for the poly(isoprene)-b-poly(styrene) (IS) diblock copolymer, one
of the most studied diblock systems, different data sets produce markedly
different estimates for x5, which then presumably translate into different
SCFT predictions for the phase behavior of multiblock polymers containing
poly(isoprene) and poly(styrene) as two of their blocks.

A key open question is determining the magnitude of the anticipated
sensitivity of SCFT-predicted phase behavior to the input x parameters
for multiblock polymers. In this work, we address this question by con-
sidering a poly(styrene)-b-poly(isoprene)-b-poly(styrene)’-b-poly(ethylene
oxide) (SIS'O) tetrablock terpolymer. Our choice is motivated by a host
of recent experimental studies on SISO tetrablocks reporting an array of
ordered structures including core-shell spheres and cylinders, the Frank—
Kasper ¢ and A15 phases, and a dodecagonal quasicrystalline morphol-
ogy [2, 31, 32, 33, 34]. We examine how the resulting SCFT phase diagrams
are affected by the method used to estimate the x parameters, focusing
on the three standard approaches appearing in the literature. In the first



approach, we use the parameters reported in literature by Frielinghaus et
al. [30, 35, 36], which were obtained by fitting the experimentally measured
order—disorder transition temperatures (Topr) for volumetrically symmet-
ric diblock copolymers (fo = 0.5) to the mean-field theory prediction of
XNoprt = 10.5 [37]. In the second approach, we searched the literature to
tind values of Topt for symmetric samples for each of the three diblocks,
and fit those values to the x Nopr predicted by coarse-grained molecular
simulations [38, 39]. In the final approach, we use the interaction param-
eters reported in the PhD thesis of Pavani Medapuram [40], which were
obtained by fitting the experimentally measured small-angle X-ray and
neutron scattering (SAXS and SANS) intensities of the disordered phase to
the predictions of the renormalized one-loop theory for symmetric diblock
copolymers [41].

Our goal here is not to address per se the accuracy of a given method
for predicting x; this important problem would be best addressed by com-
paring theory to experiments using diblock polymers [42, 43]. Rather, our
goal is to understand how the SCFT predictions for a model ABAC multi-
block polymer differ depending on the method used to estimate x. In this
light, SIS’O is an ideal model system; there are experimental data to use
as a point of reference [34], the system exhibits a large number of different
phases over a rather narrow range in composition and temperature, and
the different sphere-forming phases are very close in free energy. SISO
thus should exhibit the exquisite sensitivity to the x parameters that we
anticipate will be a prevalent phenomenon in multiblock polymers, and
could stymie attempts to model such materials. Inasmuch as the trio of ap-
proaches we use here to estimate ) are the standard starting points for any
materials discovery program predicated on SCFT, the extreme sensitivity
of the resulting phase behavior to the choice of x parameters constitutes
a cautionary tale for future SCFT-based designs of multiblock polymer
materials.

2. Estimation of Flory-Huggins Interaction Parameters

2.1. Approach 1: x from Mean-Field Theory

Frielinghaus et al. [30, 35, 36] reported the three binary interaction pa-
rameters required in this work. By fitting the order—disorder transition to



the predictions of mean-field theory, they obtained

26.

Xis = ? —0.0290, (1)

Xso = %05 —0.0231, )
14

Xi0 = ¥ — 0.0584. 3)

The above interaction parameters use a reference volume, v, = 118 A3,
There is an uncertainty of 20% in each x parameter, which they attributed
to the uncertainty in the molar mass determination [30]. These parameters
were obtained by performing experiments within the temperature range
of 117 °C < T < 282 °C [30, 35]. As mentioned earlier, PI-PS is the most
studied system among the three diblocks, and consequently, several other
studies have also reported estimates for s using mean-field theory (Fig. 1).
However, since we are using the other two );; parameters from Frielinghaus
et al., we decide to use the xs parameter from the same study for internal
consistency.

2.2. Approach 2: x from Simulation Results

In this method, we estimate the interaction parameters by fitting the ex-
perimentally measured values of Topt for symmetric and nearly-symmetric
diblocks to the predicted order—disorder transition obtained from a suite of
coarse-grained molecular simulations [38, 39]:

xNopt = 10.5 + % + %, 4)
where N = N bg’vg /v%; is the invariant degree of polymerization and bayg
is the average statistical segment length b of the two blocks. The second
term in Eq. (4) is the result of Fredrickson—-Helfand theory, which was
the first theory accounting for the fluctuations effects in symmetric di-
block copolymers [44]. Subsequent theoretical studies have shown that the
Fredrickson-Helfand theory is applicable to N > 10%, and gives inaccurate
results for N < 10* [45]. Since most experimental systems lie within the
range 200 < N < 10000, Fredrickson-Helfand theory is not optimal for
estimating the interaction parameters. The third term in Eq. (4) represents
the correction to the Fredrickson-Helfand theory estimated by performing
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Table 1: Molecular parameters and the Topt values reported in the literature for nearly-
symmetric samples of the three diblock copolymers: PI-PS, PS-PEO, and PI-PEO. The
molecular weight (M) listed for entries that do not have D values corresponds to the
number-average molecular weight (My).

