2018 IEEE 11th International Conference on Cloud Computing

Exploring Serverless Computing for Neural Network Training

Lang Feng*, Prabhakar Kudval, Dilma Da Silva*, Jiang Hu*
*Texas A&M University, College Station
tIBM Research, Yorktown Heights
flwave @tamu.edu, kudva@us.ibm.com, dilma@cse.tamu.edu, jianghu@tamu.edu

Abstract—Serverless or functions as a service runtimes have
shown significant benefits to efficiency and cost for event-driven
cloud applications. Although serverless runtimes are limited to
applications requiring lightweight computation and memory,
such as machine learning prediction and inference, they have
shown improvements on these applications beyond other cloud
runtimes. Training deep learning can be both compute and
memory intensive. We investigate the use of serverless runtimes
while leveraging data parallelism for large models, show the
challenges and limitations due to the tightly coupled nature
of such models, and propose modifications to the underlying
runtime implementations that would mitigate them. For hyper-
parameter optimization of smaller deep learning models, we
show that serverless runtimes can provide significant benefit.

I. INTRODUCTION

As cloud computing increasingly becomes the platform
of choice for commercial and scientific computing, server-
less computing (also known as Functions as a Service or
FaaS) [1], has emerged in recent years. With the increased
use of containers and micorservices [2], serverless comput-
ing has shown particular promise for event-driven applica-
tions. Examples of commercial and open source serverless
providers include: AWS Lambda [3], IBM OpenWhisk [4],
Google Cloud Functions [5] and Microsoft Azure [6].
Serverless applications can be either a set functions as
code, triggered by some external event [7], or a larger
application composed of multiple functions. An example
of composition of larger functions are those composed via
AWS Step Functions [8]. A key reason for their success
has been the cost efficiency that such runtimes provide
in event-driven environments, where sporadic events may
trigger computations, and the users only pay for the compute
time they consume [3], rather than have long running servers
implemented on virtual machines for these event processing,
which will cause idle waiting for those sporadic events and
result in unwanted monetary cost.

Key properties of serverless computing have been event-
driven behavior, stateless, short run times, agile (it can be
scaled up and down instantly and automatically [9]) and
cost-efficiency. These properties benefit certain classes of
applications better than others. Applications that are well
suited for serverless are usually stateless, event-driven and
short running. However with the composition of stateless

This work is partially supported by NSF (CCF-1525749).

services with persistence provided by database stores and
loads between stateless serverless functions, the range of
applications is gradually increasing. If a long running ap-
plication is needed, it is possible to sequence multiple
serverless computing instances in time with intermediate
external storage [9]. Thus, the range of applications where
serverless computing can show benefits can be extended
beyond the event-driven domain.

Serverless computing has been applied to the area of
machine learning [2, 5] with mixed results. The technology
has been shown to be particularly useful for inference
and prediction in cloud environments. For training mod-
els, especially deep learning models, which are compute
and memory intensive and tightly coupled, serverless has
not yet shown promise. The use of distributed computing
for deep learning with accelerators is a well understood
area [10, 11, 12, 13]. While solutions such as MxNet [14]
and Distributed TensorFlow have increased the performance
of distributed computing with GPU acceleration to speed
up deep learning training, there are limited studies on the
investigation of parallelism in serverless runtimes.

In order to facilitate the development of new serverless
runtimes, and add features to the implementation backend
(like compute and memory affinities based on cold and warm
start) and others, it is important to understand strengths and
limitations of deploying deep learning models in existing
technologies, which our work mainly focuses on.

Our main contributions in this paper are:

« Proposing serverless computing structures for training
large deep neural networks by leveraging data paral-
lelism.

o Development of the parallel structure optimization for
reducing training latency.

o Techniques for optimizing monetary cost and
performance-cost ratio for training neural networks
with serverless.

« Demonstrating the benefits of serverless for hyperpa-
rameter optimization of smaller models.

o Outlining novel serverless runtimes for further investi-
gation to overcome the limitations for larger models.

