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Abstract— A new predictive risk-based framework is proposed 
to increase power distribution network resiliency by improving 
operator understanding of the energy interruption impacts. This 
paper expresses the risk assessment as the correlation between 
likelihood and impact. The likelihood is derived from the 
combination of Naive Bayes learning and Jenks natural breaks 
classifier. The analytics included in a GIS platform fuse together 
a massive amount of data from outage recordings and weather 
historical databases in just one semantic parameter known as 
failure probability. The financial impact is determined by a time 
series-based formulation that supports spatiotemporal data from 
fault management events and customer interruption cost. Results 
offer prediction of hourly risk levels and monthly accumulated 
risk for each feeder section of a distribution network allowing for 
timely risk mitigation. 

Index Terms—Power distribution system, risk assessment, 
Naive Bayes learning, failure probability, time series, 
interruption cost, geographic information system (GIS).  

I. INTRODUCTION

HE proposed predictive risk management framework leads
to pro-active risk management and effective ranking of 

risk reduction measures [1]. The weather-based risk 
assessment provides the spatiotemporal correlation between 
weather data and historical management data of the power 
distribution system. Historically, the risk assessment was 
mainly studied in power transmission system, [2] and [3]. The 
most recent literature on power distribution system has also 
focused on risk studies as a central theme [4]-[10]. 
 In [4], historic reliability data reflecting the variation of 
service continuity indices is utilized to develop probability 
distribution functions used to illustrate the potential financial 
risk associated with assigned reward/penalty structure 
integrated in a performance-based regulation plan for 
distribution utilities. The histograms of indices, such as system 
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average interruption frequency index (SAIFI) and duration 
index (SAIDI), overlap a predefined function that reproduces 
the reward/penalty regulation policy, predicting the future 
risks. Instead of evaluating the financial risk, [5] introduces a 
risk assessment approach that ensures the human safety in 
power distribution network by determining the intensity of 
fault current levels that are dangerous for people when 
stepping on downed conductor and touching poles in a faulted 
network. The risk analysis employs the Monte Carlo 
simulation using assumptions of probability distribution 
functions in the soil resistivity, human body resistance and 
heart current. Another study presented in [6] analyzes the risk 
from vaults in the underground power distribution system that 
can provoke human injuries, monetary compensation, energy 
unavailability and traffic disruption on streets. 

More recent issues involving the penetration of renewable 
energy resources into power distribution system are also being 
investigated through the risk analysis approach [7]-[10]. In 
[7], the correlation between day-ahead and real-time markets 
is integrated in a reliability and price risk assessment using an 
energy and pre-dispatch model. Going beyond the short-term 
market operation, work in [8] investigates the risk-based 
security of concentrated solar power for mid- and long-term 
planning horizons. The impact indices are aimed at 
minimizing steady-state voltage profile variation, assessing the 
line overload security, and verifying the static and dynamic 
voltage stability. The four severity continuous functions 
determine the risk using chronological simulation technique 
with clustered solar generation patterns for each yearly season. 
Similarly, [9] assesses the impact of increasing the wind 
power injection into medium-voltage networks. Investment 
alternatives taking into account photovoltaic generation, 
electric vehicles and other new technologies at low-voltage 
network have been assessed by using the planning framework 
which determines the risks based on availability, losses and 
power quality [10]. 

We have proposed several innovative solutions: a) 
integration of outage records, historical weather information 
and fault management events in a risk-based GIS driven 
proactive management tool; b) implementation of a risk model 
based on Naive Bayes learning, and classifying the calculated 
likelihood using Jenks natural breaks where the financial 
impacts are modeled using the time series-based 
spatiotemporal formulation, and c) operator visualization of 
risk prediction and mitigation using GIS interface. 
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TABLE I.  ROWS AND COLUMNS CATEGORIES OF THE RISK MATRIX. 

