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a b s t r a c t 

Uncertainties from deepening penetration of renewable energy resources have posed critical challenges to

the secure and reliable operations of future electric grids. Among various approaches for decision mak- 

ing in uncertain environments, this paper focuses on chance-constrained optimization, which provides

explicit probabilistic guarantees on the feasibility of optimal solutions. Although quite a few methods

have been proposed to solve chance-constrained optimization problems, there is a lack of comprehensive

review and comparative analysis of the proposed methods. We first review three categories of existing

methods to chance-constrained optimization: (1) scenario approach; (2) sample average approximation;

and (3) robust optimization based methods. Data-driven methods, which are not constrained by any par- 

ticular distributions of the underlying uncertainties, are of particular interest. Key results of the analytical

reformulation approach for specific distributions are briefly discussed. We then provide a comprehensive

review on the applications of chance-constrained optimization in power systems. Finally, this paper pro- 

vides a critical comparison of existing methods based on numerical simulations, which are conducted on

standard power system test cases.

© 2019 Published by Elsevier Ltd.

Contents 

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 

1.1. An overview of chance-constrained optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 

1.2. Contributions of this paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 

1.3. Organization of this paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 

1.4. Notations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 

2. Chance-constrained optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 

2.2. Joint and individual chance constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 

2.3. Critical definitions and assumptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 

3. Fundamental properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 

3.1. Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 

3.2. Special cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 

3.3. Feasible region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 

3.4. Ambiguous chance constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 

4. An overview of solutions to CCO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 

4.1. Classification of solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 

4.2. Prior knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 

4.3. Theoretical guarantees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 

∗ Corresponding author.

E-mail address: xbgeng@tamu.edu (X. Geng).

https://doi.org/10.1016/j.arcontrol.2019.05.005

1367-5788/© 2019 Published by Elsevier Ltd.

https://doi.org/10.1016/j.arcontrol.2019.05.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/arcontrol
http://crossmark.crossref.org/dialog/?doi=10.1016/j.arcontrol.2019.05.005&domain=pdf
mailto:xbgeng@tamu.edu
https://doi.org/10.1016/j.arcontrol.2019.05.005


342 X. Geng and L. Xie / Annual Reviews in Control 47 (2019) 341–363 

4.4. A schematic overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 

5. Scenario approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 

5.1. Introduction to the scenario approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 

5.2. Structural properties of the scenario problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 

5.3. A-priori feasibility guarantees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 

5.4. A-posteriori feasibility guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 

5.5. Optimality guarantees of scenario approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 

6. Sample average approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 

6.1. Introduction to sample average approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 

6.2. Solving sample average approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 

6.3. Feasibility guarantees of SAA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 

6.4. Optimality guarantees of sample average approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 

7. Robust optimization related methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 

7.1. Introduction to robust optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 

7.2. Safe approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 

7.3. Safe approximation of individual chance constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 

7.3.1. Convex approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 

7.3.2. CVaR-based convex approximation of individual chance constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 

7.3.3. Constructing uncertainty sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 

7.4. Safe approximation of joint chance constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 

7.4.1. Conversion between joint chance constraints and individual chance constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 

7.4.2. Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 

8. Applications in power systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 

8.1. Security-constrained economic dispatch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 

8.1.1. Deterministic SCED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 

8.1.2. Chance-constrained SCED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 

8.1.3. Solving cc-DCOPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 

8.2. Security-constrained unit commitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 

8.2.1. Deterministic SCUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 

8.2.2. Chance-constrained SCUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 

8.2.3. Solving chance-constrained SCUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 

8.3. Generation and transmission expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 

9. Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 

9.1. ConvertChanceConstraint (CCC): a Matlab toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 

9.2. Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 

9.3. Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 

10. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 

Declaration of competing interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l  

c  

b  

b

1

 

f  

i  

fi  

e  

2  

t  

t  

2  

2  

2  

t  

d  

C  

t

 

C  

i  
1. Introduction 

Real-time decision making in the presence of uncertainties is a

classical problem that arises in many contexts. In the context of

electric energy systems, a pivotal challenge is how to operate a

power grid with an increasing amount of supply and demand un-

certainties. The unique characteristics of such operational problem

include (1) the underlying distribution of uncertainties is largely

unknown (e.g. the forecast error of demand response); (2) deci-

sions have to be made in a timely manner (e.g. a dispatch order

needs to be given by 5 minutes prior to the real-time); and (3)

there is a strong desire to know the risk that the system is exposed

to after a decision is made (e.g. the risk of violating transmis-

sion constraints after the real-time market clears). In response to

these challenges, a class of optimization problems named “chance-

constrained optimization” has received increasing attention in both

operations research and practical engineering communities. 

The objective of this article is to provide a comprehensive and

up-to-date review of mathematical formulations, computational al-

gorithms, and engineering implications of chance-constrained op-

timization in the context of electric power systems. In particu-

lar, this paper focuses on the data-driven approaches to solving

chance-constrained optimization without knowing the underlying

distribution of uncertainties. This paper also briefly mentions some

critical results of an alternative approach, which derives equiva-
ent forms of chance-constrained optimization problems for spe-

ific distributions. A more general class of problems, i.e. distri-

utionally robust optimization or ambiguous chance constraint, is

eyond the scope of this paper. 