The rest of this paper is organized as follows. Previous re-
lated works are briefly reviewed in Section II. In Section III,
a multi-layer structure is introduced for neural network
training on serverless instances and memory optimization

2159-6190/18/$31.00 ©2018 |IEEE 334 IEEE
DOI 10.1109/CLOUD.2018.00049 @Comp%gety

techniques are further described. Section IV shows how
to leverage serverless computing for hyperparameter tuning
of neural network construction and training. Experiment
results are summarized in Section V. New opportunities in
serverless runtime design are discussed in Section VI and
finally conclusions are provided in Section VII.

II. RELATED WORK

Previous works on serverless runtimes mainly fall into
two areas. The first is the area with more benefits on cost
or performance over other runtimes like virtual machine
or distributed computing. Examples of applications in this
area are shown in [1], where tasks are mostly event-driven,
stateless and have short run time.

The second is the area which aims at broadening the
use of serverless runtimes, whereas most of the works
in this area do not focus on machine learning, and there
is no work towards deploying neural network training on
serverless runtimes as our work. In this area, the works
about scientific computing have been demonstrated success-
fully on serverless platforms. These efforts demonstrate the
feasibility and promise of deploying scientific workload on
serverless infrastructures. With Pywren [15] for example,
one can deploy python-based workloads on multiple AWS
Lambda services. The work of [16] proposed a perfor-
mance evaluation framework with the use of a scientific
workflow system: HyperFlow. The results show different
behaviors between different serverless providers, such as
AWS, Google, IBM and Microsoft. Another work, [17],
mainly focuses on the deployment of scientific workflows on
serverless environment, and proposes many feasible models
for implementation. Those investigations are pioneer efforts
on supercomputing with serverless architectures.

There are also works in the second area towards machine
learning on serverless architectures, but the machine learning
in these works has mostly been used for inference [5]. For
example, in [18], the latency impact of the use of serverless
for deep neural networks is investigated. The experiment in
[18] shows the difference of the inference latency between
the warm and cold execution, and the latency difference
between different memory sizes. However, this work does
not focus on deploying neural network for training, while
our work proposes an optimized way for taking advantage
of parallelism for training deep neural networks.

III. TRAINING LARGE MODELS WITH SERVERLESS

We define large models as those whose training cannot
be completed within one serverless instance either due to
constraints in runtime or memory requirements, such as the
model used in TensorFlow Tutorials [19]. In this section
we review cases that require workflows of several serverless
instances with data transfer among them.

335

A. Data Transfer and Parallelism with Serverless

A key difference in the application of parallelism is the
different nature between serverless instances and normal
distributed computing: serverless instances are inherently
time-limited and stateless, unlike parallel threads previously
studied with deep neural networks. At present, there is
no way to transfer data between two serverless instances
directly, or to assign serverless instances affinity to compute
resources close to the shared data. Therefore, intermediate
storage such as databases are used for holding states that are
to be shared between subsequent serverless instances. The
data transfer between instances is shown in Figure 1. Since
two serverless instances cannot communicate directly, the
parallelized data or models have additional costs, including:

« data transfer latency from source instance to database,
o data transfer latency from database to destination in-

stance,

« warm up latency for loading data.
Serverless Instance

5 -5 -

Serverless Instance

Database

Figure 1. Data transfer gateway between two serverless instances

Distributed deep learning platforms have been well stud-
ied over the years [13], with more recent platforms such
as distributed TensorFlow [20] and MxNet [14], as well
as variants of them [21] showing dramatic improvements
on performance and scalability. Significant improvements
are noted when deep learning models take advantage of
parallelism. For this work, we adapt such well known ap-
proaches to training neural networks in a distributed fashion
and investigate their suitability to serverless. To coordinate
the component instances in a training workflow, we use the
graph-based notation of step functions [8]. In the rest of
this paper, the words graph and structure will refer to the
interconnected structure of serverless instances interleaved
by writes and reads to storage.

