
Exploring Serverless Computing for Neural Network Training

Lang Feng∗, Prabhakar Kudva†, Dilma Da Silva∗, Jiang Hu∗
∗Texas A&M University, College Station

†IBM Research, Yorktown Heights
flwave@tamu.edu, kudva@us.ibm.com, dilma@cse.tamu.edu, jianghu@tamu.edu

Abstract—Serverless or functions as a service runtimes have
shown significant benefits to efficiency and cost for event-driven
cloud applications. Although serverless runtimes are limited to
applications requiring lightweight computation and memory,
such as machine learning prediction and inference, they have
shown improvements on these applications beyond other cloud
runtimes. Training deep learning can be both compute and
memory intensive. We investigate the use of serverless runtimes
while leveraging data parallelism for large models, show the
challenges and limitations due to the tightly coupled nature
of such models, and propose modifications to the underlying
runtime implementations that would mitigate them. For hyper-
parameter optimization of smaller deep learning models, we
show that serverless runtimes can provide significant benefit.

I. INTRODUCTION

As cloud computing increasingly becomes the platform

of choice for commercial and scientific computing, server-

less computing (also known as Functions as a Service or

FaaS) [1], has emerged in recent years. With the increased

use of containers and micorservices [2], serverless comput-

ing has shown particular promise for event-driven applica-

tions. Examples of commercial and open source serverless

providers include: AWS Lambda [3], IBM OpenWhisk [4],

Google Cloud Functions [5] and Microsoft Azure [6].

Serverless applications can be either a set functions as

code, triggered by some external event [7], or a larger

application composed of multiple functions. An example

of composition of larger functions are those composed via

AWS Step Functions [8]. A key reason for their success

has been the cost efficiency that such runtimes provide

in event-driven environments, where sporadic events may

trigger computations, and the users only pay for the compute

time they consume [3], rather than have long running servers

implemented on virtual machines for these event processing,

which will cause idle waiting for those sporadic events and

result in unwanted monetary cost.

Key properties of serverless computing have been event-

driven behavior, stateless, short run times, agile (it can be

scaled up and down instantly and automatically [9]) and

cost-efficiency. These properties benefit certain classes of

applications better than others. Applications that are well

suited for serverless are usually stateless, event-driven and

short running. However with the composition of stateless

This work is partially supported by NSF (CCF-1525749).

services with persistence provided by database stores and

loads between stateless serverless functions, the range of

applications is gradually increasing. If a long running ap-

plication is needed, it is possible to sequence multiple

serverless computing instances in time with intermediate

external storage [9]. Thus, the range of applications where

serverless computing can show benefits can be extended

beyond the event-driven domain.
Serverless computing has been applied to the area of

machine learning [2, 5] with mixed results. The technology

has been shown to be particularly useful for inference

and prediction in cloud environments. For training mod-

els, especially deep learning models, which are compute

and memory intensive and tightly coupled, serverless has

not yet shown promise. The use of distributed computing

for deep learning with accelerators is a well understood

area [10, 11, 12, 13]. While solutions such as MxNet [14]

and Distributed TensorFlow have increased the performance

of distributed computing with GPU acceleration to speed

up deep learning training, there are limited studies on the

investigation of parallelism in serverless runtimes.
In order to facilitate the development of new serverless

runtimes, and add features to the implementation backend

(like compute and memory affinities based on cold and warm

start) and others, it is important to understand strengths and

limitations of deploying deep learning models in existing

technologies, which our work mainly focuses on.
Our main contributions in this paper are:

• Proposing serverless computing structures for training

large deep neural networks by leveraging data paral-

lelism.

• Development of the parallel structure optimization for

reducing training latency.

• Techniques for optimizing monetary cost and

performance-cost ratio for training neural networks

with serverless.

• Demonstrating the benefits of serverless for hyperpa-

rameter optimization of smaller models.

• Outlining novel serverless runtimes for further investi-

gation to overcome the limitations for larger models.