.1. An overview of chance-constrained optimization 

Chance-constrained optimization (CCO) is an important tool

or decision making in uncertain environments. Since its birth

n 1950s, CCO has found many successful applications in various

elds, e.g. economics ( Yaari, 1965 ), control theory ( Calafiore, Campi

t al., 2006 ), chemical process ( Henrion et al., 2001; Sahinidis,

004 ), water management ( Dupa ̌cová, Gaivoronski, Kos, & Szan-

ai, 1991 ) and recently in machine learning ( Ben-Tal, Bhadra, Bhat-

acharyya, & Saketha Nath, 2011; Ben-Tal, El Ghaoui, & Nemirovski,

009; Caramanis, Mannor, & Xu, 2012; Gabrel, Murat, & Thiele,

014; Sra, Nowozin, & Wright, 2012; Xu, Caramanis, & Mannor,

009 ). Chance-constrained optimization plays a particularly impor-

ant role in the context of electric power systems ( Ozturk, Mazum-

ar, & Norman, 2004; Wang, Guan, & Wang, 2012 ), applications of

CO can be found in various time-scales of power system opera-

ions and at different levels of the system. 

The first chance-constrained program was formulated in

harnes, Cooper, and Symonds (1958) , then was extensively stud-

ed in the following 50 years, e.g. Charnes and Cooper (1959) ,
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harnes and Cooper (1963) , Kataoka (1963) , Pintér (1989) , Sen

1992) , Prekopa, Vizvari, and Badics (1998) , Ruszczynski and

hapiro (2003) , Ben-Tal et al. (2009) and Prékopa (1995) . Pre-

iously, most methods to solve CCO problems deal with spe-

ific families of distributions, such as log-concave distributions

 Miller & Wagner, 1965; Prékopa, 1995 ). Many novel methods ap-

eared in the past ten years, e.g. scenario approach ( Calafiore

t al., 2006 ), sample average approximation ( Luedtke & Ahmed,

0 08; Ruszczy ́nski, 20 02 ) and convex approximation ( Nemirovski

 Shapiro, 2006 ). Most of them are generic methods that are not

imited to specific distribution families and require very limited

nowledge about the uncertainties. In spite of many successful ap-

lications of these methods in various fields, there is a lack of com-

rehensive review and a critical comparison. 

.2. Contributions of this paper 

The main contributions of this paper are threefold: 

1. We provide a detailed tutorial on the existing algorithms to

solve chance-constrained programs and a survey of major the-

oretical results. To the best of our knowledge, there is no such

review available in the literature; 

2. We provide a comprehensive review on the applications of

chance-constrained optimization in power systems, with focus

on various interpretations of chance constraints in the context

of power engineering. 

3. We implement most of the reviewed methods and develop an

open-source Matlab toolbox (ConvertChanceConstraint), which 

is available on Github. 1 We also provide a critical comparison of

existing methods based numerical simulations on IEEE standard

test systems. 

.3. Organization of this paper 

The remainder of this paper is organized as follows. Sec-

ion 2 introduces chance-constrained optimization. Section 3 sum-

arizes the fundamental properties of chance-constrained op-

imization problems. An overview of how to solve chance-

onstrained optimization problems is described in Section 4 ,

hich outlines Sections 5 –7 . Three major approaches to solv-

ng chance-constrained optimization (scenario approach, sample

verage approximation and robust optimization based methods)

re presented in Sections 5 –7 , respectively. Section 8 provides a

omprehensive review on applications of CCO in power systems.

he structure and usage of the Toolbox ConvertChanceConstraint is

n Section 9 . Section 9 also conducts numerical simulations and

ompares existing approaches to solving CCO problems. Conclud-

ng remarks are in Section 10 . 

.4. Notations 

The notations in this paper are standard. All vectors and ma-

rices are in the real field R . Sets are in calligraphy fonts, e.g. S .
he upper and lower bounds of a variable x are denoted by x and

 . The estimation of a random variable ε is ˆ ε. We use 1 n to de-

ote an all-one vector in R 
n , the subscript n is sometimes omitted

or simplicity. The absolute value of vector x is | x |, and the car-

inality of a set S is |S| . Function [ a ] + returns the positive part
f variable a . The indicator function 1 x> 0 is one if x > 0. The floor

unction � a � returns the largest integer less than or equal to the
eal number a . The ceiling function � a � returns the smallest inte-

er greater than or equal to a . E [ ξ ] is the expectation of a random
1 github.com/xb00dx/ConvertChanceConstraint-ccc . (
ector ξ , V (x ) denotes the violation probability of a candidate so-

ution x , and P ξ (·) is the probability taken with respect to ξ . The
ranspose of a vector a is a �. Infimum, supremum and essential

upremum are denoted by inf , sup and ess sup. The element-wise

ultiplication of the same-size vectors a and b is denoted by a ◦b . 