B. Data Parallelism for Neural Network Training

Given a dataset, the training of a neural network is to
iteratively modify network parameters, such as edge weights
and biases, such that the network inference results match
the dataset. Many common training algorithms, such as
stochastic gradient [22], compute gradients according to the
training data and then the gradients are applied to update the
parameters. In data parallelism, a given dataset is partitioned
into multiple subsets, each of which is applied to train a
complete network model on a machine, called worker. All
workers share the same network model. When a subset of
training data is applied to a worker, corresponding gradients
are computed there. Then, gradients from all workers need

to be collected by a machine, called parameter server, where
the network parameters are updated. The data parallelism by
serverless computing is illustrated in Figure 2, where each
gray rectangle indicates one serverless instance. In serverless
environments, all the machines are serverless instances.
The dataset is partitioned into n workers, which compute
gradients and send the gradients to the parameter server.

Gradients or
_ ,;/Parameters
& a4

-
d

Serverless

Parameter Server |«—-__
= / Instances

Worker

]
]

‘Dataset

Figure 2. Data parallelism by serverless computing

There are two approaches for updating parameters in the
data parallelism: Synchronous and asynchronous update.

In a synchronous update, the parameter server waits till
gradients from all workers are received and then updates
the parameters. In an asynchronous update, the parameter
server updates the parameters each time it receives one set
of gradients from one worker. In this work, we focus on the
synchronous update.

C. Optimizing Parallelism Structure for Serverless Training

For data parallelism, data transfers occur between workers
and the parameter server. There are two kinds of transfers:
o The parameter server transfers parameters to all work-
ers.
o Workers transfer gradients to the parameter server.

For the transfer from the parameter server to workers, the
latency is a constant as the number of parameters is fixed
for a given neural network model and all workers can read
the same parameters in parallel.

For the other transfer type, if there are n workers, the
parameter server needs to receive n sets of gradients, each
of which corresponds to one set of parameters on one
specific worker. If it takes time ¢, for each set of gradients
to be transferred to the parameter server, the latency of
transferring all gradients in one iteration is n-t,,. The linear
dependence on the number of gradient sets is confirmed by
the measurement results shown in Figure 3, where the bars
indicate plus/minus standard deviation.

Since the data transfer is the main performance bottleneck
for serverless training of neural networks, we propose a
multi-layer parameter server structure to reduce the transfer

336

35+

30 4

254

20 4

15

10

Processing Latency (s)

5

0

L DL DL DL DL B DL DL BEEL A DL B |
0 20 40 60 80 100 120 140 160 180 200 220
The Number of Gradients Sets

Figure 3. The relationship between data transfer latency and the number of
gradients sets received by one parameter server. (experiment environment:
the transferred data contains 42601 gradients, and parameter server is a
512MB serverless instance)

latency. Please note that the focus here is to reduce the la-
tency of transferring gradients, as the latency of transferring
parameters is constant. In Figure 4, we use blue nodes to
represent workers and yellow nodes to indicate parameter
servers. Usually, multiple workers send their gradients to
the parameter server as in Figure 4(a). The parameter server
is also called merging node in the graphs in Figure 4.

“~._| Parameter Server

Figure 4. Different structures for merging gradients by parameter servers.

(a)

(b)

We propose a multi-layer merging structure as in Figure
4(b), which contains 6 workers and 3 parameter servers
distributed in 2 layers. In such structure, a parameter server
or merging node can receive gradient data from other
merging nodes. In the upper merging layer of Figure 4(b),
each parameter server merges gradients from 3 workers and
the merging takes 3t¢,,. Since the two merging nodes work
in parallel, the merging latency of this layer is also 3t,,.
In the lower merging layer, there is one parameter server,
which merges gradients from the two parameter servers of
upper layer and the merging latency is 2t,,. Therefore, the
total gradient data transfer latency in Figure 4(b) is 5%,,.
By contrast, the naive merging structure in Figure 4(a) costs
6t,, transfer latency.

The example of Figure 4 indicates that the proposed
multi-layer merging structure can reduce merging (gradient

data transfer) latency. A general problem is how to decide
the number of merging layers and number of parameter
severs in each merging layer such that the gradient data
transfer latency is minimized. To solve this problem, we
first introduce the latency model for transferring gradients
by workers to the parameter servers.

