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Abstract— The paper introduces an optimal maintenance
scheduler based on predictive assessment of risk of outage and
equipment failure in distribution networks. The variety of severe
weather conditions are observed and their impact on the network
components is quantified. The equipment deterioration and
failure rates are observed continuously across the space and time
using heterogeneous data. The risk of weather-related outages for
each component is generated in real-time, and can be extracted at
multiple temporal and spatial scales depending on the application
of interest. The optimal maintenance scheduling that minimizes
the system risk while maintaining the economic investment limits
is developed. The benefits of the framework are presented using a
distribution network asset management example.
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I. INTRODUCTION

The number of power outages in overhead distribution
system in the USA is increasing in recent years mainly due to
the following factors: 1) weather pattern change, 2) accelerated
deterioration due to aging infrastructure. The variety of different
weather data are being collected by various organizations, which
opens an opportunity for the data intensive analysis of outage
causes. Due to the high exposure of assets to environmental
impacts it is expected that incorporating such data would be of
great benefit, and could help in reversing the increasing trend of
power outage occurrences by deploying predictive optimal
maintenance practices. This brings up the question of how to
efficiently merge electricity network data with variety of
environmental data, while observing their spatial and temporal
interdependencies. The key benefit is capability to determine
likelihood of power network outages and asset deterioration
rates under severe weather conditions, which is the key to
developing better maintenance strategies.

Traditional assets condition monitoring relies on laboratory
tests and filed assessment with periodic examinations [1].
Another approach often used in electric distribution is “run-to-
failure”, where actions are taken only after the component
malfunctions [2]. In recent decades, the intelligent electronic
devices (IEDs) provide continuous on-line condition-based
monitoring of equipment [3]. Such approach is still dominant in
transmission, and rarely used in distribution. In [4-9] different
approaches have been used for the risk-based allocation of

maintenance resources to various distribution system assets with
optimization of maintenance tasks.

The research in [10] has shown that more accurate
predictions are possible by structured learning from merged
heterogeneous Big Data. In [11] it is demonstrated that the
assessment of equipment deterioration due to prolonged
exposure to environmental impacts can lead to an improved on-
demand maintenance strategy. In [12] the optimal maintenance
strategy was developed for the tree trimming scheduling in
distribution network. This paper extends the work reported in
[10, 11] by introducing an optimal maintenance scheduler that
generates just in time tree trimming maps based on the latest
prediction of the state of risk of network components
experiencing faults when touched by trees.

The key contributions of the paper are: a) integration of
variety of data, b) the use of the risk maps to develop
spatiotemporal assessment of the assets status, and c)
development of an optimized maintenance strategy to mitigate
the risk.

The rest of the paper is organized as follows. First the
background on asset management approaches is summarized in
Sec. II. Sec. III introduces the predictive asset management. In
Sec. IV we describe optimal risk-based maintenance strategy
based on predictive analysis. Examples of results are provided
in Sec. V, and conclusions are summarized in Sec. VI.

II. ASSET MANAGEMENT

Current practices use several to asset

maintenance scheduling [13]:

approaches

1) Run-to-failure where replacement is performed after
component fails without any monitoring or maintenance
during component lifetime,

2) Periodic maintenance where each component is serviced on
a predetermined periodic schedule,

3) Condition-based maintenance using monitoring equipment
where the equipment is repaired or repliced when needed,

4) Reliability-centered maintenance that relies on the
likelihood of equipment failure for selection of the ebst
maintenace interval.

5) Optimization techniques based on the reduction of
economic impacts.



TABLE L.

COMPARISON OF ASSET MANAGEMENT APPROACHES

Approach/Feature failul}lel/nl’-gi-o dic Condition-based Rgéﬁ'tl;léay' Optimization techniques Our Approach
Monitoring cost No expenses High High High High
Cost of reinstating -
services High Low Low Low Low
Preventive capability No Yes Yes Yes Yes
System olr‘;:glmponent Corlrg\yl %rllent Component level System level Both Both
One or several One or several One or several parameters Big Data — wide variet
Data No different parameters obs ervg d g of parameters y
measurements observed p
Predictive No No Yes — statistical No Yes — better accuracy
with machine learning
Spatiotemporal L All data spatiotemporally
analysis No No Limited No referenced
Dynamic real-time - .
assessment No Yes Limited Limited Yes
Interdependencies Geographical and
between components No No No No electrical

The overview of characteristics of conventional asset
management approaches and our proposed method is presented
in Table I. Compared to other methods our approach: 1)
introduces capability to process, utilize, and visualize larger
amounts of data, 2) enables predictive analysis based on
spatiotemporal data where spatial interdependencies between
components are considered, and 3) introduces dynamic
maintenance scheduling based on real-time observation of
network components’ states and surrounding conditions.