Rows  Columns 
 Categories Description  Categories Description 

LI
K

EL
IH

O
O

D
 I Extremely Unlikely 

IM
PA

C
T 

A Insignificant 
II Highly Unlikely B Minor 
III Doubtful C Significant 
IV Very Unlikely D Serious 
V Unlikely E Major 
VI Likely F Catastrophic 

 

 
Algorithm 1 Jenks Natural Breaks algorithm.  
1: Select the input dataset U to be classified and specify the number of 

classes, NC. 
2: Define the classes’ boundaries: [INFj, SUPj] to j = 1, 2, …NC, where 

every interval has the same size. 
3: Calculate the sum of squared deviation of the dataset, SDU, using (2): 

( ) −= UiU uuuSD i ,
2  (2) 

4: While the GVF is lower than maximum value do 
5: Calculate the sum of squared deviation for each class, SDj, using (3): 

( )  jjji,jji SUP,INFuuuSD −= ,
2

,j  (3) 

6: Increase the interval [INFj, SUPj] from classes with lowest SDj by 
decreasing the interval from classes with largest SDj. 

7: Calculate the goodness of variance fit, GVF, using (4): 

USDSDGVF
NC

j
j

=

−=

1
1  (4) 

8: End while 
9: Store the classes’ boundaries of input dataset, U. 

 

This paper is organized as follows. Section II presents the 
risk assessment background by introducing a risk metric in a 
form of risk matrix. Section III proposes the Jenks natural 
breaks classification method for defining risk matrix 
row/column classes. Subsequently, the calculation of failure 
probability and interruption cost as well as the procedure that 
obtain the risk matrix are demonstrated. In Section IV, 
explained concepts involving the proposed risk assessment 
framework are utilized in the evaluation of a real world 
distribution network. The conclusions are given in Section V 
before the references at the end. 

II. RISK ANALYSIS BACKGROUND 
The proposed predictive risk analysis can offer anticipation 

of problems that may, or may not have happened before, in 
order to assist pro-active risk management strategies. The risk 
analysis framework aims to minimize the energy interruption 
impacts and to reduce human intervention by performing two 
steps sequentially in pre-defined time span. The first one is the 
risk assessment whereas the second one is the risk mitigation 
through the real-time control technique. In this framework, the 
risk assessment, the main of this work, is an important step in 
quantifying each part of the analyzed problem by calculating 
the likelihood and impact estimates. Equation (1) presents the 
quantified risk expressed as expected value of loss, i.e. 
consequences along time are given by the correlation between 
the likelihood of event occurrence along time and consequent 
impacts of each event [11].  
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This correlation is typically obtained by a risk matrix where 
the risk is ranked in levels, thus matrix elements should be 
grouped in three levels: the high (H) level is considered 
unacceptable risk; the medium (M) level is dealt as either 
undesirable or as acceptable with review; and the low (L) level 
is treated as acceptable without review. The number of rows 
and columns of the risk matrix is defined by likelihood and 
impact categories as demonstrated in Table I. 

III. CLASSIFICATION METHODOLOGY  
Since levels and categories represent ranges of continuous 

values, a clustering methodology is needed to classify the 
estimated likelihood, impact and risk. The Jenks natural 
breaks algorithm is a common method in GIS applications 
able to divide a dataset into a predefined number of 
homogeneous classes and was originally introduced as a 

method for "optimal data classification" because it minimizes 
the variances within classes by maximizing the variance 
between classes [12]. One-dimensional values, which are not 
uniformly distributed, fits perfectly into Natural breaks 
classification [13], consequently, the well-known k-means 
clustering is its generalization for multivariate data [14]. 

The Algorithm 1 describes methodically all steps involved 
in the procedure for obtaining the class boundaries from an 
input dataset U using the Jenks optimization algorithm. At the 
beginning, the class boundaries are defined by intervals with 
the same size. Then, the algorithm adjusts the boundaries 
systematically until the minimization of the sum of the 
squared deviation from the classes i. e. until the maximization 
of GVF, that varies into interval [0, 1], is achieved. In this 
way, the algorithm achieve the class boundaries that produce 
the maximal similarity to data points in a class. 

The Jenks natural breaks optimization performs the central 
role in the determination of boundaries for each class, i.e. 
inferior and superior limits for each likelihood and impact 
category as well as for each risk level. In Fig. 1, the input 
dataset U into Jenks optimizer comes from calculations of 
failure probability and interruption cost. The product of 
probabilities and costs becomes one-dimensional risk dataset 
permitting to use again the Jenks optimizer on risk level 

 
Fig. 1. Role of Jenks natural breaks optimization on risk assessment 
framework. 
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TABLE II.  OBSERVED EXTERNAL DEPENDENCES IN THE BAYES MODEL. 

xi Feature of interest  xi Feature of interest 
x1 Wind speed is low  x6 Weather is rainy 
x2 Wind speed is medium  x7 Weather is thunderstorm 
x3 Wind speed is high  x8 Incidence of lightning 
x4 Weather is good  x9 Vegetation is over height  
x5 Weather is misty  x10 Degradation by ageing 

 
 

 
Fig. 2. Information flow involving the Naive Bayes probability estimation. 