PI-PS
Name fps MyorM, D Topr(°C) N N Reference
IS6  0.46 13.0 1.05 78 136 507  Lin and Balsara [28]
IS7  0.46 14.4 1.05 84 150 562  Lin and Balsara [28]
IS54  0.46 17.0 - 124 187 697  Khandpur et al. [29]
IS1 0.54 20.7 1.03 117 218 770 Frielinghaus et al. [35]
1S2 0.56 28.9 1.04 200 301 1047 Frielinghaus et al. [35]
frs PS-PEO
SEO11 048 13.7 1.04 107.5 194 662 Teran and Balsara [46]
SEO1 0.50 17.0 - 172 251 826  Frielinghaus et al. [36]
SEO2 0.49 24.2 - 280 357 1196 Frielinghaus et al. [36]
I PI-PEO
101 050 4.4 1.06 132 62 517 Frielinghaus et al. [35]
102 0.49 7.4 1.10 247 101 849 Frielinghaus et al. [35]

large-scale molecular dynamics simulations of various bead-spring mod-
els spanning a wide range, N = 100 — 7600 [38]. Overall, Eq. (4) should
be a reliable prediction of xNopr, especially for the N values considered
here, and thus is expected to yield reasonably accurate estimates of the
interaction parameters [43, 39].

Table 1 lists the specifications of various experimentally synthesized
symmetric and nearly-symmetric diblock copolymers reported in literature
for the three binary pairs: PI-PS, PS-PEO, and PI-PEO. For an AB diblock
copolymer, if the block molecular-weights M4 and Mp are known, then N
is calculated as

My Mg

N(T) = ,
( ) PA(T)NAVUref pB(T)NAVUref

(5)

where p4(T) and pp(T) are the densities of the monomer types A and
B, respectively, at a temperature T, and Ny, is the Avogadro’s constant.
Instead of individual molecular weights, if the overall molecular weight M



is given, then
M/ (NAvvref)

pa(T)fa+ps(T)f5’

where f,4 and fp are the volume fractions of the blocks A and B, respectively.
Furthermore, the average statistical segment length is calculated as bayg =
(fab?% (T) + fsb3(T))/2, where b and b are the statistical segment lengths
(SSLs) of the blocks A and B, respectively, at a temperature T. We use the
temperature-dependent forms of the densities and SSLs because we choose
a different reference temperature for different cases depending upon the
range of Topt values in each case. The functional forms for the densities
are

N(T) = (6)

or[g/cm®] = 0.998 — 1.2 x 1073T, 7)
0slg/cm®] = 1.0865 — 6.19 x 1074T + 1.36 x 1077 T2, (8)
oolg/cm®] = 1.139 — 7.31 x 1074T, 9)

respectively, where T is in °C [46, 47]. The values of SSLs depend on the
reference volumes, so we will report their functional form and values once
we have decided on a reference volume for a given yx;;. Below, we provide
the calculation details for each of the three diblocks separately.

2.2.1. PI-PS

Although the PI-PS diblock copolymer has been studied extensively,
there are few studies focusing on symmetric or nearly-symmetric copoly-
mers that report all the information required to obtain the interaction pa-
rameter using Eq. (4). Table 1 lists the Top values of five nearly-symmetric
(fr = 0.5+ 0.06) PI-PS diblock copolymers. In order to calculate the parame-
ters N and N, we select the reference temperature T = 81 °C as the average
of the Tppr values for IS6 and IS7 listed in Table 1. For this reference
temperature, Egs. (7) and (8) yield p; = 0.90 g/cm® and ps = 1.04 g/cm?.
The reference volume is calculated as the geometric mean of the monomer
volumes of PI and PS, v, = /vsv; = 157 A3, based on the reported
molecular weights of PI and PS repeat units [47]. For the above reference
volume, the SSLs of Pl and PS are by = exp[(1/2)(0.00040(T + 273) 4 3.77)]
A and bs = exp[(1/2)(0.00044(T + 273) + 3.52)] A, respectively, with T
in °C [47, 40], which yield b; = 7.07 A and bg = 6.28 A at the selected
reference temperature. Using the values of N and N listed in Table 1 and



titting to Eq. (4), the interaction parameter ;s is

XIs = % — 0.1852. (10)
2.2.2. PS-PEO
In the case of the PS-PEO system, two studies in the literature have
reported a total of three Topr values for the symmetric or nearly-symmetric
diblock copolymers (Table 1). We choose the reference temperature for this
system as T = 107.5 °C, which is the Topt for the SEO11 sample listed in
Table 1. Consequently, Egs. (8) and (9) yield ps = 1.02 g/cm? and po = 1.06
g/cm?, respectively. Similar to the previous case, the reference volume is
selected as the geometric mean of the block repeat unit volumes, v,f =
\/Usvo = 108 A3. For the selected reference volume and temperature, the
values of the SSLs are bg = 4.87 A, and bp = 6.61 A, calculated using bs =
exp[(1/2)(0.00044(T + 273) +3.00)] A and bp = exp[(1/2)(0.00023(T +
273) +3.69)] A, respectively, with T in °C [47]. Using a fit to Eq. (4), the
interaction parameter xso is estimated as

Xso = ﬁ — 0.0602. (11)

2.2.3. PI-PEO

The PI-PEO diblock copolymer is the least studied system among all the
three diblocks. We found only one report that provides all the information
required to obtain the x parameter using Eq. (4) [35]. This study reports two
Topt values for the symmetric or nearly-symmetric PI-PEO diblock sam-
ples. Although the resulting estimate of x is expected to have significant
uncertainty, we nonetheless chose to obtain the interaction parameter using
the two available data points. We select the reference temperature T =
140 °C, which yields p; = 0.83 g/cm?, and pp = 1.04 g/cm? using Egs. (7)
and (9), respectively. The reference volume for this case is vt = /0100 =
117 A3. For the chosen reference volume, by = exp|[(1/2)(0.0004(T 4 273) +
3.43)] A, and bp = exp[(1/2)(0.00023(T + 273) + 4.0)] A [47], which yield
by = 6.00 A, and bo = 7.75 A, respectively, at T = 140 °C. The corre-
sponding values of N and N are listed in Table 1. Using a fit to Eq. (4), the
interaction parameter xjo is