. Chance-constrained optimization 

.1. Introduction 

We study the following chance-constrained optimization prob-

em throughout this paper: 

CCO): min 
x 

c T  x (1a) 

s.t. P ξ

(
f (x, ξ ) ≤ 0 

)
≥ 1 − ε (1b) 

x ∈ X (1c) 

here x ∈ R 
n is the decision variable and random vector ξ ∈ R 

d 

s the source of uncertainties. Without loss of generality, 2 we

ssume the objective function is linear in x and does not de-

end on ξ . Constraint (1b) is the chance constraint (or probabilis-
ic constraint ), it requires the inner constraint f ( x , ξ ) ≤0 to be

atisfied with high probability 1 − ε. The inner constraint f ( x , ξ ):
 
n ×R 

d → R 
m consists of m individual constraints, i.e. f (x, ξ ) =

f 1 (x, ξ ) , f 2 (x, ξ ) , · · · , f m (x, ξ ) 
)
. Set X represent the deterministic

onstraints. Parameter ε is called the violation probability of (CCO).

otice that f ( x , ξ ) is random due to the randomness of ξ , the prob-
bility P is taken with respect to ξ . Sometimes the probability is

enoted by P ξ to avoid confusion. 

It is worth mentioning that CCO is closely related with the the-

ry of risk management. For example, an individual chance con-

traint P ( f i (x, ξ ) ≤ 0) ≥ 1 − εi can be equivalently interpreted as a
onstraint on the value at risk VaR ( f i (x, ξ ) ;1 − εi ) ≤ 0 . This con-

ection can be directly seen from the definition. 

efinition 1 (Value at Risk) . Value at risk (VaR) of random variable

at level 1 − ε is defined as 

aR (ζ ;1 − ε) := inf 
{
γ : P (ζ ≤ γ ) ≥ 1 − ε

}
(2)

More details about this can be found in Section 7.3.1 , ( Chen,

im, Sun, & Teo, 2010; Rockafellar & Uryasev, 20 0 0 ) and references

herein. 

CCO is closely related with two other major tools for decision

aking with uncertainties: stochastic programming and robust op-

imization. The idea of sample average approximation, which orig-

nated from stochastic programming, can be applied on chance-

onstrained programs ( Section 6 ). Section 7 demonstrates the con-

ection between robust optimization and CCO. 

.2. Joint and individual chance constraints 

Constraint (1b) is called a joint chance constraint because of its

ultiple inner constraints ( Miller & Wagner, 1965 ), i.e. 

 

(
f 1 (x, ξ ) ≤ 0 , f 2 (x, ξ ) ≤ 0 , · · · , f m (x, ξ ) ≤ 0 

)
≥ 1 − ε (3)

lternatively, each one of the following m constraints is called an

ndividual chance constraint : 

 

(
f i (x, ξ ) ≤ 0 

)
≤ 1 − εi , i = 1 , 2 , · · · , m (4)

oint chance constraints typically have more modeling power since

n individual chance constraint is a special case ( m = 1 ) of a joint
2 Using the epigraph formulation as mentioned in Campi, Garatti, and Prandini 

2009) and Boyd and Vandenberghe (2004) . 

https://www.github.com/xb00dx/ConvertChanceConstraint-ccc
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c  
chance constraint. But individual chance constraints are relatively

easier to deal with (see Sections 3.2 and 7.3 ). There are several

ways to convert individual and joint chance constraints between

each other. 

First, a joint chance constraint can be written as a set of in-

dividual chance constraints using Bonferroni inequality or Boole’s

inequality. Notice (3) can be represented as 

P ξ

(
∪ 
m 

i =1 

{
f i (x, ξ ) ≥ 0 

})
≤ ε. (5)

Since P ξ (∪ 
m 

i =1 
{ f i (x, ξ ) ≥ 0 } ) ≤ ∑ m 

i =1 P ξ ({ f i (x, ξ ) ≥ 0 } ) , if ∑ m 

i =1 εi ≤
ε, then any feasible solution to (4) is also feasible to (3) . In other

words, (4) is a safe approximation (see Definition 11 ) to (3) when∑ m 

i =1 εi ≤ ε. With appropriate { εi } m 

i =1 
, (4) could be a good approx-

imation of (3) . However, it is usually difficult to find such { εi } m 

i =1 
.

Some other issues of this approach are discussed in Section 7.4.1 . 

Alternatively, a joint chance constraint (3) is equivalent to the

following individual chance constraint: 

P ξ

(
f (x, ξ ) ≤ 0 

)
≥ 1 − ε (6)

where f (x, ξ ) : R 
n × R 

d → R is the pointwise maximum of func-

tions { f i (x, ξ ) } m 

i =1 
over x and ξ , i.e. 

f (x, ξ ) := max 

{ 

f 1 (x, ξ ) , f 2 (x, ξ ) , · · · , f m (x, ξ ) 
} 

. (7)

It is worth noting that converting { f i (x, ξ ) } m 

i =1 
to f (x, ξ ) could lose

nice structures of the original constraint f ( x , ξ ) ≤0 and cause more

difficulties. 

In this paper, we focus on the chance-constrained optimization

problems with a joint chance constraint. 

2.3. Critical definitions and assumptions 

Theoretical results in the following sections are based on the

critical definitions and assumptions below. 