Number of
nodes=n

Number of
nodes=m1

Number of
nodes=mk

Number of
nodes=1

Figure 5. General structure of parameter servers

Consider a general data parallel structure as Figure 5.
Assume there are n workers and k intermediate merging
layers, and for the ¢;;, merging layer, there are m,; parameter
servers. For the bottom merging layer, there is only 1
parameter server to do the final data processing. Then, the
total latency can be described as
Mg—1

m
ot

n
t=t,— +1tm
mq ma

€]
mp,

To minimize ¢, we first take partial derivatives with respect
to each m; as below.

+ tmg

ot __ n 1

omy = “mIim t g tm

ot mi_ 1 .

Py = Tz tmttm 1<i<k Q)
ot mE—1

omy, m2 b +tm

One can tell that the second order derivatives are all positive,
then the function ¢ versus m; is convex. By letting all first
order derivatives be 0, the values of all m; minimizing ¢ are
given by

mitt =n
{mizmi”l L<i<k-1 ©
Thus, the minimum ¢ is found to be
tiin = tm(k + 1)n™ 4)
We find the k that minimizes t,,;, by letting dt[;"k"" =0,

which gives k = In(n) — 1. However, a large k£ means many
hops of data transfer, which increase the chance of packet
loss and the costly data retransmission. Therefore, we bound
the value of k to be no greater than 2 in practice.

Since creating new serverless instances is associated with
latency overhead, the actual data transfer latency can be
further reduced by reusing worker serverless instances as

337

1 2
@0

geop

Figure 6.

Reuse worker serverless instances as parameter servers.

parameter servers as shown by Figure 6. After completing
their neural network training work, workers 3 and 6 continue
to collect gradient data from 1, 2, 3, and 4, 5, 6, respectively.
In other words, worker 3 (6) plays the role of parameter
server 7 (8) now. After merging data from workers 4, 5, and
6, node 6 further collects the gradient data from parameter
server 3, and is actually doing the merging formerly done
by node 9. Please note such reuse is possible only for the
synchronous data update.

D. Cost and Performance-Cost Ratio Optimization

A key motivation for serverless computing is its economic
advantage over the conventional cloud services. Hence,
we study how to minimize monetary cost and maximize
performance-cost ratio in using serverless computing. In
contrast to the offline structure optimization, the cost and
performance-cost ratio optimizations are online techniques.

Table 1
AWS LAMBDA PRICE VS. MEMORY USE.
Memory (MB) | Price per 100ms ($)
128 0.000000208
192 0.000000313
256 0.000000417
1408 0.000002292
1472 0.000002396
1536 0.000002501

We derive a model of monetary cost with respect to
the memory allocated to a serverless instance. Please note
memory size z of a serverless instance should be no less
than the minimum memory required to run the application
there. In addition, a large memory size z implies shorter
latency [23]. Hence, latency is a function of memory size
as t(z). For AWS Lambda [3], the monetary price per unit
runtime for different memory sizes [24] is shown in Table
I. By such pricing, the monetary cost has linear dependence
on memory size of the Lambda instance and latency, and
can be defined as

Cz)=p-n-z-1(2), Q)

where p = 1.63 x 10788/(M B - 5) and n is the number of
Lambda instances.

We propose an online gradient descent method for finding
memory size z for each serverless instance such that the

monetary cost C'(z) is minimized. The online optimization
starts with a random memory size z;, which is sufficiently
large for the neural network training and satisfies serverless
instance specification. The training with z; memory is
continued with ¢ iterations and the average cost C'(21) over
the ¢ iterations is estimated according to Equation (5). Then,
memory size is changed to another random and feasible
value 2o for another ¢ iterations of training to obtain an
average estimation C(23). After the sampling of two random
sizes, we find an optimized memory size as

ac(zl) — C(z2)

zZ1 — 22

*

23 =21 — (6)
where « is the step size for the gradient decent. Since
there are lower bound z,,;, and upper bound 2,4, for the
actual memory size due to serverless instance restrictions
and application requirement, the actual memory size to be
used next is

(7

and this procedure can be repeated such that the memory
size is continuously optimized.

