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SUMMARY 

Installation of line surge arresters on transmission towers can significantly improve the line 
lightning performance. However, it is not always economically beneficial to install the line 
surge arresters on every tower in the network. This paper proposes the method for optimal 
placement of line surge arresters that minimizes the overall risk of lightning related outages and 
disturbances, while staying within the required budgetary limits.  

A variety of data sources was used: utility asset management, geographical information system, 
lightning detection network, historical weather and weather forecasts, vegetation and soil 
properties. The proposed solution is focused on predicting the risk of transmission line 
insulators experiencing an insulation breakdown due to the accumulated deterioration over time 
and an instant impact of a given lightning strike. The linear regression prediction-based 
algorithm observes the impact of various historical events on each individual component. In 
addition, the spatial distribution of various impacts is used to enhance the predictive 
performance of the algorithm. The developed method is fully automated, making it a unique 
large scale automated decision-making risk model for real-time management of the 
transmission line lightning protection performance.  

Based on the observation of risk tracking and prediction, the zones with highest probability of 
lightning caused outages are identified. Then the optimization algorithm is applied to determine 
the best placement strategy for the limited number of line surge arresters that would provide the 
highest reduction in the overall risk for the network. Economic factors are taken into account 
in order to develop installation schedule that would enable economically efficient management 
of line lightning protection performance for utilities.  
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INTRODUCTION 
 
Increase in frequency of severe weather conditions and aging infrastructure are causing the rise 
in the risk of transmission network insulator failures. Insulator failures amount for more than 
70% of total network outages and contribute up to 50% of the line maintenance cost [1]. In 
addition, due to the climate change, the amount of lightning caused outages is increasing every 
year. Instalment of the line surge arresters (LSA) presents a valuable solution for better 
lightning protection. Installing LSA on every tower is not economically efficient. Instead, 
comprehensive analysis should be performed to establish the optimal number and location of 
LSAs. 
 
In [2], an unconstrained nonlinear optimization algorithm has been used in order to minimize 
global risk of the network exposed to lightning impact. The study in [3] uses multi-objective 
optimization method based on genetic algorithm to minimize both lightning and switching 
flashover rates. Genetic algorithms were also used in [4] to determine optimal number and 
location of LSAs in a distribution network. All of the methods are minimizing a statistically 
calculated risk function, considering insulator strength as defined by the insulator manufacturer.  
 
We model the network and its surrounding impacts using multi-modal weighted graph that uses 
data coming from various sources. The developed risk model takes into account the 
accumulated impact of past lightning disturbances in order to produce more accurate estimate 
of insulator strength, and predicts insulator performances for the future lightning caused 
overvoltages using Gaussian Conditional Random Fields (GCRF) [5]. Linear programming 
(LP) is used to find the LSA placement for which the global risk function is minimal. 
 
BACKGROUND 
 
The insulation coordination study defines the insulator strength with the Basic Lightning 
Impulse Insulation Level (BIL). BIL is a voltage at which insulator has 10% probability of a 
flashover [6]. Current practice is to determine BIL by performing a set of standard tests for the 
standard atmospheric conditions. These tests are done by the manufacturer prior to the insulator 
installation. Because these tests are performed before any kind of field environmental exposure, 
they do not reflect the actual strength of the insulator after prolonged exposure. In addition, the 
BIL value is only true for the standard atmospheric conditions, and need to be recalculated 
based on the weather conditions at the time of the lightning strike.  
 
There are two types of insulator failures, electrical and mechanical [7]. Electrical failures 
manifest as increased leakage current through the insulator. They are mostly caused by a high 
number of experienced flashovers. Mechanical failures are physical deformities to the insulator 
material. They are mostly caused by manufacturing defects or severe material erosion. Due to 
exposure to various environmental impacts the performance of insulators deteriorates over time. 
It is not always easy to observe the changes in the insulator lightning performances. Overhead 
line insulators are exposed to a variety of environmental impacts [8]: lightning strikes, 
temperature and pressure variations, ultraviolet radiation and ozone, wind impact, rain, 
humidity, hail, snow, fog, and pollution. In addition, vegetation presence around the line lowers 
the probability of flashover in the network, a phenomenon called “shielding by trees” [9]. In 
addition, lightning strikes are more likely to affect locations with higher altitude [10]. Thus, the 
elevation data is of importance. The tower grounding resistance also has an impact on 
overvoltage propagation on the line. This resistance is dependent on the type of soil at the tower 
location. 



  3 
 

 
To improve the transmission line lightning performance, the line surge arresters (LSA) are 
installed in parallel with the insulator strings. The LSA limits the overvoltages on the line by 
discharging or bypassing the surge current [11]. There are two types of LSAs: 1) Externally 
Gapped Line Arrester that has an external series of air gaps, and 2) Non Gapped Line Arrester 
that has no air gaps, similar to substation surge arresters.  
 