Definition 2 (Violation Probability) . Let x � denote a candidate so-

lution to (CCO), its violation probability is defined as 

V (x 
) := P ξ

(
f (x 
, ξ ) ≥ 0 

)
(8)

Definition 3. x � is a feasible solution to (CCO) if x 
 ∈ X and

V (x 
) ≤ ε. Let F ε denote the set of feasible solutions to the chance

constraint (1b) , 

F ε := { x ∈ R 
n : V (x ) ≤ ε} = { x ∈ R 

n : P ξ

(
f (x, ξ ) ≤ 0 

)
≥ 1 − ε} , 

then x � is feasible to (CCO) if x 
 ∈ X ∩ F ε . 

Although (CCO) seeks optimal solutions under uncertainties,

it is a deterministic optimization problem. To better see this,

(CCO) can be equivalently written as min x ∈X c T x, s.t. V (x ) ≤ ε or

min x ∈X∩F ε c T x . 

Definition 4. Let o � denote the optimal objective value of (CCO).

For simplicity, we define o � = + ∞ when (CCO) is infeasible and

o � = −∞ when (CCO) is unbounded. Let x � denote the optimal so-

lution to (CCO) if exists, and o � = c T x � . 

Definition 5. We say a candidate solution x � is conservative if

V (x 
) � ε or c �x � � o � . 

Most existing theoretical results on (CCO) are built upon the

following two assumptions. 

Assumption 1. Let � denote the support of the random variable

ξ , the distribution ξ ∼� exists and is fixed. 

Assumption 1 only assumes the existence of an underlying dis-

tribution, but we do not necessarily need to know it to solve (CCO).
emoving Assumption 1 leads to a more general class of problem

amed distributionally robust optimization or ambiguous chance con-

traints . Section 3.4 discusses cases with Assumption 1 removed. 

ssumption 2. (1) Function f ( x , ξ ) is convex in x for every instance
f ξ , and (2) the deterministic constraints define a convex set X . 

The convexity assumption above makes it possible to develop

heories on (CCO). However, the feasible region F ε of (CCO) is often

on-convex even under Assumption 2 . More details are presented

n Sections 3.1 and 3.2 . 

. Fundamental properties 

.1. Hardness 

Although CCO is an important and useful tool for decision mak-

ng under uncertainties, it is very difficult to solve in general. Major

ifficulties come from two aspects: 

(D1) It is difficult to check the feasibility of a candidate so-

lution x �. Namely, it is intractable to evaluate the prob-

ability P ξ

(
f (x 
, ξ ) ≤ 0 

)
with high accuracy. More specifi-

cally, calculating the probability involves multivariate inte-

gration, which is NP-Hard ( Khachiyan, 1989 ). The only gen-

eral method might be Monte-Carlo simulation, but it can be

computationally intractable due to the curse of dimension-

ality. 

(D2) It is difficult to find the optimal solution x � and o � to

(CCO). Even with the convexity assumption ( Assumption 2 ),

the feasible region F ε of (CCO) is often non-convex except

a few special cases. For example, Section 3.3 shows the fea-

sible region of (CCO) with separable chance constraints is a

union of cones, which is non-convex in general. Although re-

searchers have proved various sufficient conditions on the

convexity of (CCO), it remains challenging to solve (CCO) be-

cause of difficulty (D1). Most of times, however, we are ag-

nostic about the properties of the feasible region F ε . 

Despite that fact that Assumptions 1 and 2 largely simplify the

roblem and make theoretical analysis on (CCO) possible, (D1) and

D2) still exist and pose great challenges to solve (CCO). 

heorem 1 ( Luedtke, Ahmed, & Nemhauser, 2010; Qiu, Ahmed,

ey, & Wolsey, 2014 ) . (CCO) is strongly NP-Hard. 

heorem 2 ( Ahmed, 2018 ) . Unless P = NP , it is impossible to obtain

 polynomial time algorithm for (CCO) with a constant approximation

atio. 

Theorem 1 formalizes the hardness results of solving (CCO),

heorem 2 further demonstrates that it is also difficult to ob-

ain approximate solutions to (CCO): any polynomial algorithm is

ot able to find a solution x ∗ (with o ∗ = c T x ∗) such that | o ∗/ o � |
s bounded by a constant C from above. In other words, any

olynomial-time algorithm could be arbitrarily worse. 

.2. Special cases 

Although (CCO) is NP-Hard to solve in general, there are several

pecial cases in which solving (CCO) is relatively easy. The most

ell-known special case is (9), which was first proved in ( Kataoka,

963 ). 

in 
x ∈X 

c T  x (9a)

s.t. P (a T  x + b T  ξ + ξᵀ Dx ≤ e ) ≥ 1 − ε (9b)

Parameters a ∈ R 
n , b ∈ R 

d , D ∈ R 
d ×n and e ∈ R are fixed coeffi-

ients. ξ ∼ N (μ, �) is a multivariate Gaussian random vector with
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ean μ and covariance �. Notice that (9b) is an individual chance

onstraint with multivariate Gaussian coefficients. Let 	(·) −1 de-

ote the inverse cumulative distribution function (CDF) function of

 standard normal distribution. It is easy to show that if ε ≤1/2, (9)

s equivalent to (10), which is a second order cone program (SOCP)

nd can be solved efficiently. 

in 
x ∈X 

c T  x (10a) 

s.t. e − b T  μ − (a + D T
 μ) T  x ≥

	−1 (1 − ε) 
√ 

(b + Dx ) T  �(b + Dx ) (10b) 

(10) also shows the possibility of deriving equivalent refor-

ulations of (CCO), many analytical methods to solve chance-

onstrained optimization are built on this observation. 