250.84
X0 = iTS —0.3077. (12)
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Collectively, Egs. (10), (11) and (12) form the set of binary interaction
parameters that is obtained in this approach, i.e., by fitting the experimental
values of Topt to the results of molecular simulations. Note that the refer-
ence volume used to calculate the molecular parameters given in Table 1
differs among the three diblocks. Transforming the above ) parameters to
a common reference volume, v, = 118 A3, yields

83.76

XI1s = T - 0.1392, (13)
64.26

Xso = —5— — 0.0658, (14)
252.98

2.3. Approach 3: x from Renormalized One-Loop (ROL) Theory

In this approach, the x parameters are estimated using another fluctuation-
based model, the renormalized one-loop (ROL) theory. The ROL theory for
diblock copolymers was developed by Morse and coworkers [41] in 2011
and is by far the most accurate theory of the composition fluctuations in
the disordered phase of symmetric and nearly-symmetric diblock copoly-
mers. It provides accurate predictions for the complete structure-factor
function, S(g) vs g, as well as the variations of peak position g* and peak
intensity S(q*) as functions of Flory-Huggins interaction parameter x;;.
The mathematical tools underlying ROL theory are difficult to apply to
ordered structures; hence, the theory does not provide any predictions for
XNopr or the properties of the ordered structures. This is the sole reason
that this third approach, in contrast to the previous two approaches, uses
structure factor data to obtain the Flory-Huggins parameters.

The overall procedure to obtain the interaction parameters using ROL
theory involves three steps. In the first step, the values of peak intensities
I(g*) are obtained at different temperatures from the SAXS and SANS
experimental results reported in the literature. The second step involves
transforming these values to the normalized inverse peak structure factor
cNS~1(g*), where c = 1/0y¢. In the final step, the temperature dependence
of cNS~1(g*) obtained in the previous step is fitted to the cNS~1(g*) vs
Xij function predicted by the ROL theory to estimate the parameters a;;
and B;; in x;; = ;;/ T + Bi;. We emphasize here that this whole procedure
is quite intricate and requires solving the set of highly non-linear ROL
equations numerically (third step). Pavani Medapuram estimated two of

9



the interaction parameters that are required in this work, x ;s and xso, as a
part of her doctoral work. Hence, we use the two interaction parameters
from her PhD thesis [39]:

95.50

XI1s = T 0.1578, (16)
45.04

Xso = % — 0.0295. (17)

The above interaction parameters correspond to the reference volume,
Vet = 118 A3. As PI-PEO is the least studied system, we were unable to
identify even a single study in the literature that reports SAXS or SANS
intensities for the symmetric or nearly-symmetric PI-PEO diblocks. Due to
unavailability of the required data, we chose to use the xjo estimate from
the fit to simulation results (the second approach) to perform the SCFT
calculations for this last approach. Consequently, Egs. (15)-(17) together
constitute the set of interaction parameters for this third approach.

2.4. Comparison of Different Methods

Before considering the outcome of the SCFT calculations, it is instructive
to compare the estimates of x;; obtained from the different methods to
appreciate the extent of the differences between them. Figure 2a, b, and
c compare the xs, Xso, and xjo parameters, respectively, obtained using
the methods outlined above. It is interesting that the estimates of ;s
obtained using the fluctuation-based methods are quite similar, and differ
significantly from that obtained using mean-field theory. However, the
same is not true for xso; estimates obtained from the mean-field theory and
simulations predictions are similar and differ noticeably from that obtained
using ROL theory.

The two fluctuation-based methods used here are fundamentally equiv-
alent. The estimation of Y Nopr from molecular simulations, i.e., Eq. (4),
requires the transformation of interaction-potential parameters in simula-
tions to the appropriate x parameter. Such a transformation is performed
by fitting the structure factor calculated from simulations to that predicted
by ROL theory [38, 40, 43]. Hence, if both, the structure factor and the Topr
data of a system are available under same conditions with negligible uncer-
tainty, and if the system is monodisperse, then Approaches 2 and 3 should
yield the same x vs. T estimate. The differences between the estimates
of Approaches 2 and 3 depicted by Fig. 2 stem from the uncertainties in

10
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Figure 2: Comparison of Flory—-Huggins interaction parameters, (a) poly(isoprene) and
poly(styrene), xis, and (b) poly(styrene) and poly(ethylene oxide), xso, obtained using
the three methods: mean-field theory, simulations results, or renormalized one-loop (ROL)
theory. (c) Comparison of poly(isoprene) and poly(ethylene oxide) interaction parameter,
X10, estimated using mean-field theory and simulations results.

the experimental measurements among different groups and due to the
polydispersity of the sample. Nevertheless, for the purpose of this study,
i.e., to examine the sensitivity of phase behavior towards different x vs.
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T estimates, both approaches serve as equally good methods even if they
yield different sets of x parameters.

3. SCFT Calculations

SCFT and its numerical implementation are discussed in great detail in
many previous studies [20, 21, 22]. Hence, we discuss only the necessary
ingredients and parameters required for the calculations reported here.
We use the open-source package polymer self-consistent field (PSCF) to
perform all the SCFT calculations, and direct interested readers to Ref. 22
for the details regarding the numerical algorithms and features of PSCF.

