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SUMMARY

Installation of line surge arresters on transmission towers can significantly improve the line
lightning performance. However, it is not always economically beneficial to install the line
surge arresters on every tower in the network. This paper proposes the method for optimal
placement of line surge arresters that minimizes the overall risk of lightning related outages and
disturbances, while staying within the required budgetary limits.

A variety of data sources was used: utility asset management, geographical information system,
lightning detection network, historical weather and weather forecasts, vegetation and soil
properties. The proposed solution is focused on predicting the risk of transmission line
insulators experiencing an insulation breakdown due to the accumulated deterioration over time
and an instant impact of a given lightning strike. The linear regression prediction-based
algorithm observes the impact of various historical events on each individual component. In
addition, the spatial distribution of various impacts is used to enhance the predictive
performance of the algorithm. The developed method is fully automated, making it a unique
large scale automated decision-making risk model for real-time management of the
transmission line lightning protection performance.

Based on the observation of risk tracking and prediction, the zones with highest probability of
lightning caused outages are identified. Then the optimization algorithm is applied to determine
the best placement strategy for the limited number of line surge arresters that would provide the
highest reduction in the overall risk for the network. Economic factors are taken into account
in order to develop installation schedule that would enable economically efficient management
of line lightning protection performance for utilities.
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INTRODUCTION

Increase in frequency of severe weather conditions and aging infrastructure are causing the rise
in the risk of transmission network insulator failures. Insulator failures amount for more than
70% of total network outages and contribute up to 50% of the line maintenance cost [1]. In
addition, due to the climate change, the amount of lightning caused outages is increasing every
year. Instalment of the line surge arresters (LSA) presents a valuable solution for better
lightning protection. Installing LSA on every tower is not economically efficient. Instead,
comprehensive analysis should be performed to establish the optimal number and location of
LSAs.

In [2], an unconstrained nonlinear optimization algorithm has been used in order to minimize
global risk of the network exposed to lightning impact. The study in [3] uses multi-objective
optimization method based on genetic algorithm to minimize both lightning and switching
flashover rates. Genetic algorithms were also used in [4] to determine optimal number and
location of LSAs in a distribution network. All of the methods are minimizing a statistically
calculated risk function, considering insulator strength as defined by the insulator manufacturer.

We model the network and its surrounding impacts using multi-modal weighted graph that uses
data coming from various sources. The developed risk model takes into account the
accumulated impact of past lightning disturbances in order to produce more accurate estimate
of insulator strength, and predicts insulator performances for the future lightning caused
overvoltages using Gaussian Conditional Random Fields (GCRF) [5]. Linear programming
(LP) is used to find the LSA placement for which the global risk function is minimal.

BACKGROUND

The insulation coordination study defines the insulator strength with the Basic Lightning
Impulse Insulation Level (BIL). BIL is a voltage at which insulator has 10% probability of a
flashover [6]. Current practice is to determine BIL by performing a set of standard tests for the
standard atmospheric conditions. These tests are done by the manufacturer prior to the insulator
installation. Because these tests are performed before any kind of field environmental exposure,
they do not reflect the actual strength of the insulator after prolonged exposure. In addition, the
BIL value is only true for the standard atmospheric conditions, and need to be recalculated
based on the weather conditions at the time of the lightning strike.

There are two types of insulator failures, electrical and mechanical [7]. Electrical failures
manifest as increased leakage current through the insulator. They are mostly caused by a high
number of experienced flashovers. Mechanical failures are physical deformities to the insulator
material. They are mostly caused by manufacturing defects or severe material erosion. Due to
exposure to various environmental impacts the performance of insulators deteriorates over time.
It is not always easy to observe the changes in the insulator lightning performances. Overhead
line insulators are exposed to a variety of environmental impacts [8]: lightning strikes,
temperature and pressure variations, ultraviolet radiation and ozone, wind impact, rain,
humidity, hail, snow, fog, and pollution. In addition, vegetation presence around the line lowers
the probability of flashover in the network, a phenomenon called “shielding by trees” [9]. In
addition, lightning strikes are more likely to affect locations with higher altitude [10]. Thus, the
elevation data is of importance. The tower grounding resistance also has an impact on
overvoltage propagation on the line. This resistance is dependent on the type of soil at the tower
location.



To improve the transmission line lightning performance, the line surge arresters (LSA) are
installed in parallel with the insulator strings. The LSA limits the overvoltages on the line by
discharging or bypassing the surge current [11]. There are two types of LSAs: 1) Externally
Gapped Line Arrester that has an external series of air gaps, and 2) Non Gapped Line Arrester
that has no air gaps, similar to substation surge arresters.