The rest of this paper is organized as follows. Previous re-

lated works are briefly reviewed in Section II. In Section III,

a multi-layer structure is introduced for neural network

training on serverless instances and memory optimization

334

2018 IEEE 11th International Conference on Cloud Computing

2159-6190/18/$31.00 ©2018 IEEE
DOI 10.1109/CLOUD.2018.00049

techniques are further described. Section IV shows how

to leverage serverless computing for hyperparameter tuning

of neural network construction and training. Experiment

results are summarized in Section V. New opportunities in

serverless runtime design are discussed in Section VI and

finally conclusions are provided in Section VII.

II. RELATED WORK

Previous works on serverless runtimes mainly fall into

two areas. The first is the area with more benefits on cost

or performance over other runtimes like virtual machine

or distributed computing. Examples of applications in this

area are shown in [1], where tasks are mostly event-driven,

stateless and have short run time.

The second is the area which aims at broadening the

use of serverless runtimes, whereas most of the works

in this area do not focus on machine learning, and there

is no work towards deploying neural network training on

serverless runtimes as our work. In this area, the works

about scientific computing have been demonstrated success-

fully on serverless platforms. These efforts demonstrate the

feasibility and promise of deploying scientific workload on

serverless infrastructures. With Pywren [15] for example,

one can deploy python-based workloads on multiple AWS

Lambda services. The work of [16] proposed a perfor-

mance evaluation framework with the use of a scientific

workflow system: HyperFlow. The results show different

behaviors between different serverless providers, such as

AWS, Google, IBM and Microsoft. Another work, [17],

mainly focuses on the deployment of scientific workflows on

serverless environment, and proposes many feasible models

for implementation. Those investigations are pioneer efforts

on supercomputing with serverless architectures.

There are also works in the second area towards machine

learning on serverless architectures, but the machine learning

in these works has mostly been used for inference [5]. For

example, in [18], the latency impact of the use of serverless

for deep neural networks is investigated. The experiment in

[18] shows the difference of the inference latency between

the warm and cold execution, and the latency difference

between different memory sizes. However, this work does

not focus on deploying neural network for training, while

our work proposes an optimized way for taking advantage

of parallelism for training deep neural networks.

III. TRAINING LARGE MODELS WITH SERVERLESS

We define large models as those whose training cannot

be completed within one serverless instance either due to

constraints in runtime or memory requirements, such as the

model used in TensorFlow Tutorials [19]. In this section

we review cases that require workflows of several serverless

instances with data transfer among them.

A. Data Transfer and Parallelism with Serverless

A key difference in the application of parallelism is the

different nature between serverless instances and normal

distributed computing: serverless instances are inherently

time-limited and stateless, unlike parallel threads previously

studied with deep neural networks. At present, there is

no way to transfer data between two serverless instances

directly, or to assign serverless instances affinity to compute

resources close to the shared data. Therefore, intermediate

storage such as databases are used for holding states that are

to be shared between subsequent serverless instances. The

data transfer between instances is shown in Figure 1. Since

two serverless instances cannot communicate directly, the

parallelized data or models have additional costs, including:

• data transfer latency from source instance to database,

• data transfer latency from database to destination in-

stance,

• warm up latency for loading data.

Figure 1. Data transfer gateway between two serverless instances

Distributed deep learning platforms have been well stud-

ied over the years [13], with more recent platforms such

as distributed TensorFlow [20] and MxNet [14], as well

as variants of them [21] showing dramatic improvements

on performance and scalability. Significant improvements

are noted when deep learning models take advantage of

parallelism. For this work, we adapt such well known ap-

proaches to training neural networks in a distributed fashion

and investigate their suitability to serverless. To coordinate

the component instances in a training workflow, we use the

graph-based notation of step functions [8]. In the rest of

this paper, the words graph and structure will refer to the

interconnected structure of serverless instances interleaved

by writes and reads to storage.

