Resiliency Assessment in Distribution Networks
Using GIS Based Predictive Risk Analytics

Jonatas Boas Leite, Member, IEEE, Jos¢ Roberto Sanches Mantovani, Member, IEEE, Tatjana Dokic,
Student Member, IEEE, Qin Yan, Student Member, IEEE, Po-Chen Chen, Student Member, IEEE, and
Mladen Kezunovic, Life Fellow, IEEE

Abstract— A new predictive risk-based framework is proposed
to increase power distribution network resiliency by improving
operator understanding of the energy interruption impacts. This
paper expresses the risk assessment as the correlation between
likelihood and impact. The likelihood is derived from the
combination of Naive Bayes learning and Jenks natural breaks
classifier. The analytics included in a GIS platform fuse together
a massive amount of data from outage recordings and weather
historical databases in just one semantic parameter known as
failure probability. The financial impact is determined by a time
series-based formulation that supports spatiotemporal data from
fault management events and customer interruption cost. Results
offer prediction of hourly risk levels and monthly accumulated
risk for each feeder section of a distribution network allowing for
timely risk mitigation.

Index Terms—Power distribution system, risk assessment,
Naive Bayes learning, failure probability, time series,
interruption cost, geographic information system (GIS).

I. INTRODUCTION

THE proposed predictive risk management framework leads
to pro-active risk management and effective ranking of
risk reduction measures [1]. The weather-based risk
assessment provides the spatiotemporal correlation between
weather data and historical management data of the power
distribution system. Historically, the risk assessment was
mainly studied in power transmission system, [2] and [3]. The
most recent literature on power distribution system has also
focused on risk studies as a central theme [4]-[10].

In [4], historic reliability data reflecting the variation of
service continuity indices is utilized to develop probability
distribution functions used to illustrate the potential financial
risk associated with assigned reward/penalty structure
integrated in a performance-based regulation plan for
distribution utilities. The histograms of indices, such as system
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average interruption frequency index (SAIFI) and duration
index (SAIDI), overlap a predefined function that reproduces
the reward/penalty regulation policy, predicting the future
risks. Instead of evaluating the financial risk, [5] introduces a
risk assessment approach that ensures the human safety in
power distribution network by determining the intensity of
fault current levels that are dangerous for people when
stepping on downed conductor and touching poles in a faulted
network. The risk analysis employs the Monte Carlo
simulation using assumptions of probability distribution
functions in the soil resistivity, human body resistance and
heart current. Another study presented in [6] analyzes the risk
from vaults in the underground power distribution system that
can provoke human injuries, monetary compensation, energy
unavailability and traffic disruption on streets.

More recent issues involving the penetration of renewable
energy resources into power distribution system are also being
investigated through the risk analysis approach [7]-[10]. In
[7], the correlation between day-ahead and real-time markets
is integrated in a reliability and price risk assessment using an
energy and pre-dispatch model. Going beyond the short-term
market operation, work in [8] investigates the risk-based
security of concentrated solar power for mid- and long-term
planning horizons. The impact indices are aimed at
minimizing steady-state voltage profile variation, assessing the
line overload security, and verifying the static and dynamic
voltage stability. The four severity continuous functions
determine the risk using chronological simulation technique
with clustered solar generation patterns for each yearly season.
Similarly, [9] assesses the impact of increasing the wind
power injection into medium-voltage networks. Investment
alternatives taking into account photovoltaic generation,
electric vehicles and other new technologies at low-voltage
network have been assessed by using the planning framework
which determines the risks based on availability, losses and
power quality [10].

We have proposed several innovative solutions: a)
integration of outage records, historical weather information
and fault management events in a risk-based GIS driven
proactive management tool; b) implementation of a risk model
based on Naive Bayes learning, and classifying the calculated
likelihood using Jenks natural breaks where the financial
impacts are modeled wusing the time series-based
spatiotemporal formulation, and c) operator visualization of
risk prediction and mitigation using GIS interface.