The insulator flashover voltage determines the appropriate selection of LSA characteristics,
since the purpose of LSAs is to limit the voltage bellow insulator withstand limit. The locations
where LSA are installed are of great importance. More about observations and experiences of
LSAs installation in the field can be found in [12-14]. The study in [12] demonstrates that the
LSAs do not show any line lightning performance improvement if they are installed at the
wrong towers. Thus, in this paper we would like to introduce a solution for optimal placement
of LSAs that could help utilities make smart planning decisions for improvement of line
lightning performance.

METHODOLOGY

The proposed method in Fig. 1 combines the probability of a lightning strike as Lightning
Hazard, and probability of the insulator breakdown as Network Vulnerability, to construct the
lightning impact Component Risk. Then the Global Risk is calculated by averaging the risk
over the entire network. The optimization algorithm is minimizing the Global Risk value while
considering the Economic Limits and Tower Limits as constrains. The different scenarios of
LSA locations are iterated until the optimal placement is found.

Data Preprocessing

Comprehensive geospatial analysis taking into . .
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Table I. List of non-weather parameters

Historical | Insulator Physical In-field Measurements Other
Network Characteristics Environmental
Data Parameters

Outage Surge Impedances | Leakage Current | Corona Discharge | Vegetation Index
Reports of Towers and Magnitude Detection (presence and
Ground Wires canopy height)
Maintenance | Footing Resistance | Flashover Voltage | Infrared Reflection Elevation
Orders Thermography
Replacement | Component BIL Electric Field Visual Inspection Soil
Orders Distribution Reports
Table II. Weather Data Sources and Characteristics
Source Data Temporal | Spatial Temporal Spatial Measurements
Type Coverage | Coverage | Resolution | Resolution
National | Lightning 1989- USA Instant Median Date, Time,
Lightning Data Present Location Latitude,
Detection Accuracy Longitude, Peak
Network 200-500 m amplitude,
[16] Polarity, Type of
the event: C-C or
C-G
Automated Land- 2000- USA 1 min 900 Temperature;
Surface Based Present stations Humidity;
Observing | Stations Pressure;
System Data Precipitation;
(ASOS)
[17]
National Weather | 7 days into USA 3 hours 5 km Temperature,
Digital Forecast | the future Relative
Forecast Data Humidity,
Database Precipitation,
(NDFD) Prob. Dry
[18] Lightning,
Probability of
Severe
Thunderstorms

Correlation of lightning, weather, and outage data:

Correlation of datasets is presented in Fig. 2. The weather parameters (temperature,
precipitation, humidity, and pressure) are extracted from the ASOS [17], and geocoded into the
network area as the raster with the 1 km resolution. The weather forecast data obtained from
the NDFD [18] is already a polygon shapefile.

To correlate the lightning data obtained from NLDN [16], first all lightning strikes that are
outside of the 1 km buffer around the transmission lines and towers are removed. Then the
lightning strikes are spatially and temporally joined with the historical outages. For each
historical outage the lightning strike closest in time and space is selected. The spatial limit is
set to 1 km around the outage point, and temporal limit for (-2) min in reference to the reported
outage start time. In case of multiple lightning strikes satisfying the criterion, the closest one is

selected.
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Fig. 2 Spatiotemporal correlation of data

BIL under nonstandard atmospheric conditions: For each lightning strike, the lightning
protection parameters are calculated for the existing atmospheric conditions obtained from the
historical weather data. Additional weather parameters (temperature, humidity, pressure,
precipitation) are needed to calculate BIL under nonstandard atmospheric conditions [5]. First,
the relative air density and humidity correction factor are calculated as (1) and (2) respectively:

PT
6=—=> (1)
P,T
H_ =1+0.009 -{%—11} )

where Ts and Ps are standard temperature and pressure respectively; 7 and P are measured
temperature and pressure respectively. Humidity correction factor is equal to 1 for rainy
conditions and for dry conditions is calculated using (2). Then the BIL under nonstandard
atmospheric conditions is calculated as BILa:

BIL, =6 H.BIL )
where BILs is the standard BIL.
Risk

The Risk Framework [19] is capable of predicting risk in real time, as well as estimating the
overall risk over a certain period of time. The Gaussian Conditional Random Fields (GCRF)
prediction algorithm [20] takes advantage of spatial and temporal similarities between network
nodes (transmission towers), and historical events (lightning caused outages). Impact of every
historical outage is modelled by the change of line lightning protection performance, creating
a dynamic real-time estimate of the insulator strength [21].