 

classification. The illustrated process to determine class 
boundaries can be a periodic procedure using, for instance, 
data collection from last year. 

A. Failure Probability Metric by Machine Learning 
The proposed risk assessment framework employs the 

failure probability metric to determine the likelihood of 
something is malfunctioning in a distribution network. The 
processing of large volume of data from diverse databases, i.e. 
outage management system (OMS), lighting detection 
network, GIS, weather stations, and asset management system 
(AMS) database, [15] and [16], contributes to threats 
characterization. Thus, the use of the big data analytics is 
required where the machine learning technique demonstrates 
great efficiency in the knowledge extraction. The Naive Bayes 
is the supervised learning technique used to establish an 
association of several features of interest into just one 
quantitative parameter [17]. In power distribution system, the 
failure probability metric uses a Naive Bayes model, as in (5) 
and (6), by taking into account the external dependences that 
are given by different types of threats as features of interest. 
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where 
𝑝(𝑓|𝑿) Conditional probability of failure subject to X; 
𝑝(𝑿|𝑓) Estimate of the likelihood of X given f; 
𝑝(𝑓) Estimate of failure probability; 

𝜃̃𝑖
𝑓

 
Estimate of the probability of observing xi 
conditioned to a failure event, f.  

 
The two states of the failure feature, }1,0{)( =fdom , leads 

the definition of )|1( X=fp  as the conditional probability of 
failure occurrence subject to observe external dependences, 

},..,1)()(|{ Difdomxdomx ii ===X , that are enumerated 
in Table II. The probability of observing the vector X can be 
compactly written as in (6) where f

ii fxp = )|1(  and
f

ii fxp −= 1)|0(  because of Naive Bayes conditional 
independence assumption. Another benefit of this assumption 
is the applying of maximum likelihood learning to the Naive 
Bayes model. 
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In the proposed model, the obtaining of the monthly 
likelihood to every features of interest, as in (7), determines 
the knowledge extraction from the available databases. 
Additionally, the prediction of the probability value in the 
current year of analysis is achieved using a regression model 
resulting of the ordinary least square (OLS) estimator, as 
given by (8) and (9). 
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where 
𝜃̃𝑖,𝑦

𝑓
 Estimate of the probability of observing xi 

conditioned to a failure event, f, in the yth year. 
 

 Since, the past years of observed probabilities are in the 
matrix T

yy t )1(=Τ , the prediction parameters comprise the 

matrix T
iii )( ,1,0 =Β . The knowledge extraction from 

observed databases is achieved by calculating the prediction 
parameters in iΒ . The knowledge extraction is a function of 
data mining or knowledge discovery from data (KDD) that 
sequentially groups several functions for dealing with massive 
database difficulties, e.g. unnecessary information and 
inconsistent data [18]. In this way, the cleaning, integration 
and selection functions are performed before the knowledge 
extraction function that processes the useful information. 

The processing of large volume of data also requires the 
integration of different sources of information. Fig. 2 shows 
the information flow for characterizing feeder sections of 
distribution networks in concordance with their failure 
probability. The distribution network operator workstation 
performs an important role by running the supervisory 
application, [19] and [20], with the addition of objects for 
regression and Bayes models. 

Firstly, the estimative of probability values for each feature 
of interest uses the eq. (8). The elements of iΒ  are obtained 
through the stored procedures in the historical database server. 
Secondly, the calculation of failure probability to every feeder 
sections is performed using eq. (5) and (6) where the vector of 
current external dependences, or observed statuses of features 
of interest, comes from external http servers for weather 
forecasting and lightning monitoring and from vulnerability 
models for vegetation and ageing. 
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Many power flow interruptions that reduce the reliability 
indices are often caused when tree branches touch the 
distribution feeder conductors. The vegetation location 
detection is performed using remote sensing technology in 
association with GIS application that identifies the distribution 
feeder segments vulnerable to tree size. The prediction of tree 
heights uses a vegetation growth model as a function of time 
or age, [21] and [22], indicating whether computed tree height 
is over allowable height. Other vulnerability model takes into 
account electrical, mechanical and thermal stresses to 
determine the equipment degradation [23]. The ageing model 
makes use of the repair cycle for correlating equipment 
operating state and power supply interruption information. 
Thus, electrical equipment may have a high level of 
degradation whenever it reaches at least 63% of possibility to 
fail. 