This paper focuses on two types of outages in distribution
that combined cover more than 60% of total outages:

1) Due to instantenious impact of severe and catastrophic
weather conditions on utility assets. These types of outages
are designated as weather caused outages.

2) Due to deterioration as a result of exposure of assets to long
term weather impacts. These types of outages are
designated as equipment failure.

We propose a novel asset management that enables the
following capabilities:

1) Assessing equipment deterioration continuously across
space and time by learning from heterogenous data,

2) Real-time risk assessment on multiple temporal and spatial
scales by assessing the hazrads and vulnerabilites,

3) Optimal on-demand asset management by developing a
maintenace strategy that reduces the outage risk.

The goal is to integrate the environmental data into the power
system models and studies, build a model that integrates and
exploits all types of data, evaluate system and component risk in
real time, and contrast the existing static asset management
practices with the new dynamic approach.

III. PREDICTIVE ASSET MANAGEMENT

The study improves the current asset management practices
at three levels illustrated by the environment shown in Fig. 1:

1) Data Level: The study includes a variety of different data
coming from multiple data sources. The data is collected at
multiple temporal and spatial scales. Data sets may contain
bad and missing data. The uncertainty levels of data may
vary from one set to another. We show how such cases may
be handled.

2) Analysis Level: The study uses the prediction algorithm
[14-17] capable of leveraging the spatial and temporal
aspects of heterogenecous data as a knowledge source.
Graph based machine learning methods are used for
prediction. The analysis has to be robust to missing and bad
data. We demonstrate such data analytics features.

3) Economic Level: The maintenance decision-making is
focused on minimizing the risk level while maintaining the
economic investment limits. While the cost of periodic
maintenance stays the same, the reactive maintenance cost
is optimized and reduced.

Other details about implementation of predictive risk-based
asset management can be found in [10-12, 18].

IV. OPTIMAL RISK-BASED MAINTENANCE STRATEGY

The maintenance scheduler has a goal to minimize the risk
for the whole network while spending only the predetermined
maintenance budget. Two types of maintenance cost are
identified: 1) planned maintenance typically has a
predetermined budget, and is performed periodically, 2) reactive
maintenance includes the actions that occurred after the
unexpected outage or asset failure, and the budget is variable.

The specific optimization problem has to be defined
separately for each distribution asset type (pole, transformer,
insulator...) but the overall procedure can be defined as follows.
Minimize the total risk for the network:
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Figure 1. Weather testbed environment
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where AR, g = Ry, (9—1) — Rp,g is the difference in risk value for
feeder n before and after the action is performed, R is a total
reduction in risk, Cy; is the cost of maintenance of section n in
the time instance ¢, and 7C is a total budget allocated for the
periodic tree trimming during the observed quarter. A total of 7'
time instances is created. The risk is calculated for each of the N
asset components.

The optimization problem solver will iterate various actions
(component maintenance, component repair, component
replacement, environment assessment such as tree trimming,
etc.) until it finds the best asset management schedule. For each
time step each component has an action flag that indicates if
there is an action on that component and what type of action is
performed. This makes the optimization problem nonlinear. In
order to provide feasible solution in time, the heuristic solvers
need to be considered.
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environment and
vulnerabilities for each moment in time are accumulated in the
dynamic risk value we are trying to minimize. The limits of the
budget for periodic (planned) actions are taken into account as
constrains.

The impacts component

The last component, reactive maintenance, is target for
minimization, and it is used for validation and testing of this
approach performance. Our goal is to, by minimizing the
network overall risk, also minimize the cost of reactive
maintenance. As part of validation, after the optimization
problem is solved, we compare the reactive asset management
cost that was spent during the period of interest to the evaluated
reactive maintenance expense that would be spent if optimal
asset management schedule was followed.