This paper is organized as follows. Section II presents the
risk assessment background by introducing a risk metric in a
form of risk matrix. Section III proposes the Jenks natural
breaks classification method for defining risk matrix
row/column classes. Subsequently, the calculation of failure
probability and interruption cost as well as the procedure that
obtain the risk matrix are demonstrated. In Section 1V,
explained concepts involving the proposed risk assessment
framework are utilized in the evaluation of a real world
distribution network. The conclusions are given in Section V
before the references at the end.

II. RISK ANALYSIS BACKGROUND

The proposed predictive risk analysis can offer anticipation
of problems that may, or may not have happened before, in
order to assist pro-active risk management strategies. The risk
analysis framework aims to minimize the energy interruption
impacts and to reduce human intervention by performing two
steps sequentially in pre-defined time span. The first one is the
risk assessment whereas the second one is the risk mitigation
through the real-time control technique. In this framework, the
risk assessment, the main of this work, is an important step in
quantifying each part of the analyzed problem by calculating
the likelihood and impact estimates. Equation (1) presents the
quantified risk expressed as expected value of loss, i.e.
consequences along time are given by the correlation between
the likelihood of event occurrence along time and consequent
impacts of each event [11].
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This correlation is typically obtained by a risk matrix where
the risk is ranked in levels, thus matrix elements should be
grouped in three levels: the high (H) level is considered
unacceptable risk; the medium (M) level is dealt as either
undesirable or as acceptable with review; and the low (L) level
is treated as acceptable without review. The number of rows
and columns of the risk matrix is defined by likelihood and
impact categories as demonstrated in Table 1.

III. CLASSIFICATION METHODOLOGY

Since levels and categories represent ranges of continuous
values, a clustering methodology is needed to classify the
estimated likelihood, impact and risk. The Jenks natural
breaks algorithm is a common method in GIS applications
able to divide a dataset into a predefined number of
homogeneous classes and was originally introduced as a

TABLE L. ROWS AND COLUMNS CATEGORIES OF THE RISK MATRIX.

Rows Columns
Categories Description Categories Description
I Extremely Unlikely A Insignificant
8 11 Highly Unlikely — B Minor
% 111 Doubtful 2 C Significant
5 v Very Unlikely E D Serious
é A% Unlikely - E Major
VI Likely F Catastrophic

method for "optimal data classification" because it minimizes
the variances within classes by maximizing the variance
between classes [12]. One-dimensional values, which are not
uniformly distributed, fits perfectly into Natural breaks
classification [13], consequently, the well-known k-means
clustering is its generalization for multivariate data [14].

The Algorithm 1 describes methodically all steps involved
in the procedure for obtaining the class boundaries from an
input dataset U using the Jenks optimization algorithm. At the
beginning, the class boundaries are defined by intervals with
the same size. Then, the algorithm adjusts the boundaries
systematically until the minimization of the sum of the
squared deviation from the classes i. e. until the maximization
of GVF, that varies into interval [0, 1], is achieved. In this
way, the algorithm achieve the class boundaries that produce
the maximal similarity to data points in a class.

The Jenks natural breaks optimization performs the central
role in the determination of boundaries for each class, i.e.
inferior and superior limits for each likelihood and impact
category as well as for each risk level. In Fig. 1, the input
dataset U into Jenks optimizer comes from calculations of
failure probability and interruption cost. The product of
probabilities and costs becomes one-dimensional risk dataset
permitting to use again the Jenks optimizer on risk level

Algorithm 1 Jenks Natural Breaks algorithm.

1:  Select the input dataset U to be classified and specify the number of
classes, NC.

2:  Define the classes’ boundaries: [INF;, SUPJtoj=1,2, ..
every interval has the same size.