We propose another online gradient decent method for
maximizing performance-cost ratio. Given a computing task
that requires f floating point operations, the performance
can be characterized by FLOPS (floating point operations
per second), which can be estimated by % Then, the
performance-cost ratio is defined by

_ f
Copen-z-ot2(2)

23 = max(Zmin, MIN(Zmaz, 23))

R(:) ®)
which is a function depending on memory size z. Like
minimizing the cost, one can sample a size for ¢ iterations.
If the two consecutive sample sizes are z;_; and z;, then
the optimized memory size can be obtained as

R(zj) — R(zj-1)

25 — Zj—1

)
(€))

Zi+1 = max(z'mina mln(z’ma.'L'v Zj +a

where R indicates the average ratio over g iterations.

IV. PARALLEL HYPERPARAMETER TUNING OF NEURAL
NETWORK MODELS WITH SERVERLESS

The effectiveness of a neural network model and its train-
ing efficiency highly depend on hyperparameters, such as the
number of hidden layers, activation function and training
rate. The hyperparameters can be decided either manually
or through automated search such as random search, grid
search and Bayesian optimization [25].

Since the evaluations of different hyperparameters can
be independently carried out, serverless computing is a
particularly appealing choice for the tuning. Suppose H =
{h1, ha, ...} is a set of hyperparameters for a specific neural
network model. All sets hyperparameters to be explored are
H = {H1, Ho,...}. One can request n; serverless instances

338

for training the model specified by H; € H. Since the total
number of serverless instances one can request is bounded
by N. We need to make sure that

(10)

Due to this restriction, severless hyperparameter tuning is
mostly for small network models.

V. EXPERIMENT RESULTS
A. Experiment Setup

These experiments are conducted on a randomly generated
dataset, CIFAR-10 dataset [26] and MNIST dataset [27].
The random dataset contains 1 million samples, each of
which is composed by 20 binary features and 1 binary
label. The random dataset is applied with a fully connected
neural network with 5 hidden layers, 500 hidden nodes and
42601 parameters. The CIFAR-10 dataset is to be trained
by a convolution neural network, which has 2 convolution
layers, 2 pooling layers, 2 normalization layers, 2 fully
connected layers and 1 softmax output layer. This structure
is the same as the structure used in the code of TensorFlow
Tutorials [19]. The model for MNIST is a fully connected
neural network, whose structure is investigated through the
hyperparameter tuning. The characteristics of the 3 testcases
are summarized in Table II. The training of using the datasets
on the models is by TensorFlow [28]. The serverless com-
puting experiments are conducted through AWS Lambda [3],
where latency, memory use and monetary cost are measured.
The training experiment is also performed on a desktop
computer with a Intel 3.4GHz CPU with 16GB memory.

Table II
TESTCASES
Case A Case B Case C
Dataset Random dataset CIFAR-10 [26] MNIST [27]
Network | Fully connected neu- | Convolution neural | Fully connected neu-
type ral network network ral network

Same as in the code
of TensorFlow Tutori-
al [19].

Network
structure

5 hidden layers, 500
hidden nodes and
42601 parameters.

Structure investigated
through the hyperpa-
rameter tuning.

B. Latency Variation

When evaluating serverless computing latency, one faces
the challenge of its variations. Serverless runtimes are instan-
tiated on infrastructure via resource scheduling by the ser-
vice provider in a manner invisible to the end user. Similarly,
the location and the latency response of database for reads
and writes may vary depending on the resource allocation
on the cloud provider side. There are no guarantees on
latency and performance of such serverless instantiations be-
yond the requested parameters such as memory size (which
are priced). Likewise, the read and write latency between
serverless instance and database may vary depending on a
variety of factors, like the actual location of the database

relative to the instance, traffic on networks, multi-tenancy,
to name a few. The end-user does not have control on
these latencies and performance metric, and expectations are
that they vary within a certain known range (based on the
provider) from a statistical perspective. Therefore, all latency
and performance measurements reported in the paper are
representative, and a few percent variation or improvement
is considered normal statistical variation.