Briefly, PSCF is based on a unit-cell implementation of SCFT, hence,
a list of all the possible candidate structures is required a priori to ex-
amine the phase behavior [22]. Based on the experimental results on
SIS'O tetrablocks [34], we consider six candidate ordered structures: five
sphere-forming phases [body-centered cubic (BCC), face-centered cubic
(FCC), hexagonal close-packed (HCP), Frank-Kasper ¢ and A15], along
with hexagonally-packed cylinders (HEXc). For each of these six phases,
we construct the required guess structures to begin the iteration procedure
following the reciprocal-space initialization approach developed in our
earlier work [22]. Furthermore, we use two different types of iteration
algorithms, Newton-Raphson and Anderson mixing, depending on the
their respective advantages in simulating the types of structures considered
in this work [22, 48]. All the other numerical parameters, including the
continuation method implemented by the SWEEP feature, which is used
extensively in this study, are discussed in our earlier work [22]. We em-
phasize that SCFT yields the free energies of different ordered structures,
which are then compared to one another to construct the phase diagram.
SCFT does not provide any information about the nucleation and growth
dynamics of the ordered structures that may govern non-equilibrium phase
behavior.

Within the SCFT framework, the phase behavior of linear SIS'O tetra-
blocks is determined by the six molecular parameters: f, fo, fs, br/bs,bo/bs
and N, and three interaction parameters: xrs, x10, and xso. Since we are
interested in examining the effect of the temperature-dependence of the x
parameters alone on the SCFT-predicted phase behavior, we assume the
other parameters are temperature invariant. Specifically, for all the SCFT
calculations reported here, we calculate N based on a common reference
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volume vt = 118 A3, and use the temperature-independent SSLs, b; = 6.0
A, bs =54 A, and bp=7.8 A for PI, PS, and PEO, respectively. It has been
shown previously that the precise values of SSLs with Ab = 0.2 A are cru-
cial when the results from SCFT and experiments are compared for some of
the detailed features such as interfacial thickness and domain spacing [49].
However, for comparing the phase transitions and overall morphological
behavior, usually a significant amount of disparity between the SCFT-input
and experimentally-reported SSL values is observed [4, 50, 51, 52]. Note
that the maximum variation in the SSLs for the temperature range consid-
ered here is small, Ab; ~ 0.08 A, Abs ~ 0.05 A, and Abp = 0.03 A. Hence,
our assumption of temperature-independent SSLs is reasonable and is not
expected to have a pronounced effect on the results.

In our earlier work on SIS'O tetrablocks [34], we identified that the
difference in the lengths of the PS and PS’ blocks, T = Ngs/(Ns + Ng/),
plays an important role in governing the phase behavior and the tetrablock
with T = 0.73, referred to as SIS'O-0.73 in Ref. 34, exhibited the richest
phase behavior when compared to tetrablocks with other 7 values. Thus
we focus here on the SIS'O-0.73 tetrablock and perform all our calculations
in a way that mimics the experimental synthesis; increasing fo implies
adding the desired length of the PEO block to the parent SIS’ triblock of
constant length N¢;o = 298 along a constant isopleth f;/(fs + fs/) = 0.5.
Consequently, the overall N is calculated as a function of fp as

298
1-fo
For a typically synthesized SISO sample [34], the value of N ~ 350 and the
segregation strengths at T = 150 °C using the interaction parameters given
in Egs. (13)-(15) are xNjs ~ 20, xNso ~ 30, and xNjo ~ 100.

The selection of the SIS’O-0.73 tetrablock reduces the dimension of
the parameter space to four: fo, x1s, X10, and xso. Using the x;; vs T
functions obtained in the previous section, we examine the phase behavior
in the T — fo plane and compare SCFT predictions with experiments. The
different phases for SIS'O-0.73 are observed in experiments within the
temperature range of 160 °C < T < 280 °C before the sample disorders
at Topr ~ 285 °C. Preliminary SCFT calculations on SIS'O-0.73 suggested
that the order—disorder transition predicted by SCFT is Topr ~ 220 °C.
Hence, throughout this work, we examine the phase behavior within the
temperature range of 140 °C < T < 180 °C and for a wide range of volume

N =

(18)

13



fraction, 0.05 < fo < 0.30. This corresponds to the following ranges of the
volume fractions of the other three blocks:

0.3468 > fg > 0.2555, (19)
0.4750 > f; > 0.3500, (20)
0.1283 > fo > 0.0945. 1)

Moreover, the experimentally synthesized SIS'O-0.73 sample has a polydis-
persity D = 1.03, which, in addition to few other molecular parameters, is
subjected to small uncertainties (see Section 54 in Supplementary Material).
In this work, we neglect such uncertainties, and perform all our calculations
for a monodisperse melt.

4. Predicted Phase Behaviors and Morphologies

4.1. Qwverall Trends

Figure 3 shows the phase behavior predicted by SCFT in the T — fo
plane using the interaction parameters estimated from Approaches 1, 2, and
3, respectively. The dashed (black) line at fo = 0.13 in Fig. 3 denotes the
PEO volume fraction of the experimentally synthesized sample, SIS'O-0.73.
It is clear from Fig. 3 that the phase behavior is extremely sensitive to the
Flory-Huggins interaction parameters. This sensitivity is best highlighted
by comparing Figs. 3b and c, which correspond to SCFT results obtained
using the x parameters estimated using the fluctuation-based theories.
Among these two sets of parameters, only the parameter x o is significantly
different, with x5 being almost same (see Fig. 2a) and x o exactly the same
since we were unable to identify experimental data to use with ROL theory.
Nevertheless, the phase behavior depicted in Fig. 3b is very different from
that shown in Fig. 3c.