B. Time Series-based Interruption Cost 
In the proposed risk assessment approach the impact 

quantification is achieved by calculating the energy supply 
interruption cost [24]. The support of time varying energy 
consumption profiles is guaranteed by the time series-based 
interruption cost formulation as well as the identification of 
event locations involved in the outage management is 
supported by georeferenced network data. Considerable data 
on individual customers and power distribution system are 
required in the estimation of costs associated with the 
interruption. The utility company has costs that are related to 
income, electric energy sales, capital investments in their 
electrical devices and the operation and maintenance tasks. 
The regulatory authority maximizes the energy benefits to the 
society by balancing the energy consumption prices according 
to established rate-case rules. The energy purchase price and 
financial loss into power supply interruption also affects the 
customers' activities [25]. Hence, the sum of costs perceived 
by these various agents of the energy market yields the total 
cost of the power interruption, 𝐶TOTAL, as in (10) - (14). 
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A feeder section comprises of several electrical components 

permitting the network reconfiguration by opening and closing 
emergency connectors, or sectionalizing switches, in the 
terminations connected with other feeder sections. In (10), the 
total cost caused by the interruption of one feeder section is 
given in two parts. The first part is the operation and 
maintenance cost, 𝐶O&𝑀, that depends on the route traveled by 

the field crew, ∆𝑑, where the distribution network topology, 
georeferenced position of sectionalizing switches, initial 
position of field crews and GIS routing application are 
employed as input information for solving the crew dispatch 
problem [26]. The second part is the sum of cost related to 
different market agents that are grouped in a set 𝜞 =
{𝑒𝑛𝑠, 𝑝𝑒𝑛, 𝑖𝑐} comprising, respectively, the billing loss of 
utility company, the penalty cost from regulatory authority 
rules, and the economic losses of different types of customers. 

These different costs, 𝐶𝐾, depend on the interruption time, 
∆𝑡, i.e. the time span including outage report time (wait time 
from the fault occurrence until the dispatch of field crews), 
maneuver time (interval involving the field crew travel, feeder 
inspection and manual switching to isolate the faulted feeder 
section and to restore the adjacent feeder sections) and repair 
time (required time to repair the damage equipment and to 
restore the energy supply service). Since fault management 
procedures change the state of energy customers, the 
interruption time is discretized by a pre-defined time step, 𝜕𝑡, 
yielding the set of time series, 𝜴. In (11), 𝑧𝑖,𝑗 is a binary 
variable that reproduces state changes of the jth customer 
during the interruption time where the logic value 1 indicates 
the energy supply interruption. The 𝜱 set contains all 
customers on the feeder and the effect of different market 
agents over the individual customer cost, 𝑐𝑖,𝑗

𝐾 , follows the 
formulation as given in (12) - (14). 

Additionally to operation and maintenance cost, the utility 
company also perceives the billing loss, i.e. the cost of energy 
that could be sold to customers during the interruption, given 
by the cost of energy not supplied, 𝑐𝑖,𝑗

ens, as (12) where 𝑐𝑗
𝑒 is 

electricity rate and 𝐿𝑗 is the installed power of the jth customer. 
The most typical customer types are grouped in 𝜣 =
{𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙, 𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙, 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙} while their 
consumption profiles are in 𝜯 = {𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ}. In this 
way, 𝐹𝑖,𝑚,𝑛

dem  is a tridimensional data array with load percentage 
demand hour-by-hour [24] and, consequently, 𝑤𝑗,𝑚,𝑛 is a two-
dimensional binary array for indicating the type and 
consumption profile of the jth customer. 