C. Structure Optimization
This part of experiment is to evaluate the effectiveness of
the proposed multi-layer merging structure and its optimiza-
tion, which are introduced in Section III-C. It is performed
on Case A and Case B. For Case A, the number of training
iterations is 50. The training is done by 100 workers, each
of which has 512MB memory. For Case B, the number
of training iterations is 20. The training is done by 100
workers, each of which has 1536MB memory. The results
are summarized in Table IIl. Each structure is indicated by
a vector, where each element specifies the number of nodes
in a layer and the elements are in bottom-up order of the
tree structure depicted in Figure 5. For example, [1,5, 100]
means the gradients from 100 workers are transferred to 5
parameter servers, and finally merged at a single parameter
server. The result in the first row, which is labeled with
#is the optimal solution according to our optimization.
For Case A, One can see this is the second to the minimal
latency result according to the measurement. Its actual
latency 569.55 is close to the minimal latency 534.28. The
discrepancy between our optimal solution and the actual
minimal is due to the latency variation, which is discussed in
Section V-B. For Case B, our optimal solution has the least
latency and therefore the effectiveness of our optimization
is confirmed. One should also note that according to our
discussion in Section III-C, the optimal solution does not
depend on the neural network model used but only depends

on the number of workers.

Table III
LATENCY OF DIFFERENT STRUCTURES

Latency for Case B (s)

Structure Latency for Case A (s)
*[1,5,22,100] 569.55 789.20
[1,100] 1216.97 1848.05
[1,2,100] 878.78 1195.97
[1,5,100] 650.66 866.29
[1,25,100] 616.67 920.22
[1,2,10,100] 570.66 823.25
[1,5,50,100] 604.90 890.91
[1,10,50,100] 534.28 838.89
[1,2,10,50,100] 585.25 883.96
[1,5,20,50,100] 578.22 868.78

D. Training Accuracy and Convergence Rate

We evaluate the training accuracy and convergence rate of
the proposed serverless computing and sequential computing

on desktop PC on Case A and Case B. The serverless
structures used here are the same as in Section V-C. The
accuracy of a neural network is estimated by comparing its
inference results on training dataset labels. The accuracy
versus training time results for Case A are shown in Figure
7. The serverless computing converges slower than desktop
PC, but reaches a better accuracy. The results for Case B are
plotted in Figure 8, where the serverless computing leads to
worse accuracy and convergence rate than the desktop PC.

100 f
cheerhens oo oA
90 1
& 80
>
o
g
5 70
o
(%)
<
60
50 ¢ -& Desktop PC
-@-Serverless Data Parallelism
0 10 20 30 40 50 60
Training Time (s)
Figure 7. Training accuracy vs. training time for Case A.
80
70 Aeecheschenres e ibe oA
6o X
Lso f
> H
) H
©40 :
=} N
330 }
< H
20 j
10 & Desktop PC
-®-Serverless Data Parallelism
0 L L L L L
0 1000 2000 3000 4000
Training Time (s)
Figure 8. Training accuracy vs. training time for Case B.

The accuracy difference between the desktop PC and
serverless results arises from the parameter update differ-
ence between sequential and parallel training. In serverless
computing, the parameter update is based on the average of
gradients obtained from multiple workers. In the sequential
training on desktop PC, by contrast, each parameter update is

339

according to a single set of gradients from a single process.

E. Result of Cost and Performance-Cost Ratio Optimization

The proposed online cost minimization method is evaluat-
ed on Case A. In this experiment, ¢ = 10, which means we
modify the memory size every 10 iterations. In addition, the
gradient decent is performed at most five times. The lower
and upper bounds of memory size are set as z,,;, = 256 M B
and 2,4, = 1536 M B, respectively. The results are shown
in Figure 9, where the red circles indicate our optimization
results. The experiment is repeated 10 times. Due to the
latency ¢(z) variations, two different results (red circles) are
obtained. For 9 times, the optimization result is 256 M B
and 512M B is obtained once. The blue triangles and bars
are the measurement results of monetary cost at different
memory sizes without optimization. For each memory size,
the experiment is repeated 100 times. Each blue triangle
represents the average cost and the bars indicate +o, which
is the standard deviation. One can see that the cost variation
can be very large due to the latency uncertainty. Moreover,

the cost vs. z change is not monotone. The average cost
of 640M B is less than that for 5120/ B memory. Most
importantly, our optimization indeed reaches the minimum

or near minimum cost memory size.