The case of log-concave distribution ( Prékopa, 1971, 1995;

rékopa, Yoda, & Subasi, 2011 ) is another famous special case

here chance constraint is convex. There are many other suffi-

ient conditions on the convexity of chance constraints, e.g. Lagoa

1999) , Calafiore and El Ghaoui (2006) , Henrion and Strugarek

2008) , Henrion and Strugarek (2011) and Van Ackooij (2015) . 

.3. Feasible region 

A chance-constrained program with only right hand side uncer-

ainties (11) is considered in this section. With this example, we

rovide deeper understandings on the non-convexity of (CCO). 

in 
x ∈X 

c T  x (11a) 

s.t. P ( f (x ) ≤ ζ ) ≥ p (11b) 

In (11b) , the inner function f ( x ): R 
n → R 

m is deterministic. The

nly uncertainty is the right-hand side value, represented by a ran-

om vector ζ ∈ R 
m . Chance constraints like (11b) are also named

eparable chance constraints (or probabilistic constraints) since the

eterministic and random parts are separated. We replace 1 − ε
ith p in (11b) to follow the convention in the existing literature. 

efinition 6 ( p -efficient points ( Shapiro, Dentcheva, & Ruszczy ́nski,

009 )) . Let p ∈ (0, 1), a point v ∈ R 
m is called a p-efficient point of

he probability function P ζ (ζ ≤ z) , if P ζ (ζ ≤ v ) ≥ p and there is no

 ≤ v , and z � = v such that P ζ (ζ ≤ z) ≥ p. 

heorem 3 ( Prékopa, 1995; Shapiro et al., 2009 ) . Let E be the index

et of p-efficient points v i , i ∈ E . Let F p := { x ∈ R 
n : P ζ ( f (x ) ≤ ζ ) ≥

p} denote the feasible region of (11b) , then it holds that 
 p = ∪ i ∈E K i (12) 

here each cone K i is defined as K i := v i + R 
m + , i ∈ E . 

Theorem 3 shows the geometric properties of (CCO). The finite

nion of convex sets need not to be convex, therefore the feasible

egion of (CCO) is generally non-convex. 

emark 1. Many methods to solve (CCO) (e.g. Beraldi &

uszczy ́nski, 2002; Kress, Penn, & Polukarov, 2007; Prekopa et al.,

998 ) start with a partial or complete enumeration of p -efficient

oints. However, the number of p -efficient points could be as-

ronomic or even infinite. See Shapiro et al. (2009) and Prékopa

1995) and references therein for the finiteness results of p -

fficient points and complete theories and algorithms on p -efficient

oints. 

.4. Ambiguous chance constraints 

Ambiguous chance constraint is a generalization of chance con-

traints, 

 ξ∼P 

(
f (x, ξ ) ≤ 0 

)
≥ 1 − ε, ∀ P ∈ P . (13)
t requires the inner chance constraint f ( x , ξ ) ≤0 holds with proba-

ility 1 − ε for any distribution P belonging to a set of pre-defined

istributions P . 

Ambiguous chance constraints are particularly useful in the

ases where only partial knowledge on the distribution P is avail-

ble, e.g. we know only that P belongs a given family of P . How-

ver, it is generally more difficult to solve ambiguous chance con-

traints, and the theoretical results rely on different assum ptions of

ncertainties. This paper only reviews solutions to CCO, studies on

mbiguous chance constraints are beyond the scope of this paper. 

. An overview of solutions to CCO 

This paper concentrates on solutions to (CCO) with the follow-

ng properties: (i) dealing with both difficulties (D1) and (D2) men-

ioned in Section 3.1 ; (ii) utilizing information from data (only)

ithout making suspicious assumptions on the distribution of un-

ertainties; and (iii) possessing rigorous guarantees on the feasi-

ility and optimality of the returned solutions. Sections 4.1 –4.3

xplain these three properties in detail. Section 4.4 provides an

verview of methods with the properties above. 

.1. Classification of solutions 

Existing methods on (CCO) can be roughly classified into four

ategories ( Ahmed & Shapiro, 2008 ): 

(C1) When both difficulties (D1) and (D2) in Section 3.1 are ab-

sent, (CCO) is convex and the probability P ( f (x, ξ ) ≤ 0) is

easy to calculate. The only known case in this category is

the individual chance constraint (9) with Gaussian distribu-

tions, which might be the only special case of (CCO) that can

be easily solved; 

(C2) When (D1) is absent but (D2) is present, it is relatively

easy to calculate P ( f (x, ξ ) ≤ 0) (e.g. finite distributions with

not too many realizations). As shown in Theorem 3 , the fea-

sible region of (CCO) could be non-convex and solutions typ-

ically rely on integer programming and global optimization

( Ahmed & Shapiro, 2008 ); 

(C3) When (D1) is present but (D2) is absent, (CCO) is proved

to be convex but remains difficult to solve because of the

difficulty (D1) in calculating probabilities. This case often re-

quires approximating the probability via simulations or spe-

cific assumptions. All examples mentioned in Section 3.2 ex-

cept (9) belong to this category. 