3:  Calculate the sum of squared deviation of the dataset, SDu, using (2):

SDy :Z(u,- 7;)2, u; €U 2

4:  While the GV'F is lower than maximum value do
5:  Calculate the sum of squared deviation for each class, SD;

, using (3):
SD Z( iJ 77)2

6: Increase the interval [INF;, SUP;] from classes with lowest SD; by
decreasing the interval from classes with largest SD;.
7:  Calculate the goodness of variance fit, GV'F, using (4):

NC
GVF:lfzSDj/SDU “)

Jj=1
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End while
9:  Store the classes’ boundaries of input dataset, U.
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Fig. 1. Role of Jenks natural breaks optimization on risk assessment
framework.



classification. The illustrated process to determine class
boundaries can be a periodic procedure using, for instance,
data collection from last year.

A. Failure Probability Metric by Machine Learning

The proposed risk assessment framework employs the
failure probability metric to determine the likelihood of
something is malfunctioning in a distribution network. The
processing of large volume of data from diverse databases, i.e.
outage management system (OMS), lighting detection
network, GIS, weather stations, and asset management system
(AMS) database, [15] and [16], contributes to threats
characterization. Thus, the use of the big data analytics is
required where the machine learning technique demonstrates
great efficiency in the knowledge extraction. The Naive Bayes
is the supervised learning technique used to establish an
association of several features of interest into just one
quantitative parameter [17]. In power distribution system, the
failure probability metric uses a Naive Bayes model, as in (5)
and (6), by taking into account the external dependences that
are given by different types of threats as features of interest.
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where
p(f|X) Conditional probability of failure subject to X;
P(X|f) Estimate of the likelihood of X given f;
(o) Estimate of failure probability;
5 Estimate of the probability of observing x;
i conditioned to a failure event, f.

The two states of the failure feature, dom(f)={0,1}, leads
the definition of p(f =1| X) as the conditional probability of
failure occurrence subject to observe external dependences,
X ={x, |dom(x,) = dom(f)~i=1,.,D}, that are enumerated
in Table II. The probability of observing the vector X can be
compactly written as in (6) where p(x,=1|f)=6" and
p(x,=0| f)=1-6/ because of Naive Bayes conditional

independence assumption. Another benefit of this assumption
is the applying of maximum likelihood learning to the Naive
Bayes model.

numbertimes x, =1 for f
p(x; =1| )= e ™
number of data pointsin f
TABLE IL OBSERVED EXTERNAL DEPENDENCES IN THE BAYES MODEL.
Xi Feature of interest Xi Feature of interest
X1 Wind speed is low X Weather is rainy
X2 Wind speed is medium X7 Weather is thunderstorm
X3 Wind speed is high X3 Incidence of lightning
X4 Weather is good Xo Vegetation is over height
Xs Weather is misty X10 Degradation by ageing

In the proposed model, the obtaining of the monthly
likelihood to every features of interest, as in (7), determines
the knowledge extraction from the available databases.
Additionally, the prediction of the probability value in the
current year of analysis is achieved using a regression model
resulting of the ordinary least square (OLS) estimator, as
given by (8) and (9).
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where

2l Estimate of the probability of observing x;
conditioned to a failure event, £, in the y" year.

Since, the past years of observed probabilities are in the
matrix T =(1 ¢)", the prediction parameters comprise the

matrix B, =(8,, £.,)".
observed databases is achieved by calculating the prediction

The knowledge extraction from

parameters in B, . The knowledge extraction is a function of

data mining or knowledge discovery from data (KDD) that
sequentially groups several functions for dealing with massive
database difficulties, e.g. unnecessary information and
inconsistent data [18]. In this way, the cleaning, integration
and selection functions are performed before the knowledge
extraction function that processes the useful information.

The processing of large volume of data also requires the
integration of different sources of information. Fig. 2 shows
the information flow for characterizing feeder sections of
distribution networks in concordance with their failure
probability. The distribution network operator workstation
performs an important role by running the supervisory
application, [19] and [20], with the addition of objects for
regression and Bayes models.