It is worthwhile to examine whether SCFT predicts the expected shapes
of the particles and arrangement of the blocks. In SISO tetrablocks, xjo >
Xso 2 X1s, hence, they are expected to form domain structures that mini-
mize the unfavorable PI/PEO contacts. Figure 4a shows the density profiles
within the unit cell for all six ordered structures. All of the structures con-
tain well defined core-shell particles in which the PEO block (yellow) forms
the core and the PS’ block (blue) forms the shell to screen the contacts
between PEO and PI. Figure 4b shows the monomer concentration profiles
¢(r) for one of the structures, the BCC phase along the body diagonal
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Figure 3: SCFT-calculated phase diagrams in the T — fo plane using the interaction
parameters reported in (a) Approach 1, i.e., Egs. (1)-(3) (x;; estimated using mean-field
theory), (b) Approach 2, i.e., Egs. (13)-(15) (x;; estimated using simulation results), and
(c) Approach 3, i.e., Egs. (15)-(17) (x;; estimated using ROL theory). These calculations
are done for the SIS'O tetrablock terpolymer having T = Ns/(Ns+ Ng) = 0.73 and
fi/(fs + fg) = 0.50, and performed in a manner that mimics the experimental synthesis;
increasing fo implies adding the corresponding length of the PEO block to the parent
SIS’ triblock of constant length Ngig = 298 [34]. The dashed (black) line denotes the
experimentally synthesized SIS'O-0.73 tetrablock having fo = 0.13.

([111]), confirming the core-shell nature of the particles. In Fig. 4b, it is
important to note that the PI and PS blocks are intermixed significantly
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Figure 4: Density profiles within the unit cells of different sphere-forming phases consid-
ered in this work. The unit-cell representations depict the density profiles of the PEO block
forming the discrete microdomains (yellow) with PS’ forming a shell around it (blue),
while the density profiles of the PI and PS blocks are omitted for clarity. These profiles
are calculated from the converged solutions obtained at T = 180 °C and fo = 0.13 using
the simulation-results-fitted interaction parameters given in Egs. (10)-(12). (b) The density
profiles of all the four blocks along the [111] direction in the BCC phase, depicting the
core-shell nature of the particles.

within the matrix. In previous work, we hypothesized that the mixing of
blocks within the matrix has a profound influence on the relative stabil-
ity of different phases, particularly the complex phases [34]. The actual
arrangement of the blocks is not obvious in Fig. 4b, however, it is reason-
able to assume that a fraction of the chains will have their terminal PS
and PI blocks dangling and mixed within the matrix, while the rest of the
chains may bridge between different particles or loop back within the same
particle [53].

While performing the calculations for Figs. 3b and ¢, we found multiple
converged solutions having different free energies at same state point. Fig-
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Figure 5: Comparison of the block density profiles of two converged solutions at fo = 0.13
and T = 140 °C obtained using different guess structures. The structure in (a) is obtained
using the converged solution of (fo = 0.14,T = 140 °C), while the structure in (b) is
obtained using the converged solution of (fo = 0.13, T = 141 °C). Relative free energies
per chain of the two structures are (a) F — Fpis/kgT = —7.9677, and (b) F — Fp;s/kgT =
—7.9081. Both the solutions are obtained using the Newton-Raphson iteration algorithm.

ure 5 shows the density profiles of the four blocks within the BCC phase
for the two converged solutions at (T = 140 °C, fo = 0.13) obtained using
different guess structures. Interestingly, the shape of the PEO particles
differs significantly among the two solutions. This difference in the shapes
arises due to entirely different segregation of the PI and PS blocks within
the matrix. Moreover, during the numerical continuation of solutions in the
parameter space, the solution branch corresponding to Fig. 5(a) experiences
a discontinuity in the unit-cell dimension, which results into a significantly
different structure and free energy (see Fig. S1 in Supplementary Mate-
rial). Such behavior is also observed with the FCC and HCP phases at
low temperatures in the phase diagram of Approach 2 (see Figs. 52-54 in
Supplementary Material). The ability of multiblock polymers to produce
different structural features while maintaining the prescribed crystallo-
graphic symmetry and position of the particles highlights an additional
level of complexity involved in modeling these materials. Nonetheless, in
constructing the phase diagrams shown in Fig. 3, we consider the structure
that have the least free energy among all the multiple converged solutions.
Experimentally, SIS'O-0.73 exhibited different phase-transition sequences
on heating and cooling, as seen in Fig. 8 of Ref. [34]. Heating the sample
from a freeze-dried state at T = 120 °C yielded the transition HCP+FCC
— A15 — ¢ — Dis, while cooling the disordered material produced the
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transition Dis — BCC(transient) — 0 — HCP, with BCC observed as a
transient phase before the growth of ¢ begins. Another phase transition
sequence that involves a liquid-like packing of particles and dodecagonal
quasicrystalline morphology is observed when heating the freeze-dried
sample starting at a reasonably high temperature (T = 260 °C) [34], but we
will not discuss this transition as we are not considering the quasicrystalline
structures in this work. It is important to note that the morphological behav-
ior observed in SIS'O-0.73 is path-dependent. For example, the A15 phase
is not observed on cooling but only on heating, and that too when heating is
started at a very low temperature. Such processing-dependent phenomena
cannot be captured by an equilibrium theory like SCFT. Nevertheless, it is
worthwhile to determine if there is any correspondence between the SCFT
results and experiments. We thus proceed to examine the results of each
method in more detail.

4.2. Approach 1

The phase behavior depicted in Fig. 3a, obtained using the mean-field
theory estimates of yx, predicts only two sphere-forming structures as the
stable phases: o and A15, with A15 occupying a tiny region at low tempera-
tures. More noticeably, there is no phase transition predicted for SIS'O-0.73,
with only ¢ as the stable phase. Even at other volume fractions, there are
not many phase transitions with the phase boundaries appearing almost
vertical and thus invariant with temperature. Interestingly, the phase dia-
gram in Fig. 3a looks similar to that of an AB diblock, where fp, analogous
to f4, controls the domain curvature; decreasing fo transforms cylinders to
spheres at a constant temperature. However, by varying fo, the value of N
changes by Eq. (18). Consequently, the segregation strengths, xNjs, xNso,
and xNjo, also change. Hence, the phase diagram in the T — f; plane is not
precisely the same as that in the YN — f4 plane typically used to examine
the phase behavior of AB diblocks.