B. Data Parallelism for Neural Network Training

Given a dataset, the training of a neural network is to

iteratively modify network parameters, such as edge weights

and biases, such that the network inference results match

the dataset. Many common training algorithms, such as

stochastic gradient [22], compute gradients according to the

training data and then the gradients are applied to update the

parameters. In data parallelism, a given dataset is partitioned

into multiple subsets, each of which is applied to train a

complete network model on a machine, called worker. All

workers share the same network model. When a subset of

training data is applied to a worker, corresponding gradients

are computed there. Then, gradients from all workers need

335

to be collected by a machine, called parameter server, where

the network parameters are updated. The data parallelism by

serverless computing is illustrated in Figure 2, where each

gray rectangle indicates one serverless instance. In serverless

environments, all the machines are serverless instances.

The dataset is partitioned into n workers, which compute

gradients and send the gradients to the parameter server.

Figure 2. Data parallelism by serverless computing

There are two approaches for updating parameters in the

data parallelism: Synchronous and asynchronous update.

In a synchronous update, the parameter server waits till

gradients from all workers are received and then updates

the parameters. In an asynchronous update, the parameter

server updates the parameters each time it receives one set

of gradients from one worker. In this work, we focus on the

synchronous update.

C. Optimizing Parallelism Structure for Serverless Training

For data parallelism, data transfers occur between workers

and the parameter server. There are two kinds of transfers:

• The parameter server transfers parameters to all work-

ers.

• Workers transfer gradients to the parameter server.

For the transfer from the parameter server to workers, the

latency is a constant as the number of parameters is fixed

for a given neural network model and all workers can read

the same parameters in parallel.

For the other transfer type, if there are n workers, the

parameter server needs to receive n sets of gradients, each

of which corresponds to one set of parameters on one

specific worker. If it takes time tm for each set of gradients

to be transferred to the parameter server, the latency of

transferring all gradients in one iteration is n ·tm. The linear

dependence on the number of gradient sets is confirmed by

the measurement results shown in Figure 3, where the bars

indicate plus/minus standard deviation.

Since the data transfer is the main performance bottleneck

for serverless training of neural networks, we propose a

multi-layer parameter server structure to reduce the transfer

Figure 3. The relationship between data transfer latency and the number of
gradients sets received by one parameter server. (experiment environment:
the transferred data contains 42601 gradients, and parameter server is a
512MB serverless instance)

latency. Please note that the focus here is to reduce the la-

tency of transferring gradients, as the latency of transferring

parameters is constant. In Figure 4, we use blue nodes to

represent workers and yellow nodes to indicate parameter

servers. Usually, multiple workers send their gradients to

the parameter server as in Figure 4(a). The parameter server

is also called merging node in the graphs in Figure 4.

Figure 4. Different structures for merging gradients by parameter servers.

We propose a multi-layer merging structure as in Figure

4(b), which contains 6 workers and 3 parameter servers

distributed in 2 layers. In such structure, a parameter server

or merging node can receive gradient data from other

merging nodes. In the upper merging layer of Figure 4(b),

each parameter server merges gradients from 3 workers and

the merging takes 3tm. Since the two merging nodes work

in parallel, the merging latency of this layer is also 3tm.

In the lower merging layer, there is one parameter server,

which merges gradients from the two parameter servers of

upper layer and the merging latency is 2tm. Therefore, the

total gradient data transfer latency in Figure 4(b) is 5tm.

By contrast, the naı̈ve merging structure in Figure 4(a) costs

6tm transfer latency.

The example of Figure 4 indicates that the proposed

multi-layer merging structure can reduce merging (gradient

336

data transfer) latency. A general problem is how to decide

the number of merging layers and number of parameter

severs in each merging layer such that the gradient data

transfer latency is minimized. To solve this problem, we

first introduce the latency model for transferring gradients

by workers to the parameter servers.

Figure 5. General structure of parameter servers

Consider a general data parallel structure as Figure 5.