Firstly, the estimative of probability values for each feature
of interest uses the eq. (8). The elements of B, are obtained

through the stored procedures in the historical database server.
Secondly, the calculation of failure probability to every feeder
sections is performed using eq. (5) and (6) where the vector of
current external dependences, or observed statuses of features
of interest, comes from external http servers for weather
forecasting and lightning monitoring and from vulnerability
models for vegetation and ageing.
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Fig. 2. Information flow involving the Naive Bayes probability estimation.




Many power flow interruptions that reduce the reliability
indices are often caused when tree branches touch the
distribution feeder conductors. The vegetation location
detection is performed using remote sensing technology in
association with GIS application that identifies the distribution
feeder segments vulnerable to tree size. The prediction of tree
heights uses a vegetation growth model as a function of time
or age, [21] and [22], indicating whether computed tree height
is over allowable height. Other vulnerability model takes into
account electrical, mechanical and thermal stresses to
determine the equipment degradation [23]. The ageing model
makes use of the repair cycle for correlating equipment
operating state and power supply interruption information.
Thus, electrical equipment may have a high level of
degradation whenever it reaches at least 63% of possibility to
fail.

B. Time Series-based Interruption Cost

In the proposed risk assessment approach the impact
quantification is achieved by calculating the energy supply
interruption cost [24]. The support of time varying energy
consumption profiles is guaranteed by the time series-based
interruption cost formulation as well as the identification of
event locations involved in the outage management is
supported by georeferenced network data. Considerable data
on individual customers and power distribution system are
required in the estimation of costs associated with the
interruption. The utility company has costs that are related to
income, electric energy sales, capital investments in their
electrical devices and the operation and maintenance tasks.
The regulatory authority maximizes the energy benefits to the
society by balancing the energy consumption prices according
to established rate-case rules. The energy purchase price and
financial loss into power supply interruption also affects the
customers' activities [25]. Hence, the sum of costs perceived
by these various agents of the energy market yields the total
cost of the power interruption, CTOTAL as in (10) - (14).
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A feeder section comprises of several electrical components
permitting the network reconfiguration by opening and closing
emergency connectors, or sectionalizing switches, in the
terminations connected with other feeder sections. In (10), the
total cost caused by the interruption of one feeder section is
given in two parts. The first part is the operation and
maintenance cost, C°&" that depends on the route traveled by

the field crew, Ad, where the distribution network topology,
georeferenced position of sectionalizing switches, initial
position of field crews and GIS routing application are
employed as input information for solving the crew dispatch
problem [26]. The second part is the sum of cost related to
different market agents that are grouped in a set I'=
{ens,pen,ic} comprising, respectively, the billing loss of
utility company, the penalty cost from regulatory authority
rules, and the economic losses of different types of customers.

These different costs, CX, depend on the interruption time,
At, i.e. the time span including outage report time (wait time
from the fault occurrence until the dispatch of field crews),
maneuver time (interval involving the field crew travel, feeder
inspection and manual switching to isolate the faulted feeder
section and to restore the adjacent feeder sections) and repair
time (required time to repair the damage equipment and to
restore the energy supply service). Since fault management
procedures change the state of energy customers, the
interruption time is discretized by a pre-defined time step, dt,
yielding the set of time series, 2. In (11), z;; is a binary
variable that reproduces state changes of the j customer
during the interruption time where the logic value 1 indicates
the energy supply interruption. The @ set contains all
customers on the feeder and the effect of different market
agents over the individual customer cost, ClK], follows the
formulation as given in (12) - (14).

Additionally to operation and maintenance cost, the utility
company also perceives the billing loss, i.e. the cost of energy
that could be sold to customers during the interruption, given
by the cost of energy not supplied, ¢{}°, as (12) where ¢/ is
electricity rate and L; is the installed power of the j” customer.
The most typical customer types are grouped in O =
{residential, commercial, industrial} while their
consumption profiles are in T = {low, medium, high}. In this
way, Fld,fl“,‘l is a tridimensional data array with load percentage
demand hour-by-hour [24] and, consequently, w; ,, , is a two-
dimensional binary array for indicating the type and
consumption profile of the j# customer.