Overall, it is clear that the mean-field theory set of interaction parame-
ters does not predict the phase behavior observed experimentally, which is
unsurprising. It is important to note that the diblock samples synthesized
by Frielinghaus et al. [35, 36] to obtain these parameters are of moderate
molecular weights, N ~ 100 — 300, and consequently correspond to mod-
erate values of N (see Table 1). For such values of N, the fluctuation effects
near the order—disorder transition become increasingly important and shift
XNopr to a value significantly higher than the mean-field-theory prediction
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of 10.5 [54, 55]. This is a likely reason for the inability of the SCFT calcula-
tions using x parameters obtained from the mean-field Topr prediction to
capture the experimentally observed phase behavior.

4.3. Approach 2

In contrast, the phase diagram shown in Fig. 3b, obtained using the
Flory—-Huggins parameters estimated by fitting Topt to simulations, is very
rich, exhibiting all six of the different ordered structures. For the SIS'O-0.73
sample, denoted by the dashed line at fo = 0.13 in Fig. 3b, the phase
transition on heating is BCC — A15 — ¢. The phase transition predicted
by SCFT for SIS'O-0.73 does not match exactly with experiments.

In Fig. 3b, the close-packed structures HCP and FCC do not appear
to be stable for SIS'O-0.73. Instead, we observe the BCC phase at low
temperatures. However, it is remarkable that both of the complex phases,
and A15, are predicted to be stable phases at high temperatures. Recently,
Liu et al. [53] reported extensive SCFT calculations to examine the stability
of complex phases in ABAC tetrablocks, considering network structures
also as candidate phases. They found that A15 always exists as a metastable
phase, with a free energy consistently higher than that of the ¢ phase for
various regions of the parameter space explored in their study (see Figs.
8-10in Ref. 53). However, here we observe A15 to be the stable phase. There
are two reasons for this seemingly contrasting result. The first obvious
reason is that the SCFT parameters, in particular the segregation strengths,
used in their study are noticeably different from those corresponding to
any of the phase diagrams shown in Fig. 3. Specifically, they have used
xNis = 11.0,xNso = 14.2, and xNjp = 45.8, while we have xN;s =
17.1, xNso = 27.2, and xNjo = 89.3 for SIS'O-0.73 at T = 170 °C using
Approach 2. The second reason is that since we are primarily interested in
comparing SCFT predictions to experiments, we have done calculations
that resemble the experimental synthesis, while the calculations reported
by Liu et al. are not done with such a restriction. Nevertheless, Fig. 3b
shows the phase transition A15 — ¢ on heating, which is the same as that
observed experimentally between these two phases, suggesting that this set
of parameters is moderately close in accurately modeling the interactions
in SISO system. In comparison to the phase diagram of Fig. 3a, it is certain
that the use of fluctuation-based prediction of x Nopr is a more accurate
way to estimate the xy parameters.
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Figure 6: Free energies per chain of different phases relative to that of the BCC phase,
F — Fpcc/kpT, along the dashed (black) line shown in Fig. 3b. The inset shows the
difference in the free energies of the o and A15 phases at high temperatures, i.e., 160 °C <
T <180 °C.

Figure 6 shows the temperature-dependent free energies per chain of
different phases relative to that of the BCC phase for the SIS'O-0.73 sample
using the x parameters obtained in Approach 2, i.e., along the dashed
line shown in Fig. 3b. In general, we see that the difference in the free
energies between any two phases lies within the range 1072 kg T to 1073 kg T.
However, the difference between the free energies of o and A15 reduces to
the order of 10~% kgT for a wide temperature range, 160 °C < T < 180 °C,
as depicted in the inset of Fig. 6. This is similar to the difference observed
for these two phases in diblock copolymers [3]. In addition to complex
phases, as expected, the free energy difference between the two close-
packed structures is also very small. Such tiny differences in the free
energies are consistent with our argument that the phase behavior is very
sensitive to the interaction parameters used for the SCFT calculations.
Moreover, such narrow differences in the free energies are not limited to
SIS'0O-0.73 (fo = 0.13) sample, but persist over almost the entire phase
diagram (see Fig. S5 in Supplementary Material).

One of the interesting features to note in the phase diagram of Fig. 3b
is that the HEXc phase is stable under two separate conditions, one at
significantly low fo values and the other at high fo values. The formation
of cylinders at such low volume fractions of the PEO block contrasts with
the typical morphological behavior observed in diblock polymers since the
low volume fraction of the core block has a tendency to produce sphere-
forming morphologies. Figure 7 shows the density profiles along the [110]
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Figure 7: Density profiles of different blocks along the [110] direction (dashed line in
Fig. 3a) within the unit cell of the HEXc phase. These profiles are computed for (a)
fo =0.28,and (b) fo = 0.08 at T = 170 °C using the simulations-results-fitted parameters
corresponding to the phase diagram shown in Fig. 3b.

direction for the two HEX¢ phases in Fig. 3b obtained at fo = 0.28 and
fo = 0.08, respectively, for T = 170 °C. For fo = 0.28, the structure contains
moderately segregated core-shell cylinders, consistent with Fig. 4. However,
no shell forms at fo = 0.08. Instead, the core of the cylinder is formed
jointly by the PEO, PS’, and PS blocks. Moreover, the significantly high
density of the terminal PS block at r/a = 0 in Fig. 7b suggests that in this
case a large fraction of the chains are looping back within the same particle
to aid the formation of cylinders. We emphasize that the calculations for
the HEX( phase are done in two dimensions constraining the calculation
to have P6mm symmetry. Hence, it is not clear whether the HEX phase is
comprised of infinitely long cylinders. It is possible that the HEXc region
at low volume fractions resembles a structure comprising of spherical
particles arranged in a three-dimensional hexagonal lattice, similar to the
morphology referred to as HEXg in Ref. 34.