Assume there are n workers and k intermediate merging

layers, and for the ith merging layer, there are mi parameter

servers. For the bottom merging layer, there is only 1

parameter server to do the final data processing. Then, the

total latency can be described as

t = tm
n

m1
+ tm

m1

m2
+ ...tm

mk−1

mk
+ tmmk (1)

To minimize t, we first take partial derivatives with respect

to each mi as below.⎧⎪⎪⎨
⎪⎪⎩

∂t
∂m1

= − n
m2

1
tm + 1

m2
tm

∂t
∂mi

= −mi−1

m2
i
tm + 1

mi+1
tm 1 < i < k

∂t
∂mk

= −mk−1

m2
k
tm + tm

(2)

One can tell that the second order derivatives are all positive,

then the function t versus mi is convex. By letting all first

order derivatives be 0, the values of all mi minimizing t are

given by {
mk+1

k = n

mi = mk−i+1
k 1 ≤ i ≤ k − 1

(3)

Thus, the minimum t is found to be

tmin = tm(k + 1)n
1

k+1 (4)

We find the k that minimizes tmin by letting dtmin

dk = 0,

which gives k = ln(n)−1. However, a large k means many

hops of data transfer, which increase the chance of packet

loss and the costly data retransmission. Therefore, we bound

the value of k to be no greater than 2 in practice.

Since creating new serverless instances is associated with

latency overhead, the actual data transfer latency can be

further reduced by reusing worker serverless instances as

Figure 6. Reuse worker serverless instances as parameter servers.

parameter servers as shown by Figure 6. After completing

their neural network training work, workers 3 and 6 continue

to collect gradient data from 1, 2, 3, and 4, 5, 6, respectively.

In other words, worker 3 (6) plays the role of parameter

server 7 (8) now. After merging data from workers 4, 5, and

6, node 6 further collects the gradient data from parameter

server 3, and is actually doing the merging formerly done

by node 9. Please note such reuse is possible only for the

synchronous data update.

D. Cost and Performance-Cost Ratio Optimization

A key motivation for serverless computing is its economic

advantage over the conventional cloud services. Hence,

we study how to minimize monetary cost and maximize

performance-cost ratio in using serverless computing. In

contrast to the offline structure optimization, the cost and

performance-cost ratio optimizations are online techniques.

Table I
AWS LAMBDA PRICE VS. MEMORY USE.

Memory (MB) Price per 100ms ($)
128 0.000000208
192 0.000000313
256 0.000000417
... ...

1408 0.000002292
1472 0.000002396
1536 0.000002501

We derive a model of monetary cost with respect to

the memory allocated to a serverless instance. Please note

memory size z of a serverless instance should be no less

than the minimum memory required to run the application

there. In addition, a large memory size z implies shorter

latency [23]. Hence, latency is a function of memory size

as t(z). For AWS Lambda [3], the monetary price per unit

runtime for different memory sizes [24] is shown in Table

I. By such pricing, the monetary cost has linear dependence

on memory size of the Lambda instance and latency, and

can be defined as

C(z) = p · n · z · t(z), (5)

where p = 1.63× 10−8$/(MB · s) and n is the number of

Lambda instances.

We propose an online gradient descent method for finding

memory size z for each serverless instance such that the

337

monetary cost C(z) is minimized. The online optimization

starts with a random memory size z1, which is sufficiently

large for the neural network training and satisfies serverless

instance specification. The training with z1 memory is

continued with q iterations and the average cost C̄(z1) over

the q iterations is estimated according to Equation (5). Then,

memory size is changed to another random and feasible

value z2 for another q iterations of training to obtain an

average estimation C̄(z2). After the sampling of two random

sizes, we find an optimized memory size as

z∗3 = z1 − α
C̄(z1)− C̄(z2)

z1 − z2
(6)

where α is the step size for the gradient decent. Since

there are lower bound zmin and upper bound zmax for the

actual memory size due to serverless instance restrictions

and application requirement, the actual memory size to be

used next is

z3 = max(zmin,min(zmax, z
∗
3)) (7)

and this procedure can be repeated such that the memory

size is continuously optimized.

We propose another online gradient decent method for

maximizing performance-cost ratio. Given a computing task

that requires f floating point operations, the performance

can be characterized by FLOPS (floating point operations

per second), which can be estimated by f
t(z) . Then, the

performance-cost ratio is defined by

R(z) =
f

p · n · z · t2(z) (8)

which is a function depending on memory size z. Like

minimizing the cost, one can sample a size for q iterations.