14000 [

-4 C(2)
O Optimization Result

12000 |

10000 |

-
A== f - - A~

Cost C(z) (MB- s)
B (2] o]
(=] o o
o o o
o o o

2000 -

400 600 800 1000 1200 1400 1600
Memory Size z (MB)

0
200

Figure 9. Cost per iteration under different Lambda instance memory sizes
and optimization results.

The performance-cost ratio optimization results are plot-
ted in Figure 10. Here, we attempt to maximize the ratio.
Indeed, the red circle results from our optimization are
generally at memory sizes where the ratio is at least near
the maximum.

FE. Results on Hyperparameter Tuning

The experiment on hyperparameter tuning is performed
on Case C. In Figure 11, the computing latency results
versus the number of searched hyperparameter sets ||

X 10

[=2]

(3]

F

w

N

Performance-Cost Ratio R(z) (MB‘1~ s'2)

dwi—-—ti-&dd

& R(2)
© Optimization Result

Fey

N =
(=]
o

Figure 10.

400

600

Memory Size z (MB)

instance memory sizes and optimization results.

800 1000 1200 1400 1600

Performance-cost ratio per iteration under different Lambda

340

for desktop PC and AWS Lambda are plotted. Each dot
in the figure is the average of 10 different experiments
with the same number of searched hyperparameter sets.
One can see that the latency of desktop PC grows linearly
when more hyperparameters are evaluated because of its
sequential computing nature. The hyperparameter tuning on
AWS Lambda is carried out in parallel. Thus, its latency does
not change when the hyperparameter search is expanded.
This result clearly demonstrates the advantage of serverless
computing for hyperparameter tuning in neural network
model construction and training.

1600 [

& Desktop PC A
-@-Serverless K

1400 1

1200 A

-
(=}
(=}
o
T
s
.
s,

800 | B

Latency (s)

600 |

400

b
b
®
>

200 . - - - s

0
0 10 20 30 40 50
The Number of Searched Hyperparameter Sets

Figure 11. Computing latency versus the number of searched hyperpa-
rameter sets |H|.

VI. OPPORTUNITIES IN SERVERLESS RUNTIME DESIGN

Serverless runtimes have been used for inference with
good results. Our exploration of using serverless for training

large deep learning models has identified some disadvan-
tages compared to other distributed computing runtimes
where data transfer between compute instances are not as
frequent (such as with GPUs). In order to improve serverless
performance for the task of training deep learning models,
it is necessary to minimize the frequency and quantity of
data transfer between subsequent serverless instances. We
illustrate opportunities for improved data transfer latencies,
while at the same time maintaining the benefits of serverless
such as the ability to pay for a compute instance used only
when and just long enough for needed computation.

Step Function
PR-LAn
... Deploy to shared storage

HiH

~ Free to be deployed anywhere

Figure 12. Serverless affinity in runtimes

Consider a step function where edges between serverless
instances can be assigned higher affinities indicating sharing
of data between them, then the instances can be mapped by
the infrastructure manager in a manner where the latencies
for data transfer between the instances is minimized. In
Figure 12, a generic approach to such a solution is given,
where a portion of the step function has some serverless
instances with weight w on the edges indicating shared data,
while the last instance has no weight assigned, indicating no
such affinity. Such a specification can be mapped in several
ways as described below:

o Given affinities between serverless instances in a step
function, the infrastructure maps these instances to
a common host where storage is persistent across
serverless instance invocations. In a runtime where each
serverless instance is implemented as a Linux container,
the storage on the host is mounted onto the container
during boot up, thus enabling sharing of data.
Implementations based on processor in memory (PIM)
may also be considered for this purpose. A processor
associated with a memory device such as a Linux on
ARM associated with SSD or Memory, can also be used
to support the affinity for especially large models.

VII. CONCLUSION

Training deep learning models with serverless runtimes
is challenging and provides several opportunities. We have
investigated both large and small models. For large models,

341

various structures for composition of serverless instances to
provide the best performance and cost to train deep learning
models, while taking advantage of data parallelism were
explored. The challenges posed by the ephemeral, stateless
and warm up latency of serverless runtimes were studied.
Potential innovations in runtime design for future serverless
runtimes with containers were proposed to mitigate the
challenges and strengthen the opportunities. For smaller
models, it was shown that serverless runtimes showed benefit
for hyperparameter tuning that could be performed in a truly
distributed manner.