According to the rules established by regulatory authorities
for compensating customers over long outages [27], utility
companies could be penalized and customer compensated
whenever the outage interval exceeds the established limit. In
(13), the penalty cost, cl ] , is determined using the H function
that has zero value while the product of idt is less than the
maximum outage duration, At™2X, Otherwise, the billing loss
of j customer is multiplied by a factor of penalty.

The most significant part of the total cost is the customer
interruption cost that associates the economic losses of
different customers during the power supply failures [28].
Wages paid to idle workers, loss of sales, overtime costs,
damage to equipment, spoilage of perishables, cost of running
back-up generators and cost of any special business
procedures contribute to the determination of the customer
interruption cost [29]. In particular, the endangered well-
being, spoiled food and damaged appliances may affect



residential customers. The impact of power interruption is
popular and directly formulated using the customer damage
function by expressing the customer interruption cost as a
function of outage duration [30]. Equation (14) determines the

customer interruption cost, ¢}, for j customer in the i time

Lj>
step. The values of cf,?f time series are interpolations from the

table containing values of customer damage functions that are
typically defined for each economic activity or customer type.

C. Method for Defining the Risk Matrix

The calculation of failure probability and interruption cost
quantifies the likelihood and impact, respectively, and should
be performed hour-by-hour for timely risk assessment using
the proposed risk matrix. Hourly values of likelihood and
impact are classified according to the categories determined
by Jenks optimizer and mapped to rows and columns of the
risk matrix whose elements determine risk levels. Hence,
assigning the risk level for each element in the risk matrix is
fundamental to the risk assessment effectiveness. This process
can be updated annually using information from last year to
update the risk matrix for current year.

As demonstrated in Fig. 1, the risk is also quantified by
multiplying p(f|X) times CTOTAL and classified in risk levels
using the Jenks natural breaks algorithm. If quantified values
of likelihood and impact from previous year are disposed into
a dispersion chart, the result can be presented in form of the
graphic where each data point is classified according to risk
levels. Since likelihood and impact categories are limited and
cover axes of dispersion chart, there is a limited number of
discrete regions as, for example, the region that is limited by
categories II and B. This region determines the value of an
element into risk matrix because its rows and columns are
mapped by likelihood and impact categories; however, some
regions in the dispersion chart have data points with different
classification, for example, data points in a particular region
can be classified as both medium and high risk level.
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The element, 7;,,, of the risk matrix is then determined
using the density method as is formulated in (15) where the
value of i is equal to the risk level (L, M or H) with the
maximum calculated density, p;, in the IT(m, n) region that is
limited by m" likelihood category and n impact category. In
other words, 73, , = L if the number of data points classified as
low risk level, dpylievel=z, iS preponderant in the region
II(m,n). In the region with identical values of calculated
densities, the value of the element representing this region into
risk matrix is equal to the highest risk level because higher
risk levels are less frequent than lower risk levels.

The determination of risk matrix elements completes the
inference mechanism of the proposed online risk assessment
for each feeder section of power distribution network.
Although formulated models are very important in the

quantification of likelihood and impact, the central issue in
this work relates to process of how to classify these quantities,
how to build the risk matrix and how to develop a DMS tool
able to efficiently display the risk levels using a GIS
application. Therefore, the following section comprises both
the construction of risk matrix by determining -classes’
boundaries and the verification of the developed GIS tool for
risk assessment.