According to the rules established by regulatory authorities 
for compensating customers over long outages [27], utility 
companies could be penalized and customer compensated 
whenever the outage interval exceeds the established limit. In 
(13), the penalty cost, 𝑐𝑖,𝑗

pen, is determined using the 𝐻 function 
that has zero value while the product of 𝑖𝜕𝑡 is less than the 
maximum outage duration, ∆𝑡max. Otherwise, the billing loss 
of jth customer is multiplied by a factor of penalty. 

The most significant part of the total cost is the customer 
interruption cost that associates the economic losses of 
different customers during the power supply failures [28]. 
Wages paid to idle workers, loss of sales, overtime costs, 
damage to equipment, spoilage of perishables, cost of running 
back-up generators and cost of any special business 
procedures contribute to the determination of the customer 
interruption cost [29]. In particular, the endangered well-
being, spoiled food and damaged appliances may affect 
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residential customers. The impact of power interruption is 
popular and directly formulated using the customer damage 
function by expressing the customer interruption cost as a 
function of outage duration [30]. Equation (14) determines the 
customer interruption cost, 𝑐𝑖,𝑗

ic , for jth customer in the ith time 
step. The values of 𝑐𝑖,𝑚

CDF time series are interpolations from the 
table containing values of customer damage functions that are 
typically defined for each economic activity or customer type. 

C. Method for Defining the Risk Matrix  
The calculation of failure probability and interruption cost 

quantifies the likelihood and impact, respectively, and should 
be performed hour-by-hour for timely risk assessment using 
the proposed risk matrix. Hourly values of likelihood and 
impact are classified according to the categories determined 
by Jenks optimizer and mapped to rows and columns of the 
risk matrix whose elements determine risk levels. Hence, 
assigning the risk level for each element in the risk matrix is 
fundamental to the risk assessment effectiveness. This process 
can be updated annually using information from last year to 
update the risk matrix for current year. 

As demonstrated in Fig. 1, the risk is also quantified by 
multiplying 𝑝(𝑓|𝑿) times 𝐶TOTAL and classified in risk levels 
using the Jenks natural breaks algorithm. If quantified values 
of likelihood and impact from previous year are disposed into 
a dispersion chart, the result can be presented in form of the 
graphic where each data point is classified according to risk 
levels. Since likelihood and impact categories are limited and 
cover axes of dispersion chart, there is a limited number of 
discrete regions as, for example, the region that is limited by 
categories II and B. This region determines the value of an 
element into risk matrix because its rows and columns are 
mapped by likelihood and impact categories; however, some 
regions in the dispersion chart have data points with different 
classification, for example, data points in a particular region 
can be classified as both medium and high risk level. 
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The element, 𝑟𝑚,𝑛, of the risk matrix is then determined 

using the density method as is formulated in (15) where the 
value of i is equal to the risk level (𝐿, 𝑀 or 𝐻) with the 
maximum calculated density, 𝜌𝑖, in the 𝜫(𝒎, 𝒏) region that is 
limited by mth likelihood category and nth impact category. In 
other words, 𝑟𝑚,𝑛 = 𝐿 if the number of data points classified as 
low risk level, 𝑑𝑝𝑘|level=𝐿, is preponderant in the region 
𝜫(𝒎, 𝒏). In the region with identical values of calculated 
densities, the value of the element representing this region into 
risk matrix is equal to the highest risk level because higher 
risk levels are less frequent than lower risk levels. 

The determination of risk matrix elements completes the 
inference mechanism of the proposed online risk assessment 
for each feeder section of power distribution network. 
Although formulated models are very important in the 

quantification of likelihood and impact, the central issue in 
this work relates to process of how to classify these quantities, 
how to build the risk matrix and how to develop a DMS tool 
able to efficiently display the risk levels using a GIS 
application. Therefore, the following section comprises both 
the construction of risk matrix by determining classes’ 
boundaries and the verification of the developed GIS tool for 
risk assessment. 