(C4) When both difficulties (D1) and (D2) are present, it is al-

most impossible to find the optimal solution x � and o � . All

existing methods attempt to obtain approximate solutions or

suboptimal solutions and construct upper and lower bounds

on the true objective value o � of (CCO). 

Methods associated with (C1)-(C3) are briefly mentioned in

ection 3 , the remaining part of this paper presents more general

nd powerful methods in category (C4). 

.2. Prior knowledge 

In order to solve (CCO), a reasonable amount of prior knowl-

dge on the underlying distribution ξ ∼� is necessary. Fig. 1 illus-

rates three categories of prior knowledge: 

(K1) We know the exact distribution ξ ∼� thus have complete

knowledge on the underlying distribution; 

(K2) We know partially on the distribution (e.g. multivariate

Gaussian distribution with bounded mean and variance) and

thus have partial knowledge ; 
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Fig. 1. Different knowledge levels to solve (CCO). 
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structural properties of the scenario problem SP . 
(K3) We have a finite dataset { ξ i } N 
i =1 

, this is another case of

partial knowledge . 

It can be seen that prior information in (K2) is a strict subset of

(K1), also by sampling we can construct a dataset in (K3) from the

exact distribution in (K1). It seems (K1) is the best starting point

to solve (CCO). However, probability distributions are not known in

practice, they are just models of reality and exist only in our imagi-

nation. What exists in reality is data . Therefore (K3) might be the

most practical case and becomes the focus of this paper. Almost all

the data-driven methods to solve (CCO) are based on the following

assumption. 

Assumption 3. The samples (scenarios) ξ i ( i = 1 , 2 , · · · , N) in the

dataset { ξ i } N 
i =1 

are independent and identically distributed (i.i.d.). 

4.3. Theoretical guarantees 

This paper concentrates on the theoretical aspects of the re-

viewed methods. In particular, we pay special attention to feasi-

bility guarantees and optimality guarantees . 

Given a candidate solution x � to (CCO), the first and possibly

most important thing is to check its feasibility , i.e. if V (x 
) ≤ ε. Al-
though (D1) demonstrates the difficulty in calculating V (x 
) with

high accuracy, there are various feasibility guarantees that either

estimate V (x 
) or provide upper bound on V (x 
) . The feasibility re-
sults can be classified into two categories: a-priori and a-posteriori

guarantees. The a-priori ones typically provide prior conditions on

(CCO) and the dataset { ξ i } N 
i =1 

, the feasibility of the correspond-

ing solution x � is guaranteed before obtaining x �. Examples of this

type include Corollary 1 , Theorems 6,13 and 11 . As the name sug-

gests, the a-posteriori guarantees make effects after obtaining x �.

The a-posteriori guarantees are constructed based on the observa-

tions of the structural features associated with x �. Examples in-

clude Theorem 7 and Proposition 1 . 

Given a candidate solution x � and the associated objective

value o 
 = c T x 
, another important question to be answered is

about the optimality gap | o 
 − o � | . Although finding o � is often an
impossible mission because of difficulty (D2), bounding from be-

low on o � is relatively easier. Sections 5.5 and 6.4 dedicate to algo-

rithms of constructing lower bounds o ≤ o � . 

4.4. A schematic overview 

A schematic overview of solutions to (CCO) and their relation-

ships are presented in Fig. 2 . Akin methods are plotted in similar

colors, and links among two circles indicate the connection of the

two methods. The tree-like structure of Fig. 2 illustrates the hier-

archical relationship of the reviewed methods. Key references of

each method are also provided. The root node of Fig. 2 is the “am-

biguous chance constraint” or distributionally robust optimization

(DRO), which is the parent node of “chance-constrained optimiza-

tion”. This indicates that DRO contains CCO as a special case. Simi-

larly, for example, node “scenario approach” has three child nodes
prior”, “posterior” and “sampling and discarding”, this indicates

he scenario approach has three major variations. 

As shown in Fig. 2 , CCO is a special case of ambiguous

hance constraints where the set of distributions P is a singleton

 Section 3.4 ). Therefore methods to solve ambiguous chance con-

traints can be applied on chance constraints as well. The methods

nd algorithms to solve CCO are the main focus of this paper, we

ill briefly mention the connection if some methods are related

ith ambiguous chance constraints. 

Fig. 2 also outlines the first half of this paper, which dedi-

ates to a review and tutorial on chance-constrained optimiza-

ion. We summarize key results on the basic properties ( Section 3 ),

hree main approaches to solving chance-constrained optimization

roblems, scenario approach ( Section 5 ), sample average approx-

mation ( Section 6 ) and robust optimization (RO) based methods

 Section 7 ). 