REFERENCES

Awesome serverless Git. https:/github.com/anaibol/awesome-serverless.

I. Baldini, P. C. Castro, K. S. Chang, P. Cheng, S. J. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. M. Rabbah, A. Slominski, and P. Suter,
“Serverless computing: Current trends and open problems,” Computing Research
Repository, 2017.

AWS Lambda. https://aws.amazon.com/lambda/.

S. Fink, “OpenWhisk.” https://developer.ibm.com/open/wp-content/uploads/
sites/50/2016/06/0OpenWhisk-Charts.pdf.

Google Cloud, “Building a Serverless ML Model.” https://cloud.google.com/
solutions/building-a-serverless-ml-model.

Microsoft, “Microsoft Azure.” https://azure.microsoft.com/en-us/.

G. McGrath and P. R. Brenner, “Serverless computing: Design, implementation,
and performance,” in 2017 IEEE 37th International Conference on Distributed
Computing Systems Workshops, pp. 405-410, June 2017.

AWS, “AWS Step Functions.” https://aws.amazon.com/step-functions/.

G. C. Fox, V. Ishakian, V. Muthusamy, and A. Slominski, “Status of serverless
computing and function-as-a-service(faas) in industry and research,” Computing
Research Repository, 2017.

M. A. Zinkevich, M. Weimer, A. Smola, and L. Li, “Parallelized stochastic
gradient descent,” in Proceedings of the 23rd International Conference on Neural
Information Processing Systems - Volume 2, pp. 2595-2603, 2010.

B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach to
parallelizing stochastic gradient descent,” in Advances in Neural Information
Processing Systems 24, pp. 693-701, 2011.

J. Keuper and F.-J. Pfreundt, “Asynchronous parallel stochastic gradient descent:
A numeric core for scalable distributed machine learning algorithms,” in Pro-
ceedings of the Workshop on Machine Learning in High-Performance Computing
Environments, pp. 1:1-1:11, 2015.

J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao,
M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng, “Large scale distributed
deep networks,” in Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 1, pp. 1223-1231, 2012.

T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang,
and Z. Zhang, “Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems,” Neural Information Processing Systems,
Workshop on Machine Learning Systems, 2016.

E. Jonas, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the cloud:
Distributed computing for the 99%,” Computing Research Repository, 2017.
M. Malawski, K. Figiela, A. Gajek, and A. Zima, “Benchmarking heterogeneous
cloud functions,” in Euro-Par 2017: Parallel Processing Workshops (D. B. Heras
and L. Bougé, eds.), pp. 415426, 2018.

M. Malawski, “Towards serverless execution of scientific workflows - hyperflow
case study,” in WORKS@SC, November 2016.

V. Ishakian, V. Muthusamy, and A. Slominski, “Serving deep learning models
in a serverless platform,” Computing Research Repository, 2017.

TensorFlow Tutorials: Convolutional Neural Networks. https://www.tensorflow.
org/tutorials/deep_cnn.

Distributed TensorFlow. https://www.tensorflow.org/deploy/distributed.

J. Yang, Y. Chen, S. Wang, L. Li, C. Meng, M. Qiu, and W. Chu, “Practical
lessons of distributed deep learning,” 2017.

H. Robbins and S. Monro, “A stochastic approximation method,” The Annals of
Mathematical Statistics, pp. 400407, 1951.

Configuring Lambda Functions. https://docs.aws.amazon.com/lambda/latest/dg/
resource-model.html.

AWS Lambda Pricing. https://aws.amazon.com/lambda/pricing/.

J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization
of machine learning algorithms,” in Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 2, pp. 2951—
2959, 2012.

CIFAR-10 Dataset. https://www.cs.toronto.edu/~kriz/cifar.html.

The MNIST Database. http://yann.lecun.com/exdb/mnist/.

TensorFlow. https://www.tensorflow.org/.

[1]
[2]

[3]
[4]

[5]
[6]
(7

(8]
[91

[10]

[

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]
[21]

[22]
[23]

[24]
[25]

[26]
[27]
[28]