If the two consecutive sample sizes are zj−1 and zj , then

the optimized memory size can be obtained as

zj+1 = max(zmin,min(zmax, zj + α
R̄(zj)− R̄(zj−1)

zj − zj−1
))

(9)

where R̄ indicates the average ratio over q iterations.

IV. PARALLEL HYPERPARAMETER TUNING OF NEURAL

NETWORK MODELS WITH SERVERLESS

The effectiveness of a neural network model and its train-

ing efficiency highly depend on hyperparameters, such as the

number of hidden layers, activation function and training

rate. The hyperparameters can be decided either manually

or through automated search such as random search, grid

search and Bayesian optimization [25].

Since the evaluations of different hyperparameters can

be independently carried out, serverless computing is a

particularly appealing choice for the tuning. Suppose H =
{h1, h2, ...} is a set of hyperparameters for a specific neural

network model. All sets hyperparameters to be explored are

H = {H1, H2, ...}. One can request ni serverless instances

for training the model specified by Hi ∈ H. Since the total

number of serverless instances one can request is bounded

by N . We need to make sure that

|H|∑
i=1

ni ≤ N. (10)

Due to this restriction, severless hyperparameter tuning is

mostly for small network models.

V. EXPERIMENT RESULTS

A. Experiment Setup

These experiments are conducted on a randomly generated

dataset, CIFAR-10 dataset [26] and MNIST dataset [27].

The random dataset contains 1 million samples, each of

which is composed by 20 binary features and 1 binary

label. The random dataset is applied with a fully connected

neural network with 5 hidden layers, 500 hidden nodes and

42601 parameters. The CIFAR-10 dataset is to be trained

by a convolution neural network, which has 2 convolution

layers, 2 pooling layers, 2 normalization layers, 2 fully

connected layers and 1 softmax output layer. This structure

is the same as the structure used in the code of TensorFlow

Tutorials [19]. The model for MNIST is a fully connected

neural network, whose structure is investigated through the

hyperparameter tuning. The characteristics of the 3 testcases

are summarized in Table II. The training of using the datasets

on the models is by TensorFlow [28]. The serverless com-

puting experiments are conducted through AWS Lambda [3],

where latency, memory use and monetary cost are measured.

The training experiment is also performed on a desktop

computer with a Intel 3.4GHz CPU with 16GB memory.

Table II
TESTCASES

Case A Case B Case C
Dataset Random dataset CIFAR-10 [26] MNIST [27]
Network
type

Fully connected neu-
ral network

Convolution neural
network

Fully connected neu-
ral network

Network
structure

5 hidden layers, 500
hidden nodes and
42601 parameters.

Same as in the code
of TensorFlow Tutori-
al [19].

Structure investigated
through the hyperpa-
rameter tuning.

B. Latency Variation

When evaluating serverless computing latency, one faces

the challenge of its variations. Serverless runtimes are instan-

tiated on infrastructure via resource scheduling by the ser-

vice provider in a manner invisible to the end user. Similarly,

the location and the latency response of database for reads

and writes may vary depending on the resource allocation

on the cloud provider side. There are no guarantees on

latency and performance of such serverless instantiations be-

yond the requested parameters such as memory size (which

are priced). Likewise, the read and write latency between

serverless instance and database may vary depending on a

variety of factors, like the actual location of the database

338

relative to the instance, traffic on networks, multi-tenancy,

to name a few. The end-user does not have control on

these latencies and performance metric, and expectations are

that they vary within a certain known range (based on the

provider) from a statistical perspective. Therefore, all latency
and performance measurements reported in the paper are
representative, and a few percent variation or improvement
is considered normal statistical variation.

C. Structure Optimization

This part of experiment is to evaluate the effectiveness of

the proposed multi-layer merging structure and its optimiza-

tion, which are introduced in Section III-C. It is performed

on Case A and Case B. For Case A, the number of training

iterations is 50. The training is done by 100 workers, each

of which has 512MB memory. For Case B, the number

of training iterations is 20. The training is done by 100

workers, each of which has 1536MB memory. The results

are summarized in Table III. Each structure is indicated by

a vector, where each element specifies the number of nodes

in a layer and the elements are in bottom-up order of the

tree structure depicted in Figure 5. For example, [1, 5, 100]
means the gradients from 100 workers are transferred to 5

parameter servers, and finally merged at a single parameter

server. The result in the first row, which is labeled with

’*’, is the optimal solution according to our optimization.