The insulator flashover voltage determines the appropriate selection of LSA characteristics, 
since the purpose of LSAs is to limit the voltage bellow insulator withstand limit. The locations 
where LSA are installed are of great importance. More about observations and experiences of 
LSAs installation in the field can be found in [12-14]. The study in [12] demonstrates that the 
LSAs do not show any line lightning performance improvement if they are installed at the 
wrong towers. Thus, in this paper we would like to introduce a solution for optimal placement 
of LSAs that could help utilities make smart planning decisions for improvement of line 
lightning performance. 
 
METHODOLOGY 
 
The proposed method in Fig. 1 combines the probability of a lightning strike as Lightning 
Hazard, and probability of the insulator breakdown as Network Vulnerability, to construct the 
lightning impact Component Risk. Then the Global Risk is calculated by averaging the risk 
over the entire network. The optimization algorithm is minimizing the Global Risk value while 
considering the Economic Limits and Tower Limits as constrains. The different scenarios of 
LSA locations are iterated until the optimal placement is found.  
 
Data Preprocessing 
 
Comprehensive geospatial analysis taking into 
account all environmental factors and their 
relations to the utility assets is developed using 
ArcGIS [15]. Transmission network data is 
spatiotemporally correlated with lightning, 
weather, vegetation, topography, and soil data. 
The overview of used data sets is presented in 
Table I where all non-weather parameters are 
listed. Table II provides more details about 
weather data sources and parameters. More 
details about spatiotemporal correlation of 
diverse data used for this study can be found in 
[7]. 
 
The rest of this section will describe two main 
preprocessing steps needed to prepare the data 
for the input in the risk analysis (including 
hazard and vulnerability) described in the next 
section. First step includes the spatial and 
temporal correlation of lightning, weather, and 
outage data. The second step will present the 
use of weather parameters for calculation of 
BIL under nonstandard atmospheric conditions. 

 
Figure 1. Overview of the proposed method 
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Table I. List of non-weather parameters 
Historical 
Network 

Data 

Insulator Physical 
Characteristics 

In-field Measurements Other 
Environmental 

Parameters 
Outage 
Reports 

Surge Impedances 
of Towers and 
Ground Wires 

Leakage Current 
Magnitude 

Corona Discharge 
Detection 

Vegetation Index 
(presence and 
canopy height) 

Maintenance 
Orders 

Footing Resistance Flashover Voltage Infrared Reflection 
Thermography 

Elevation 

Replacement 
Orders 

Component BIL Electric Field 
Distribution 

Visual Inspection 
Reports 

Soil 

 
Table II. Weather Data Sources and Characteristics 

Source Data 
Type 

Temporal 
Coverage 

Spatial 
Coverage 

Temporal 
Resolution 

Spatial 
Resolution 

Measurements 

National 
Lightning 
Detection 
Network 

[16] 

Lightning 
Data 

1989-
Present 

USA Instant Median 
Location 
Accuracy 

200-500  m 

Date, Time, 
Latitude, 

Longitude, Peak 
amplitude, 

Polarity, Type of 
the event: C-C or 

C-G 
Automated 

Surface 
Observing 

System  
(ASOS) 

[17] 

Land-
Based 

Stations 
Data 

2000-
Present 

USA 1 min 900 
stations  

Temperature; 
Humidity; 
Pressure; 

Precipitation;  

National 
Digital 

Forecast 
Database 
(NDFD) 

[18] 

Weather 
Forecast 

Data 

7 days into 
the future 

USA 3 hours 5 km Temperature, 
Relative 

Humidity, 
Precipitation, 

Prob. Dry 
Lightning, 

Probability of 
Severe 

Thunderstorms 
 
Correlation of lightning, weather, and outage data:  
 
Correlation of datasets is presented in Fig. 2. The weather parameters (temperature, 
precipitation, humidity, and pressure) are extracted from the ASOS [17], and geocoded into the 
network area as the raster with the 1 km resolution. The weather forecast data obtained from 
the NDFD [18] is already a polygon shapefile.  
 
To correlate the lightning data obtained from NLDN [16], first all lightning strikes that are 
outside of the 1 km buffer around the transmission lines and towers are removed. Then the 
lightning strikes are spatially and temporally joined with the historical outages. For each 
historical outage the lightning strike closest in time and space is selected. The spatial limit is 
set to 1 km around the outage point, and temporal limit for (-2) min in reference to the reported 
outage start time. In case of multiple lightning strikes satisfying the criterion, the closest one is 
selected.  
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Fig. 2 Spatiotemporal correlation of data 

 
BIL under nonstandard atmospheric conditions: For each lightning strike, the lightning 
protection parameters are calculated for the existing atmospheric conditions obtained from the 
historical weather data. Additional weather parameters (temperature, humidity, pressure, 
precipitation) are needed to calculate BIL under nonstandard atmospheric conditions [5]. First, 
the relative air density and humidity correction factor are calculated as (1) and (2) respectively: 

 (1) 

 
(2) 

where TS and PS are standard temperature and pressure respectively; T and P are measured 
temperature and pressure respectively. Humidity correction factor is equal to 1 for rainy 
conditions and for dry conditions is calculated using (2). Then the BIL under nonstandard 
atmospheric conditions is calculated as BILA: 

 (3) 

where BILS is the standard BIL.  
 