The risk is defined as:
Risk = Hazard x Vulnerability 4)



The weather impact on the network is modelled as a Hazard Map. In this map every location in
the network area has an associated hazard value that represents the probability of a lightning
strike at that location for a certain moment in time. The Hazard maps are generated
automatically in real time, based on the most current weather forecast.

Network lightning performances are modelled with a Vulnerability Map. This vulnerability
map represents the conditional probability of an insulator total failure in case of a lightning
strike on its tower. Traditionally, insulator strength is considered to be constant during the
insulator lifetime, and equal to the Basic Lightning Impulse Insulation Level — BIL determined
in advance by the manufacturer through testing [5]. In our approach, the BIL value changes in
time and space to take into account accumulated impact of all past lightning discharges in the
particular network locations, as presented in Fig. 3.
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Fig. 3 Dynamic BIL Change
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The vulnerability map is developed using predictive linear regression model that uses a variety
of historical data including: historical outage, weather, lightning detection, vegetation, and
assets. The data are correlated in time and space. The prediction model is based on the GCRF
[20]:

P(y|x)= %exp(—zzak = R(x))* =22 Be) S (v, = y,)?) (5)

i=1 k=l i,j 1=l

The vector x represents the input data containing lightning parameters (peak current, polarity),
weather parameters (temperature, precipitation, humidity, pressure), and insulator parameters
(BIL). The output y is the predicted value of BIL after the impact of insulator backflashover
has been taken into account. The second sum in eq. (5) represents the node inter-dependencies,
where similarity between neighboring towers is expressed in terms of electrical impedance
between them.

To solve eq. (5), the parameters o and 3 need to be estimated. This can be done by maximizing
the conditional log-likelihood based on the collected training data from past outages:

L(a,,B):Zlog P(y|x) (6)



(a,B) =arg max(L(a, B)) ™

op
Optimal Placement of LSAs

The goal is to ensure that overall risk of the network is minimal while the economic impact of
the solution stays bellow the acceptable budget limit. The global state of risk function is
constructed as an arithmetic mean of the individual state of risk for each network component,
and summarized over time:

R=—>R, (8)

Where R is a total risk for the entire network, N is the total number of towers in the network,
and R, is the individual risk for tower n. The optimization algorithm maximizes the global state
of risk reduction by setting LSA positions as independent variables:

N
mx{R=iZARn-Fn}
Nn:I

B 0, noLSA
11, LSA installed

n

where AR, is a risk reduction on a tower »n after installation of LSA. The available budget for
the LSA installation is considered to be limited, adding an economic constraint:

N
Y F,-C,<TC (10)

n=1

where C, is a cost of installation of LSA on tower n, and 7C is a total budget dedicated to the
LSA installations.

RESULTS

The method has been simulated and tested on section of the network containing 36 substations,
65 transmission lines, with a total of 1590 towers. The historical outage and lightning data for
the period of 5 years were observed.

The Fig. 4 shows an example of a Hazard Map generated for the time of the outage. The
Vulnerability Map segment in the area of the outage is presented in Fig. 5. The Risk Map,
shown in Fig. 6, is generated by combining the two maps, Hazard in Fig. 4 and Vulnerability
in Fig. 5. For each moment in time, it is possible to generate a unique risk map. By averaging
the set of risk maps for a period of time it is possible to develop a final risk map on a seasonal
or yearly basis.

Based on the overall risk map created for a period of one year, and associated economic impact,
the recommended number of line surge arresters (LSAs) is calculated to be 264, and optimal
locations of the LSAs in terms of risk reduction are presented in Fig. 7. The presented
configuration of LSAs is expected to reduce overall risk by 72%. This kind of result could help
utilities make decision about installation of LSAs in an economically efficient way.
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CONCLUSIONS

This paper presents a decision-making method for optimal placement of line surge arresters in
the transmission network based on the predictive risk analysis. The outcomes of this research

are:

Lightning data obtained from the NLDN is correlated in time and space with variety of
network and weather data.

The study of insulator lightning strength takes into account the weather conditions at
time of the outage, which reflects cumulative strength deterioration over time.

The real-time risk framework that enables observation of unfolding weather conditions
through the Hazard, and their impact of network outages through the Vulnerability was
developed.

The predictive risk method based on Gaussian Conditional Random Fields is used to
estimate the network vulnerability to lightning caused outages.

The predicted risk maps for the transmission network are used to determine the optimal
location for line sure arresters that would provide the maximum decrease in risk level
while maintaining the budget and physical limits.
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