For Case A, One can see this is the second to the minimal

latency result according to the measurement. Its actual

latency 569.55 is close to the minimal latency 534.28. The

discrepancy between our optimal solution and the actual

minimal is due to the latency variation, which is discussed in

Section V-B. For Case B, our optimal solution has the least

latency and therefore the effectiveness of our optimization

is confirmed. One should also note that according to our

discussion in Section III-C, the optimal solution does not

depend on the neural network model used but only depends

on the number of workers.

Table III
LATENCY OF DIFFERENT STRUCTURES

Structure Latency for Case A (s) Latency for Case B (s)
*[1,5,22,100] 569.55 789.20

[1,100] 1216.97 1848.05
[1,2,100] 878.78 1195.97
[1,5,100] 650.66 866.29
[1,25,100] 616.67 920.22

[1,2,10,100] 570.66 823.25
[1,5,50,100] 604.90 890.91

[1,10,50,100] 534.28 838.89
[1,2,10,50,100] 585.25 883.96
[1,5,20,50,100] 578.22 868.78

D. Training Accuracy and Convergence Rate

We evaluate the training accuracy and convergence rate of

the proposed serverless computing and sequential computing

on desktop PC on Case A and Case B. The serverless

structures used here are the same as in Section V-C. The

accuracy of a neural network is estimated by comparing its

inference results on training dataset labels. The accuracy

versus training time results for Case A are shown in Figure

7. The serverless computing converges slower than desktop

PC, but reaches a better accuracy. The results for Case B are

plotted in Figure 8, where the serverless computing leads to

worse accuracy and convergence rate than the desktop PC.

0 10 20 30 40 50 60

Training Time (s)

50

60

70

80

90

100

A
c
c
u

ra
c
y
 (

%
)

Desktop PC

Serverless Data Parallelism

Figure 7. Training accuracy vs. training time for Case A.

0 1000 2000 3000 4000

Training Time (s)

0

10

20

30

40

50

60

70

80

A
c

c
u

ra
c

y
 (

%
)

Desktop PC

Serverless Data Parallelism

Figure 8. Training accuracy vs. training time for Case B.

The accuracy difference between the desktop PC and

serverless results arises from the parameter update differ-

ence between sequential and parallel training. In serverless

computing, the parameter update is based on the average of

gradients obtained from multiple workers. In the sequential

training on desktop PC, by contrast, each parameter update is

339

according to a single set of gradients from a single process.

E. Result of Cost and Performance-Cost Ratio Optimization

The proposed online cost minimization method is evaluat-

ed on Case A. In this experiment, q = 10, which means we

modify the memory size every 10 iterations. In addition, the

gradient decent is performed at most five times. The lower

and upper bounds of memory size are set as zmin = 256MB
and zmax = 1536MB, respectively. The results are shown

in Figure 9, where the red circles indicate our optimization

results. The experiment is repeated 10 times. Due to the

latency t(z) variations, two different results (red circles) are

obtained. For 9 times, the optimization result is 256MB
and 512MB is obtained once. The blue triangles and bars

are the measurement results of monetary cost at different

memory sizes without optimization. For each memory size,

the experiment is repeated 100 times. Each blue triangle

represents the average cost and the bars indicate ±σ, which

is the standard deviation. One can see that the cost variation

can be very large due to the latency uncertainty. Moreover,

the cost vs. z change is not monotone. The average cost

of 640MB is less than that for 512MB memory. Most

importantly, our optimization indeed reaches the minimum

or near minimum cost memory size.

200 400 600 800 1000 1200 1400 1600

Memory Size z (MB)

0

2000

4000

6000

8000

10000

12000

14000

C
o

s
t

C
(z

)
(M

B
·
 s

)

9
1

C(z)

Optimization Result

Figure 9. Cost per iteration under different Lambda instance memory sizes
and optimization results.