Risk 
 
The Risk Framework [19] is capable of predicting risk in real time, as well as estimating the 
overall risk over a certain period of time.  The Gaussian Conditional Random Fields (GCRF) 
prediction algorithm [20] takes advantage of spatial and temporal similarities between network 
nodes (transmission towers), and historical events (lightning caused outages). Impact of every 
historical outage is modelled by the change of line lightning protection performance, creating 
a dynamic real-time estimate of the insulator strength [21].   
 
The risk is defined as: 
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The weather impact on the network is modelled as a Hazard Map. In this map every location in 
the network area has an associated hazard value that represents the probability of a lightning 
strike at that location for a certain moment in time. The Hazard maps are generated 
automatically in real time, based on the most current weather forecast.  
 
Network lightning performances are modelled with a Vulnerability Map. This vulnerability 
map represents the conditional probability of an insulator total failure in case of a lightning 
strike on its tower. Traditionally, insulator strength is considered to be constant during the 
insulator lifetime, and equal to the Basic Lightning Impulse Insulation Level – BIL determined 
in advance by the manufacturer through testing [5]. In our approach, the BIL value changes in 
time and space to take into account accumulated impact of all past lightning discharges in the 
particular network locations, as presented in Fig. 3.  
 

 
Fig. 3 Dynamic BIL Change 

 
The vulnerability map is developed using predictive linear regression model that uses a variety 
of historical data including: historical outage, weather, lightning detection, vegetation, and 
assets. The data are correlated in time and space. The prediction model is based on the GCRF 
[20]: 
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The vector x represents the input data containing lightning parameters (peak current, polarity), 
weather parameters (temperature, precipitation, humidity, pressure), and insulator parameters 
(BIL). The output y is the predicted value of BIL after the impact of insulator backflashover 
has been taken into account. The second sum in eq. (5) represents the node inter-dependencies, 
where similarity between neighboring towers is expressed in terms of electrical impedance 
between them. 
 
To solve eq. (5), the parameters α and β need to be estimated. This can be done by maximizing 
the conditional log-likelihood based on the collected training data from past outages: 

   , logL P   y x  (6) 
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Optimal Placement of LSAs 
 
The goal is to ensure that overall risk of the network is minimal while the economic impact of 
the solution stays bellow the acceptable budget limit. The global state of risk function is 
constructed as an arithmetic mean of the individual state of risk for each network component, 
and summarized over time: 
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N
R
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1
 (8) 

 
Where R is a total risk for the entire network, N is the total number of towers in the network, 
and Rn is the individual risk for tower n. The optimization algorithm maximizes the global state 
of risk reduction by setting LSA positions as independent variables: 
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where ΔRn is a risk reduction on a tower n after installation of LSA. The available budget for 
the LSA installation is considered to be limited, adding an economic constraint: 





N

n
nn TCCF

1
 (10) 

where Cn is a cost of installation of LSA on tower n, and TC is a total budget dedicated to the 
LSA installations. 
 
RESULTS 
 
The method has been simulated and tested on section of the network containing 36 substations, 
65 transmission lines, with a total of 1590 towers. The historical outage and lightning data for 
the period of 5 years were observed.  
 
The Fig. 4 shows an example of a Hazard Map generated for the time of the outage. The 
Vulnerability Map segment in the area of the outage is presented in Fig. 5. The Risk Map, 
shown in Fig. 6, is generated by combining the two maps, Hazard in Fig. 4 and Vulnerability 
in Fig. 5. For each moment in time, it is possible to generate a unique risk map. By averaging 
the set of risk maps for a period of time it is possible to develop a final risk map on a seasonal 
or yearly basis.      
 
Based on the overall risk map created for a period of one year, and associated economic impact, 
the recommended number of line surge arresters (LSAs) is calculated to be 264, and optimal 
locations of the LSAs in terms of risk reduction are presented in Fig. 7. The presented 
configuration of LSAs is expected to reduce overall risk by 72%. This kind of result could help 
utilities make decision about installation of LSAs in an economically efficient way.  
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Fig. 4 Weather Hazard Map Fig. 5 Tower Vulnerability Map 

 

 
Fig. 6 Risk Map of the Network 
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Fig. 7 Locations of 264 Line Surge Arresters 

 
CONCLUSIONS 
 
This paper presents a decision-making method for optimal placement of line surge arresters in 
the transmission network based on the predictive risk analysis. The outcomes of this research 
are: 

• Lightning data obtained from the NLDN is correlated in time and space with variety of 
network and weather data. 

• The study of insulator lightning strength takes into account the weather conditions at 
time of the outage, which reflects cumulative strength deterioration over time. 

• The real-time risk framework that enables observation of unfolding weather conditions 
through the Hazard, and their impact of network outages through the Vulnerability was 
developed. 

• The predictive risk method based on Gaussian Conditional Random Fields is used to 
estimate the network vulnerability to lightning caused outages. 

• The predicted risk maps for the transmission network are used to determine the optimal 
location for line sure arresters that would provide the maximum decrease in risk level 
while maintaining the budget and physical limits.   
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