21



BCC FCC + Al5 = HEX; =
107

ol b e, ~ . h
140 145 150 155 160 165 170 175 180 140 145 150 155 160 165 170 175 180
B T [°C] 5 T [°C]

F-Fgee ! kT
S = P W s U o

140 145 150 155 160 165 170 175 180 140 145 150 155 160 165 170 175 180
T [°C] T [°C]

Figure 8: Relative free energies per chain, F — Fgcc/kgT, along the dashed (black) line
shown in Fig. 3c (Approach 3) for four different cases having xjo (a) increased by 10%,
(b) increased by 20%, (c) decreased by 10%, and (d) decreased by 20%, from the estimate
given by Eq. (12).

4.4. Approach 3

The phase diagram corresponding to the interaction parameters ob-
tained using ROL theory, shown in Fig. 3c, exhibits two sphere-forming
structures (BCC and FCC) while most of the phase space is occupied by the
HEXc phase. More importantly, neither of the two complex phases, ¢ and
A15, are predicted to be stable for SIS'O-0.73 throughout the temperature
range explored. Instead, SIS'O-0.73 exhibits a transition from BCC to HEX¢
on heating, although the HEXc phase was never observed in experiments
(see Fig. S6 in Supplementary Material for HEXc-BCC boundary). Note
that this set of x parameters is also estimated using a fluctuation-based
theory, hence, expected to predict the phase behavior in close agreement
with experiments, similar to that of Approach 2 (Fig. 3b). However, the
resulting parameters and SCFT calculations failed to capture some of the
important features observed experimentally.

Recall that the interaction parameter x o in this approach is same as that
of Approach 2. Since the phase diagram of this approach is significantly
different than that of Approach 2 and does not predict any of the complex
phases observed experimentally, it is worth examining the effect of variation
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in xjo given by Eq. (12) on the phase behavior depicted in Fig. 3c. Figure 8
shows the relative free energies per chain, F — Fgcc/kgT, along the dashed
line (SIS'O-0.73) shown in Fig. 3c for four cases having x o increased and
decreased by 10% and 20% from the estimate given by Eq. (12). Since the
free energy differences between A15 and ¢, and between FCC and HCP are
very small, we omit simulating the expensive ¢ and HCP phases for these
calculations. It is evident from Fig. 8 that the perturbation of x;o up to
20% affects only the order—order transition temperature between the BCC
and HEX( phases while it does not stabilize any new phases for SIS'O-0.73.
Nevertheless, the results in Fig. 8 highlight that the set of x parameters that
can model the experimental phase behavior exactly may be significantly
different from that obtained in Approach 3.

5. Conclusion

We have examined the sensitivity of the SCFI-predicted phase behavior
towards the set of Flory-Huggins interaction parameters for an SISO tetra-
block terpolymer. We used three different sets of xy parameters obtained
by fitting experimental results on diblock copolymers to the predictions
of mean-field theory, coarse-grained molecular dynamics simulations, or
renormalized one-loop theory. The phase behaviors predicted by each of
the three sets of Flory-Huggins parameters differ significantly with one
another and none of them captures the experimentally-observed phase
behavior comprehensively. Nevertheless, the SCFT calculations using the
simulations-results-fitted parameters predict both the complex phases ¢
and A15 to be the stable phases for the experimentally synthesized SIS'O
sample in which these phases were observed. Moreover, using this set of
X parameters in the SCFT calculation predicts the same phase transition
sequence between these two phases that is observed experimentally on
heating the sample, suggesting that they best describe the SIS'O system
among the three sets of parameters studied here.

Overall, our results highlight certain challenges in modeling the phase
behavior of multiblock polymers comprising more than one binary inter-
action parameter. These parameters are typically obtained by performing
experiments on diblock copolymers and represent a coarse-grained descrip-
tion of the intermolecular interactions between two chemically distinct
monomeric segments. There are two noted shortcomings to this approach.
First, such a description neglects interactions that are prevalent below the
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statistical segment length, such as hydrogen bonding, that can have a pro-
found influence on the local liquid structure [56]. Monomer shapes [57, 58],
thermal expansivities, [59] and equation-of-state effects [60] are also ig-
nored in the coarse-grained description. The treatment of segment-segment
interactions in this model is due to contact, and thus does not allow for a fi-
nite range of attraction that could further affect the results. Second, Maurer
et al. [42] have demonstrated that for some cases, the phase behavior of both
A /B blends and AB diblock copolymers comprising the same monomer
types A and B, cannot be described using a single x4p vs. T function.
This highlights that it may not be possible to model the phase behavior
of block polymer quantitatively by using only the Flory-Huggins type
interaction parameters. Hence, it may be necessary to employ computa-
tionally expensive atomistic simulations if the ultimate goal is to determine
the phase behavior comprehensively, predicting all the order—order and
order—disorder transitions accurately [25]. Alternatively, one could aban-
don the approach of obtaining x;; values for multiblock polymers from
their diblock components. Rather, it should be possible to obtain estimates
of x;j for a multiblock polymer by first producing an experimental data set
on that polymer’s phase behavior, analogous to that obtained in Ref. 34,
and then using the y;; as fitting parameters for the SCFT-predicted phase
behavior. While such calculations may be expensive, a recent advance
in solving the inverse problem for multiblock polymers [61] presents an
enticing approach to resolving this conundrum.
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S1. Multiple Converged Solutions

This section provides details of the density profiles and the other associ-
ated properties of the multiple converged SCFT solutions at the same state
point obtained using different guess structures. These converged structures
have different free energies owing to significantly different particle shapes
and segregation of PI and PS blocks within the matrix.