The performance-cost ratio optimization results are plot-

ted in Figure 10. Here, we attempt to maximize the ratio.

Indeed, the red circle results from our optimization are

generally at memory sizes where the ratio is at least near

the maximum.

F. Results on Hyperparameter Tuning

The experiment on hyperparameter tuning is performed

on Case C. In Figure 11, the computing latency results

versus the number of searched hyperparameter sets |H|

200 400 600 800 1000 1200 1400 1600

Memory Size z (MB)

1

2

3

4

5

6

P
e

rf
o

rm
a

n
c

e
-C

o
s

t
R

a
ti

o
 R

(z
)

(M
B

-1
·
 s

-2
)

×10
-5

21
1

1

1

11
1

1

R(z)

Optimization Result

Figure 10. Performance-cost ratio per iteration under different Lambda
instance memory sizes and optimization results.

for desktop PC and AWS Lambda are plotted. Each dot

in the figure is the average of 10 different experiments

with the same number of searched hyperparameter sets.

One can see that the latency of desktop PC grows linearly

when more hyperparameters are evaluated because of its

sequential computing nature. The hyperparameter tuning on

AWS Lambda is carried out in parallel. Thus, its latency does

not change when the hyperparameter search is expanded.

This result clearly demonstrates the advantage of serverless

computing for hyperparameter tuning in neural network

model construction and training.

0 10 20 30 40 50

The Number of Searched Hyperparameter Sets

0

200

400

600

800

1000

1200

1400

1600

L
a
te

n
c
y
 (

s
)

Desktop PC

Serverless

Figure 11. Computing latency versus the number of searched hyperpa-
rameter sets |H|.

VI. OPPORTUNITIES IN SERVERLESS RUNTIME DESIGN

Serverless runtimes have been used for inference with

good results. Our exploration of using serverless for training

340

large deep learning models has identified some disadvan-

tages compared to other distributed computing runtimes

where data transfer between compute instances are not as

frequent (such as with GPUs). In order to improve serverless

performance for the task of training deep learning models,

it is necessary to minimize the frequency and quantity of

data transfer between subsequent serverless instances. We

illustrate opportunities for improved data transfer latencies,

while at the same time maintaining the benefits of serverless

such as the ability to pay for a compute instance used only

when and just long enough for needed computation.

Figure 12. Serverless affinity in runtimes

Consider a step function where edges between serverless

instances can be assigned higher affinities indicating sharing

of data between them, then the instances can be mapped by

the infrastructure manager in a manner where the latencies

for data transfer between the instances is minimized. In

Figure 12, a generic approach to such a solution is given,

where a portion of the step function has some serverless

instances with weight w on the edges indicating shared data,

while the last instance has no weight assigned, indicating no

such affinity. Such a specification can be mapped in several

ways as described below:

• Given affinities between serverless instances in a step

function, the infrastructure maps these instances to

a common host where storage is persistent across

serverless instance invocations. In a runtime where each

serverless instance is implemented as a Linux container,

the storage on the host is mounted onto the container

during boot up, thus enabling sharing of data.

• Implementations based on processor in memory (PIM)

may also be considered for this purpose. A processor

associated with a memory device such as a Linux on

ARM associated with SSD or Memory, can also be used

to support the affinity for especially large models.

VII. CONCLUSION

Training deep learning models with serverless runtimes

is challenging and provides several opportunities. We have

investigated both large and small models. For large models,

various structures for composition of serverless instances to

provide the best performance and cost to train deep learning

models, while taking advantage of data parallelism were

explored. The challenges posed by the ephemeral, stateless

and warm up latency of serverless runtimes were studied.

Potential innovations in runtime design for future serverless

runtimes with containers were proposed to mitigate the

challenges and strengthen the opportunities. For smaller

models, it was shown that serverless runtimes showed benefit

for hyperparameter tuning that could be performed in a truly

distributed manner.