. Scenario approach 

.1. Introduction to the scenario approach 

Scenario approach utilizes a dataset with N scenarios { ξ i } N 
i =1 

to

pproximate the chance-constrained program (1) and obtains the

ollowing scenario problem (SP) N : 

SP) N : min 
x ∈X 

c T  x (14a)

s.t. f (x, ξ 1 ) ≤ 0 , · · · , f (x, ξN ) ≤ 0 (14b)

SP N seeks the optimal solution x ∗
N 

which is feasible for all N

cenarios. The scenario approach is a very simple yet powerful

ethod. The most attractive feature of the scenario approach is its

enerality. It requires nothing except the convexity of constraints

 ( x , ξ ) and X . It is purely data-driven and makes no assumption on

he underlying distribution. 

emark 2. SP N is a random program. Both its optimal objective

alue o ∗
N 

and optimal solution x ∗
N 

depend on the random samples

 ξ i } N 
i =1 

, therefore they are random variables. In consequence, V (x ∗
N 
)

s also a random variable. Let N := { 1 , 2 , · · · , N} denote the index
et of scenarios. The optimal objective value of SP N is denoted by

 
∗(N ) to emphasize its dependence on the random samples. 

Theoretical results of the scenario approach are built upon the

ollowing assumption in addition to Assumptions 1 –3 . 

ssumption 4 (Feasibility and Uniqueness ( Campi &

aratti, 2008 )) . Every scenario problem (SP) N is feasible, and

ts feasibility region has a non-empty interior. Moreover, the

ptimal solution x ∗
N 
of (SP) N exists and is unique. 

If there exist multiple optimal solutions, the tie-break rules in

alafiore and Campi (2005) can be applied to obtain a unique so-

ution. 

emark 3. (Sample Complexity N ). We first provide some intuition

n the scenario approach. When solving (SP) N with a very large

umber of scenarios, the solution x ∗
N 

will be robust to almost ev-

ry realization of ξ , thus the violation probability goes to zero. Al-
hough x ∗

N 
is a feasible solution to (CCO) as N → + ∞ , it is overly

onservative because V (x ∗) ≈ 0 � ε. On the other hand, using too
ew scenarios for SP N might result in infeasible solutions x ∗

N 
to

CCO). Notice that N is the only tuning parameter in the scenario

pproach, the most important question in the scenario approach

heory is: what is the right sample complexity N? Namely, what is

he smallest N such that V (x ∗
N 
) ≤ ε (with high probability)? Rigor-

us answers to the sample complexity question are built upon the
N 
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Fig. 2. A schematic overview of existing methods and algorithms to solve chance-constrained optimization problems. 
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3. Solving the scenario problem SP and obtain x and o . 
.2. Structural properties of the scenario problem 

Among N scenarios in the dataset { ξ i } N 
i =1 

, there are some im-

ortant scenarios having direct impacts on the optimal solution x ∗
N 
.

efinition 7 (Support Scenario ( Calafiore & Campi,

005 )) . Scenario ξ i is a support scenario for (SP) N if its re-

oval changes the solution of (SP) N . The set of support scenarios

f (SP N ) is denoted by S . 

heorem 4 ( Calafiore & Campi, 2005; Calafiore, 2010 ) . Under

ssumption 2 , the number of support scenarios in SP N is at most

 , i.e. |S| ≤ n . 

Theorem 4 is built upon Helly’s theorem and Radon’s theorem

 Rockafellar, 2015 ) in convex analysis. For non-convex problems,

he number of support scenarios could be greater than the num-

er of decision variables n . An example for non-convex problems

s provided in Campi, Garatti, and Ramponi (2018) . 

efinition 8 (Fully-supported Problem ( Campi & Garatti, 2008 )) . A

cenario problem SP with N ≥n is fully-supported if the number of
N 
upport scenarios is exactly n . Scenario problems with |S| < n are

eferred as non-fully-supported problems. 

efinition 9 (Non-degenerate Problem ( Calafiore, 2010; Campi

 Garatti, 2008 )) . Problem SP N is said to be non-degenerate , if

 
∗(N ) = o ∗(S) . In other words, SP N is non-degenerate if the solu-

ion of (SP) N with all scenarios in place coincides with the solution

o the program with only the support scenarios are kept. 

.3. A-priori feasibility guarantees 

Obtaining a-priori feasibility guarantees on the solution x ∗
N 

to

P N typically involves the following three steps: 

1. Exploring the problem structure of SP N and obtain an upper

bound h on the number of support scenarios; 

2. Choosing a good sample complexity N(ε, β, h ) using

Corollary 1 , Theorem 6 or Remark 4 ; 
∗ ∗
N N N 
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Theorem 5 ( Campi & Garatti, 2008 ) . Under Assumptions 1 –3 , for a

non-degenerate problem SP N , it holds that 

P 
N 
(

V (x ∗N ) > ε
)

≤
n −1 ∑ 

i =1 

(
N 

i 

)
ε i (1 − ε) N−i . (15)

The probability P 
N is taken with respect to N random samples { ξ i } N 

i =1 
,

and the inequality is tight for fully-supported problems. 

As mentioned in Remark 2 , V (x ∗
N 
) is a random variable, its

randomness comes from drawing scenarios { ξ i } N 
i =1 

. For fully-

supported problems, Theorem 5 shows the exact probability dis-

tribution of the violation probability V (x ∗
N 
) , i.e. 