S1.1. BCC Phase
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Figure S1: The relative free energy per chain, F — Fp;s/kpT, and the unit-cell dimension of
the BCC phase at fo = 0.13 (SIS'O) for two sets of solutions obtained differently in the
parameter space. The results in (a) and (b) are obtained using the converged solution at
(T, fo+0.01) as a guess structure to perform the SCFT calculation at (T, f4). The results in
(c) and (d) are obtained by supplying the converged solution of (T + 1 °C, f) to perform
the calculation at (T, fp). These calculations are done using the interaction parameters of
Approach 2.

Figure S1 shows the variation in free energy and unit-cell dimension of
the BCC phase as a function of temperature. The results in Fig. S1 (a) and (b)
correspond to the SCFT solutions obtained using the converged solution at
(T, fo+0.01) as a guess structure to perform the SCFT calculation at (T, f4),



while Fig. S1c and d are obtained by supplying the converged solution of
(T+1°C, fo) to perform calculation at (T, fp). For T > 155 °C, both of
the different procedures yield same results, however at T = 155 °C, the
tirst procedure (Figs. Sla and b) experiences a discontinuity in unit-cell
dimension, producing the significantly different structures shown in Fig.
5(a) in the main manuscript. Similar behavior is observed for the HCP
phase, depicted in Fig. S2.

G1.2. HCP Phase
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Figure S2: The relative free energy per chain F — Fpis/kgT, and the ratio of unit-cell
dimensions, ¢/a, for the HCP phase at fo = 0.13 (SIS'O) for two sets of solutions obtained
differently in the parameter space. The solutions (a) and (b) are obtained using the
converged solution at (T, fo + 0.01) as a guess structure to perform the SCFT calculation
at (T, f4). The solutions (c) and (d) are obtained by supplying the converged solution of
(T+1°C, fo) to perform the calculation at (T, fp). The dashed (blue) line in (b) and (d)
denotes the ideal a/c ratio for the HCP structure, a/c = 1.633. These calculations are done
using the interaction parameters of Approach 2.

S1.3. FCC Phase

Figures S3 and 54 show the density profiles of all the four blocks within
the FCC phase for two converged solutions at T = 140 °C and fa = 0.13

3



obtained using two different guess structures. The solution shown in Fig. S3
is obtained using the converged solution at (T = 140 °C, fo = 0.14) as
the guess structure, while the solution in Fig. S4 is obtained using the
converged solution at (T = 141 °C, fo = 0.13).
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Figure S3: SCFT-computed density profiles of the FCC phase at T = 140 °C and f5 = 0.13.
This calculation is done using the converged solution at (T = 140 °C, f5 = 0.14) as
the guess structure and with Newton-Raphson iteration algorithm using the interaction
parameters of Approach 2.
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S2. Phase Transitions of Approach 2

Figure S5 shows the free energies of all of the six candidate structures
relative to that of the BCC phase for the parameter space in the phase
diagram of Approach 2 (Fig. 3b in the main manuscript) that exhibits

extremely rich phase behavior.
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S3. BCC-HEXc Boundary of Approach 3

Figure S6 shows the phase boundary between the BCC and HEXc
phases in the phase diagram of Approach 3 (Fig. 3c in the main manuscript).
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Figure S6: Relative free energies per chain, F — Fgcc/kpT of the BCC and HEX( phases
for several different values of volume fraction, fo, throughout the temperature range of
the phase diagram of Approach 3 (Fig. 3c in the main manuscript).



S4. Uncertainties in SIS’O-0.73 Molecular Parameters

The SIS'0-0.73 polymer sample is synthesized using anionic polymer-
ization method and the synthesis details are given in Ref. 40 of the main
manuscript. The molecular parameters of the SIS'O-0.73 sample are de-
termined by a combination of size-exclusion chromatography (SEC) and
nuclear magnetic resonance (NMR) experiments. Specifically, the molecular
weight of the first (terminal) PS block is measured by SEC using PS stan-
dards. Hence, the molecular weight of the terminal PS block is expected
to be reasonably accurate. The number of repeat units of each subsequent
block added is determined by 'H NMR technique. In this procedure, the
time-domain signal observed in 'H NMR experiments is transformed into
a frequency-domain signal and the area under the resulting peaks is com-
puted to determine the number of repeat units, N. Once N; for each block i
is calculated, the corresponding molecular weights and volume fractions
are calculated using the homopolymer melt densities. For SIS'O-0.73, the
block molecular weights and volume fractions are calculated using the
densities at T = 140 °C reported by Fetters et al. (Ref. 44 in the main
manuscript). The overall uncertainty in the volume fraction is the convolu-
tion of the uncertainty arising from each 'H NMR measurement (for SI, SIS’,
and SIS'O) and the uncertainty in values of densities used. It is difficult
to get a precise bound on the uncertainty, but based on the literature data,
it is reasonable to expect a maximum uncertainty in volume fraction as
Afo = £0.01.

The polydispersity of SIS'O-0.73 is measured using SEC experiments
using PS standards. The characterization of dispersity by SEC is based on
the hydrodynamic volume of the polymer coils. Since the PS homopolymer
and SIS'O tetrablock polymers of the same molecular weights may have
different hydrodynamic volumes, the use of PS standards to calibrate and
measure the dispersity is expected to introduce some amount of uncertainty
in the reported value of D = 1.03. Assuming a Poisson distribution, the
theoretical minimum value of polydispersity for SIS'O-0.73 having M,, =
22.4 kDa (N = 343) is B =1.0029.
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