IV. GIS VISUALIZATION BY RISK MATRIX

The proposed methodology is evaluated under real world
distribution feeder with data available in [31]. Ten
sectionalizing switches limits nine feeder sections in the
evaluated feeder. These feeder sections have multiple laterals
and electrical loads and are also limited by sectionalizing
switches that must operate during the reconfiguration
procedure. In the calculation of failure probability, the
learning information comes from external sources: two
weather stations and one lightning detection network, where
the historical databases comprise seven years, from 2009 to
2015. Parameters of the vegetation growth model are adjusted
by considering the tree pruning schedule equals to one year
whereas the equipment degradation vulnerability model of
different devices may have their parameters obtained using the
method discussed in [23]. In terms of interruption cost, the
input dataset can be found in [24]. Both calculations obtain
quantified values of likelihood and impact for each feeder
section. A general purpose programming language (C++) is
used in the implementation of the proposed models that are
integrated with a distribution network simulation platform for
supporting the use georeferenced data [20].

A. Building the Risk Matrix

Fig. 1 illustrates a logic diagram with processes for building
the risk matrix using last year’s collected data. The first
process comprises the determination of quantified likelihood
ranges by defining inferior and superior boundaries through
Jenks optimization. The goodness of variance fit (GVF) is a
quality index used by the Jenks algorithm as stopping criteria.
The perfect fit, or “optimum data classification”, is achieved
when GVF = 1. In the classification process, the histogram
was built using around five thousand values of failure
probability.

Fig. 3 shows the histogram of the distribution of failure
probabilities where the frequency axis is rated using
logarithmic scale of base ten. A histogram in linear scale is
shown at the far-right corner, which helps to deduce the
absence of a probability density function able to characterize
the likelihood. There are failure probability values with zero
frequency because the set of external dependences, X, has a
finite number of features of interest and the occurrence
probability for each feature of interest is calculated monthly.
Despite this characteristic, the Jenks optimizer found the six
likelihood categories and their range limits by a GVF index
being equal to 0.98704. For example, the likelihood category
111 comprises failure probability values between 0.31 and 0.54.
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Fig. 3. Graphical representation of the distribution of failure probability values
with likelihood category ranges.

The second process involves the determination of quantified
impact categories by determining their boundaries. Fig. 4
displays the histogram of the distribution of interruption cost
values where frequency was obtained by taking into account a
series of intervals each equal to $500. The distribution
characteristic is shown by the histogram in linear scale helping
to deduce that interruption cost values can be featured by a
Weibull probability distribution. Although the economic
activity and consumption profile are important factors in the
cost calculation, the interruption duration, which also figures
the Weibull probability density function, is the factor with the
greatest influence over the interruption cost.

Six impact categories were achieved by Jenks algorithm
with GVF index equals to 0.96149. The first three impact
categories have shorter ranges due to large frequencies in this
region. Consequently, the impact category B has the shortest
range, equals to $3500, whereas the category F comprise the
longest range, from $20,450 to $31,670.

Once the risk is quantified by multiplying failure
probabilities times interruption costs, the third process deals
with the determination of risk levels by defining their
boundaries. Fig. 5 demonstrates the histogram of the
distribution of quantified risk values using a series of intervals
equal to $500. The linear scale-based histogram at far-end
right corner reveals that risk distribution has the behavior of
an exponential probability distribution, so the most adequate
classification methodology should be performed by head/tail
breaks classifier [32]. In this case, the Jenks optimizer can be
used again because the quantified risk is grouped in few
numbers of classes, i.e. in three risk levels, and the density
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Fig. 4. Graphical representation of the distribution of interruption cost values
with impact category ranges.
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Fig. 5. Graphical representation of the distribution of quantified risk values
with risk level ranges.

method should still determine the preponderant characteristic
for each region at dispersion chart what admits data points that
are classified with less degree of accuracy.

Three risk levels were achieved using the Jenks algorithm
with GVF index equals to 0.83967. Although the quality index
had been worse than GVF indices in quantified likelihood and
impact classification, the achieved risk level ranges fit with
heavy-tailed distribution. For instance, the head risk level, L,
has range equals to $3,200 in contrast to the tail risk level, H,
with range of $21,900.

After the determination of class boundaries, the next
process consists of the construction of risk matrix using the
density method. Table III presents elements of the risk matrix
where rows are likelihood categories and columns are impact
categories. Now, the hourly risk assessment can be executed
using previously determined categories and risk matrix.