IV. GIS VISUALIZATION BY RISK MATRIX 
The proposed methodology is evaluated under real world 

distribution feeder with data available in [31]. Ten 
sectionalizing switches limits nine feeder sections in the 
evaluated feeder. These feeder sections have multiple laterals 
and electrical loads and are also limited by sectionalizing 
switches that must operate during the reconfiguration 
procedure. In the calculation of failure probability, the 
learning information comes from external sources: two 
weather stations and one lightning detection network, where 
the historical databases comprise seven years, from 2009 to 
2015. Parameters of the vegetation growth model are adjusted 
by considering the tree pruning schedule equals to one year 
whereas the equipment degradation vulnerability model of 
different devices may have their parameters obtained using the 
method discussed in [23]. In terms of interruption cost, the 
input dataset can be found in [24]. Both calculations obtain 
quantified values of likelihood and impact for each feeder 
section. A general purpose programming language (C++) is 
used in the implementation of the proposed models that are 
integrated with a distribution network simulation platform for 
supporting the use georeferenced data [20].  

A. Building the Risk Matrix 
Fig. 1 illustrates a logic diagram with processes for building 

the risk matrix using last year’s collected data. The first 
process comprises the determination of quantified likelihood 
ranges by defining inferior and superior boundaries through 
Jenks optimization. The goodness of variance fit (GVF) is a 
quality index used by the Jenks algorithm as stopping criteria. 
The perfect fit, or “optimum data classification”, is achieved 
when 𝐺𝑉𝐹 =  1. In the classification process, the histogram 
was built using around five thousand values of failure 
probability. 

Fig. 3 shows the histogram of the distribution of failure 
probabilities where the frequency axis is rated using 
logarithmic scale of base ten. A histogram in linear scale is 
shown at the far-right corner, which helps to deduce the 
absence of a probability density function able to characterize 
the likelihood. There are failure probability values with zero 
frequency because the set of external dependences, X, has a 
finite number of features of interest and the occurrence 
probability for each feature of interest is calculated monthly. 
Despite this characteristic, the Jenks optimizer found the six 
likelihood categories and their range limits by a GVF index 
being equal to 0.98704. For example, the likelihood category 
III comprises failure probability values between 0.31 and 0.54. 
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TABLE III.  DETERMINED ELEMENTS OF THE RISK MATRIX. 

 IMPACT 
  A B C D E F 

L
IK

EL
IH

O
O

D
 I L L L L L L 

II L L L L L M 
III L L M M M H 
IV L M M M H H 
V M M M H H H 
VI M M M H H H 

 

The second process involves the determination of quantified 
impact categories by determining their boundaries. Fig. 4 
displays the histogram of the distribution of interruption cost 
values where frequency was obtained by taking into account a 
series of intervals each equal to $500. The distribution 
characteristic is shown by the histogram in linear scale helping 
to deduce that interruption cost values can be featured by a 
Weibull probability distribution. Although the economic 
activity and consumption profile are important factors in the 
cost calculation, the interruption duration, which also figures 
the Weibull probability density function, is the factor with the 
greatest influence over the interruption cost. 

Six impact categories were achieved by Jenks algorithm 
with GVF index equals to 0.96149. The first three impact 
categories have shorter ranges due to large frequencies in this 
region. Consequently, the impact category B has the shortest 
range, equals to $3500, whereas the category F comprise the 
longest range, from $20,450 to $31,670. 

Once the risk is quantified by multiplying failure 
probabilities times interruption costs, the third process deals 
with the determination of risk levels by defining their 
boundaries. Fig. 5 demonstrates the histogram of the 
distribution of quantified risk values using a series of intervals 
equal to $500. The linear scale-based histogram at far-end 
right corner reveals that risk distribution has the behavior of 
an exponential probability distribution, so the most adequate 
classification methodology should be performed by head/tail 
breaks classifier [32]. In this case, the Jenks optimizer can be 
used again because the quantified risk is grouped in few 
numbers of classes, i.e. in three risk levels, and the density 

method should still determine the preponderant characteristic 
for each region at dispersion chart what admits data points that 
are classified with less degree of accuracy. 

Three risk levels were achieved using the Jenks algorithm 
with GVF index equals to 0.83967. Although the quality index 
had been worse than GVF indices in quantified likelihood and 
impact classification, the achieved risk level ranges fit with 
heavy-tailed distribution. For instance, the head risk level, L, 
has range equals to $3,200 in contrast to the tail risk level, H, 
with range of $21,900. 

After the determination of class boundaries, the next 
process consists of the construction of risk matrix using the 
density method. Table III presents elements of the risk matrix 
where rows are likelihood categories and columns are impact 
categories. Now, the hourly risk assessment can be executed 
using previously determined categories and risk matrix. 