Following are the required steps of the optimal maintenance
scheduler, as presented in Fig. 2:

1) Generate risk maps based on the historical data and weather
forecast and store the risk value for each component in the
network. This step containes three tasks:

a) Calculate weather hazard using weather forecast [19].
In this step we are evaluating the expected unfolding
weather conditions that will affect the network in a
certain moment in time.

b) Calculate network vulnerability using historical data
and current profile of the network and environment. In
this step we learn from the historical outage and
weather data [20,21] what the vulnerabilities of the
network are, and we calculate based on the knowledge
from the past what is the probability of an outage under
an existing unfolding weather conditions.

c) Generate action on a specific component. By
performing any of the countermeasures it is possible
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Figure 2. Optimal Risk-based Scheduler
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to reduce the network vulnerability to the unfolding
weather conditions. Optimization algorithm will
iterate multiple generate action configurations until it
finds the optimal schedule.
Calculate the system risk by averaging or sumarizing the
risk over all components.
Define the optimization problem that minimizes the
calculated system-level risk. In this step the objective
countermeasures need to be selected. For example, if we are
observing  vegetation = management, the  main
countermeasure would be tree trimming. In another
example, if we are targeting insulators, countermeasures
may include insulator cleaning, insulator repair, insulator
replacement, etc.
Set the optimization constrains to limit the periodic asset
management expense. In this step the specific practices
followed by utility need to be observed in order to set the
realistic economic constrains.
Solve the nonlinear optimization problem by applying the
heuristics (for example Lagrangian Relaxation, Support
Vector Machine, Neural Network, etc.).

Predicted Outage Probability (%)
1 '

6) Calculate the reduction in reactive maintenance cost after
the outage. During the validation process the reduction in
reactive maintenance can only be estimated. After the
deployment in the field the testing process can observe the
changes in reactive maintenance expense before and after
dynamic maintenance scheduling.

V. EXAMPLE OF RESULTS

The model is tested on the real distribution network,
experiencing ~500 outages during the period of 5 years from
2011 to 2015. The data obtained for the first four months in year
2016 was used for testing of optimal maintenance scheduler.

Fig. 3 presents the predicted outage probabilities for multiple
events in year 2015, including all weather related outages caused
by lightning, vegetation, rain, etc. The binary values on x axis
correspond with “1” for the occurrence of the type of event, and
“0” for the absence of observed type of event. For most outage
occurrences the corresponding predicted outage probability
value is higher than the predicted outage probability value when
there was no outage.

In our work we were able to achieve accuracy of outage
probability prediction greater than 64%. Our experience for
applications in transmission shows accuracy greater than 75%
[10-12, 22]. We can conclude that the predictive capabilities in
distribution are still significantly behind our capabilities to
predict risk in transmission. This is due to distribution network
being smaller in size and denser, thus requiring better spatial and
temporal resolution of input data that is not available for all
datasets. Also, a number of measurement that are collected in
transmission is much more than what is collected in distribution,
which reflects on the number of input parameters that can be
used for predictions. The trends are changing in recent years
with an increase in data available for prediction in distribution,
in addition to many datasets improving their spatial and
temporal resolutions over time. We expect the performances on
prediction of outages in distribution to come closer to the
performances in transmission soon.

The example of risk map is presented in Fig. 4. The risk maps
are created dynamically, so there is a separate risk map for each
moment in time. The example in Fig. 4 presents the risk map
generated for March 30%™, 2016, when the network experience
the outage. These maps are generated every three hours, and
contain risk values for each component individually. The risk
maps could be of great value to Distribution System Operators
since they provide a prediction of areas that may experience
outages in the future. With this kind of information, the operator
can make better decisions about allocation of maintenance crews
in the network.
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Figure 3. Outage probabilities predicted in 2015 based on the training data from 2011 to 2014 for weather outages.
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Figure 4. Risk Map

A collection of risk prediction maps for the month of January
2016 was used to create optimal maintenance schedule. Total of
248 risk maps in different time points were created and used as
inputs to optimization algorithm. The optimization objective
was to reduce overall risk for the network including both
insulators and vegetation. The economic limits for insulators and
vegetation management were observed separately, as two
independent constrains.

Fig. 5 presents example of optimal asset maintenance
schedule for one month in 2016. The chosen actions that were
used in the optimization are tree trimming, insulator
replacement, and insulator repair. In addition to selecting the
asset (pole, feeder section) that needs to be maintained,
algorithm sets the deadline by which the action should be
performed to achieve maximum risk reduction.

VI. CONCLUSIONS

This paper introduces a new framework for optimal
maintenance scheduling based on predictive risk assessment for
distribution assets. More specifically, the following are the
specific innovations:
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[1]

[2]

The study uses variety of datasources, some collected by
utility such as outage and assets data; and extensive set of
enviromental data, such as weather station data, weather
forecast, vegetation, lightning.

The temporal and spatial interdependencies between
component and events in the network are levaraged for the
improvement of prediction algorithm accuracy, and its
capability to deal with bad and missing data.

The dynamic asset management system based on
optimization was build to reduce the predicted risk of
outages and component failure while mainteining
predetermined economic investment in periodic asset
maintenance.

The method is applied to the real utility data and the
prediction performance in a real life setting is evaluated.
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