B. Study Case under Real Distribution Network

Fig. 2 presents displays that the distribution operator will
see at DMS supervisory running the GIS web application with
risk matrix mapping. The developed GIS application performs
likelihood and impact quantification and classification for
each feeder section of power distribution network. Two
achieved categories define one row and one column in the risk
matrix whose intersection determines the risk level of the
feeder section.

According to Table III, each risk level is identified by a
color, thus, the GIS application assigns for the graphical
representation of the feeder section the color corresponding to
the risk level. Furthermore, the addition of daily hours to set of
spatial coordinates includes one more dimension into feeder
section representation in GIS application. This extra
dimension has the risk level information represented hour-by-
hour, which is well suited to perform online risk mitigation.

TABLE III. DETERMINED ELEMENTS OF THE RISK MATRIX.
IMPACT
A B C
Al L] L L L
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Fig. 6. Partial screen of the developed GIS application with tridimensional representation of risk levels hour-by-hour.

Fig. 6 shows a screen shot with the tridimensional graphical
representation of the tested distribution network where
different colors are hourly risk levels. The base of the graphic
corresponds to daily early hours, from 00:00 to 06:00 of
January, 14th of 2016, with low risk level in all feeder
sections. After that, both weather condition and energy
consumption profile are modified causing changes in risk level
of feeder sections. For example, feeder section #1 presents
very low risk level but, along the day, its risk level was
classified as medium because of weather changes. At 20:00,
the observed weather pattern was thunderstorm with medium
wind speed given by X = {0100001xgx9X;,} causing the
feeder section #2 to change its risk level from medium to high
risk. Although weather changes influence the risk level in
feeder section #3, the main color is intense red representing
the high risk level that is a consequence of economic activities
from customers with large installed power.

The other way of taking advantage of the developed GIS
tools is by assigning the value attribution to risk levels, for
instance, low level is equals to 0, medium is equals to 1 and
high is 2. Thus, the different grades of the accumulated risk
along the distribution network are visualized using color

Fig. 7. Partial screen of the developed GIS application with tridimensional representation of accumulate risk levels during a month.

temperature scale in overlapped layers with different
accumulated risk values. Fig 7 shows the accumulated risk
values during January where the smaller accumulated risk
values are the first layers in cold color while the larger values
are the last layers in hot color. The feeder section #1 has one
lower layer in cold color indicating the accumulated risk is
small. On the other hand, the feeder section #2 had upper
layers with hot color tones indicating its large accumulated
risk, which is the consequence of customers' types connected
in this section.

The high risk level does not just depend on the failure
probability but also on the impact intensity, as is established in
Table III. When the failure probability quantization has large
value and it is classified as Likely (VI), the risk level must be
either medium (M) or high (H). In the comparison process, the
existence of low (L) risk level at a failure event indicates
hence a mismatching of the proposed methodology. Fig. 8
shows that the proposed methodology presents a mismatching
ratio around 20% whenever the cause of failure event is
adverse weather, component failure or lightning. When the
cause is vegetation contact, the ratio improves to 10%.
Subsequently, the hours after one mismatching the correct risk
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Fig. 8. Graphical representation of the comparison process with the
percentages of risk levels at failure events.

level are calculated and indicated by the proposed
methodology. The bar chart of delayed hours demonstrates
that the delay time does not overcomes five hours and in the
most part of mismatching occurrences the correct risk level is
indicated with one hour of delay. These results reveal the
effectiveness of the proposed methodology for evaluating the
operating condition of power distribution networks.

V. CONCLUSION

We have shown that the weather-based risk assessment can
provide risk quantification through the correlation involving
available weather data and historical management data of the
power distribution system.

Once the realization of this risk assessment step is
implemented, one can then integrate it with the advanced
distribution management system to offer risk mitigation. This
tool facilitates the operators’ decisions since it employs
spatiotemporal GIS based visualization of the resiliency
improvement actions.
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