REFERENCES

[1] Awesome serverless Git. https://github.com/anaibol/awesome-serverless.
[2] I. Baldini, P. C. Castro, K. S. Chang, P. Cheng, S. J. Fink, V. Ishakian,

N. Mitchell, V. Muthusamy, R. M. Rabbah, A. Slominski, and P. Suter,
“Serverless computing: Current trends and open problems,” Computing Research
Repository, 2017.

[3] AWS Lambda. https://aws.amazon.com/lambda/.
[4] S. Fink, “OpenWhisk.” https://developer.ibm.com/open/wp-content/uploads/

sites/50/2016/06/OpenWhisk-Charts.pdf.
[5] Google Cloud, “Building a Serverless ML Model.” https://cloud.google.com/

solutions/building-a-serverless-ml-model.
[6] Microsoft, “Microsoft Azure.” https://azure.microsoft.com/en-us/.
[7] G. McGrath and P. R. Brenner, “Serverless computing: Design, implementation,

and performance,” in 2017 IEEE 37th International Conference on Distributed
Computing Systems Workshops, pp. 405–410, June 2017.

[8] AWS, “AWS Step Functions.” https://aws.amazon.com/step-functions/.
[9] G. C. Fox, V. Ishakian, V. Muthusamy, and A. Slominski, “Status of serverless

computing and function-as-a-service(faas) in industry and research,” Computing
Research Repository, 2017.

[10] M. A. Zinkevich, M. Weimer, A. Smola, and L. Li, “Parallelized stochastic
gradient descent,” in Proceedings of the 23rd International Conference on Neural
Information Processing Systems - Volume 2, pp. 2595–2603, 2010.

[11] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach to
parallelizing stochastic gradient descent,” in Advances in Neural Information
Processing Systems 24, pp. 693–701, 2011.

[12] J. Keuper and F.-J. Pfreundt, “Asynchronous parallel stochastic gradient descent:
A numeric core for scalable distributed machine learning algorithms,” in Pro-
ceedings of the Workshop on Machine Learning in High-Performance Computing
Environments, pp. 1:1–1:11, 2015.

[13] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao,
M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng, “Large scale distributed
deep networks,” in Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 1, pp. 1223–1231, 2012.

[14] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang,
and Z. Zhang, “Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems,” Neural Information Processing Systems,
Workshop on Machine Learning Systems, 2016.

[15] E. Jonas, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the cloud:
Distributed computing for the 99%,” Computing Research Repository, 2017.

[16] M. Malawski, K. Figiela, A. Gajek, and A. Zima, “Benchmarking heterogeneous
cloud functions,” in Euro-Par 2017: Parallel Processing Workshops (D. B. Heras
and L. Bougé, eds.), pp. 415–426, 2018.

[17] M. Malawski, “Towards serverless execution of scientific workflows - hyperflow
case study,” in WORKS@SC, November 2016.

[18] V. Ishakian, V. Muthusamy, and A. Slominski, “Serving deep learning models
in a serverless platform,” Computing Research Repository, 2017.

[19] TensorFlow Tutorials: Convolutional Neural Networks. https://www.tensorflow.
org/tutorials/deep cnn.

[20] Distributed TensorFlow. https://www.tensorflow.org/deploy/distributed.
[21] J. Yang, Y. Chen, S. Wang, L. Li, C. Meng, M. Qiu, and W. Chu, “Practical

lessons of distributed deep learning,” 2017.
[22] H. Robbins and S. Monro, “A stochastic approximation method,” The Annals of

Mathematical Statistics, pp. 400–407, 1951.
[23] Configuring Lambda Functions. https://docs.aws.amazon.com/lambda/latest/dg/

resource-model.html.
[24] AWS Lambda Pricing. https://aws.amazon.com/lambda/pricing/.
[25] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization

of machine learning algorithms,” in Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 2, pp. 2951–
2959, 2012.

[26] CIFAR-10 Dataset. https://www.cs.toronto.edu/∼kriz/cifar.html.
[27] The MNIST Database. http://yann.lecun.com/exdb/mnist/.
[28] TensorFlow. https://www.tensorflow.org/.

341