B. Study Case under Real Distribution Network 
Fig. 2 presents displays that the distribution operator will 

see at DMS supervisory running the GIS web application with 
risk matrix mapping. The developed GIS application performs 
likelihood and impact quantification and classification for 
each feeder section of power distribution network. Two 
achieved categories define one row and one column in the risk 
matrix whose intersection determines the risk level of the 
feeder section. 

According to Table III, each risk level is identified by a 
color, thus, the GIS application assigns for the graphical 
representation of the feeder section the color corresponding to 
the risk level. Furthermore, the addition of daily hours to set of 
spatial coordinates includes one more dimension into feeder 
section representation in GIS application. This extra 
dimension has the risk level information represented hour-by-
hour, which is well suited to perform online risk mitigation. 

 

Fig. 5. Graphical representation of the distribution of quantified risk values 
with risk level ranges. 

 

Fig. 4. Graphical representation of the distribution of interruption cost values 
with impact category ranges. 

 

Fig. 3. Graphical representation of the distribution of failure probability values 
with likelihood category ranges. 
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Fig. 6 shows a screen shot with the tridimensional graphical 
representation of the tested distribution network where 
different colors are hourly risk levels. The base of the graphic 
corresponds to daily early hours, from 00:00 to 06:00 of 
January, 14th of 2016, with low risk level in all feeder 
sections. After that, both weather condition and energy 
consumption profile are modified causing changes in risk level 
of feeder sections. For example, feeder section #1 presents 
very low risk level but, along the day, its risk level was 
classified as medium because of weather changes. At 20:00, 
the observed weather pattern was thunderstorm with medium 
wind speed given by 𝑿 = {0100001𝑥8𝑥9𝑥10} causing the 
feeder section #2 to change its risk level from medium to high 
risk. Although weather changes influence the risk level in 
feeder section #3, the main color is intense red representing 
the high risk level that is a consequence of economic activities 
from customers with large installed power. 

The other way of taking advantage of the developed GIS 
tools is by assigning the value attribution to risk levels, for 
instance, low level is equals to 0, medium is equals to 1 and 
high is 2. Thus, the different grades of the accumulated risk 
along the distribution network are visualized using color 

temperature scale in overlapped layers with different 
accumulated risk values. Fig 7 shows the accumulated risk 
values during January where the smaller accumulated risk 
values are the first layers in cold color while the larger values 
are the last layers in hot color. The feeder section #1 has one 
lower layer in cold color indicating the accumulated risk is 
small. On the other hand, the feeder section #2 had upper 
layers with hot color tones indicating its large accumulated 
risk, which is the consequence of customers' types connected 
in this section. 

The high risk level does not just depend on the failure 
probability but also on the impact intensity, as is established in 
Table III. When the failure probability quantization has large 
value and it is classified as Likely (VI), the risk level must be 
either medium (M) or high (H). In the comparison process, the 
existence of low (L) risk level at a failure event indicates 
hence a mismatching of the proposed methodology. Fig. 8 
shows that the proposed methodology presents a mismatching 
ratio around 20% whenever the cause of failure event is 
adverse weather, component failure or lightning. When the 
cause is vegetation contact, the ratio improves to 10%. 
Subsequently, the hours after one mismatching the correct risk 

 
Fig. 7. Partial screen of the developed GIS application with tridimensional representation of accumulate risk levels during a month. 

 

 
Fig. 6. Partial screen of the developed GIS application with tridimensional representation of risk levels hour-by-hour. 
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level are calculated and indicated by the proposed 
methodology. The bar chart of delayed hours demonstrates 
that the delay time does not overcomes five hours and in the 
most part of mismatching occurrences the correct risk level is 
indicated with one hour of delay. These results reveal the 
effectiveness of the proposed methodology for evaluating the 
operating condition of power distribution networks. 

V. CONCLUSION 
We have shown that the weather-based risk assessment can 

provide risk quantification through the correlation involving 
available weather data and historical management data of the 
power distribution system.  

Once the realization of this risk assessment step is 
implemented, one can then integrate it with the advanced 
distribution management system to offer risk mitigation. This 
tool facilitates the operators’ decisions since it employs 
spatiotemporal GIS based visualization of the resiliency 
improvement actions. 
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