P 
N 
(

V (x ∗N ) > ε
)

= 

n −1 ∑ 

i =1 

(
N 

i 

)
ε i (1 − ε) N−i , (16)

the tail of a binomial distribution. We could use Theorem 5 to an-

swer the sample complexity question in Remark 3 . 

Corollary 1 ( Campi & Garatti, 2008 ) . Given a violation probability

ε ∈ (0, 1) and a confidence parameter β ∈ (0, 1), if we choose the

number of scenarios N (the smallest such N is denoted by N 2008 ) such

that 

n −1 ∑ 

i =0 

(
N 

i 

)
ε i (1 − ε) N−i ≤ β (17)

Let x ∗
N 
denote the optimal solution to SP N , it holds that 

P 
N 
(

V (x ∗N ) ≤ ε
)

≥ 1 − β (18)

In other words, the optimal solution x ∗
N 
is a feasible solution to (CCO)

with probability at least 1 − β . 

Remark 2 states that the scenario approach is a randomized al-

gorithm. Thus it is possible that the scenarios { ξ i } N 
i =1 

are drawn

from a “bad” set and lead to infeasible solutions x ∗
N 
, i.e. V (x ∗

N 
) > ε.

The confidence parameter β denotes the risk of failure associated

to the randomized solution algorithm ( Calafiore et al., 2006 ), and

it bounds the probability that x ∗
N 
is infeasible. 

For fully-supported problems, N 2008 is the tightest upper bound

on sample complexity, which cannot be improved. For non-fully

supported problems, it turns out N 2008 can be further tight-

ened. An improved sample complexity bound is provided in

Theorem 6 based on the definition of Helly’s dimension. 

Definition 10 (Helly’s Dimension ( Calafiore, 2010 )) . Helly’s dimen-

sion of SP N is the smallest integer h such that 

ess sup ξ∈ �N |S(ξ ) | ≤ h 

holds for any finite N ≥1. The essential supremum is denoted by

ess sup. We emphasize the dependence of support scenarios S on

ξ by S(ξ ) . 

Theorem 6 ( Calafiore, 2010 ) . Let h denote the Helly’s dimension for

SP N , under Assumptions 1 –3 , for a non-degenerate problem SP N , it

holds that 

P 
N 
(
V (x ∗N ) > ε

)
≤

h −1 ∑ 

i =0 

(
N 

i 

)
ε i (1 − ε) N−i (19)

Equivalently, for a fixed confidence parameter β ∈ (0, 1), if the sample

complexity N satisfies 

h −1 ∑ 

i =0 

(
N 

i 

)
ε i (1 − ε) N−i ≤ β (20)

then the following probabilistic guarantee holds 

P 
N 
(
V (x ∗N ) > ε

)
≤ β (21)
s

The only difference between Theorems 6 and 5 (and

orollary 1 ) is replacing n with Helly’s dimension h in (19) and

20) . Unfortunately, Helly’s dimension is often difficult to calcu-

ate, while finding upper bounds h on Helly’s dimension is usu-

lly a much easier task. Similarly we can replace h by h in

19) and (20) , the same theoretical guarantees still hold because

f the monotonicity of (19) and (20) in N and h . The support-

ank defined in Schildbach, Fagiano, and Morari (2013) is an upper

ound on Helly’s dimension, some other upper bounds can be ob-

ained by exploiting the structural properties of the problem, e.g.

hang, Grammatico, Schildbach, Goulart, and Lygeros (2015) . 

emark 4 (Sample Complexity Revisited) . A binary search type al-

orithm could be used to find N 2008 . And a looser but handy upper

ound is provided in ( Campi et al., 2009 ): 

 2009 := 

2 

ε

(
ln ( 

1 

β
) + n 

)
(22)

otice n in (22) can be replaced by h or h . 

.4. A-posteriori feasibility guarantees 

When the desired violation probability ε is very small, the

ample complexity of the a-priori guarantees grows with 1/ ε
 Remark 4 ) and could be prohibitive. In other words, the a-priori

pproach is only suitable for the case where a sufficient amount

f scenarios is always available. In many real-world applications

e.g. medical experiments, tests conducted by NASA), however, the

mount of data is quite limited, and it could take months or cost a

ortune to obtain a data point (experiment). Because of the limita-

ion on the data availability, one of the most fundamental problem

n data-driven decision making (e.g. system identification, quan-

itative finance) is to come up with good decisions or estimates

ith a moderate or even small amount of data. To overcome this,

he scenario approach is extended towards a-posteriori feasibility

uarantees. 

Similar with the a-priori guarantees, obtaining a-posteriori

uarantees typically requires taking the following three steps: 

1. given dataset { ξ i } N 
i =1 

, solve the corresponding scenario problem

SP N and obtain x 
∗
N 
; 

2. find support scenarios in { ξ i } N 
i =1 

, whose number is denoted as

s ∗
N 
; 

3. calculate the posterior violation probability ε(β, s ∗
N 
, N) using

Theorem 7 . 

If the resulting violation probability ε(β, s ∗
N 
, N) is greater than

he acceptable level ε, we could repeat this process with more

cenarios until reaching ε(β, s ∗
N 
, N) ≤ ε. If the number of available

cenarios is limited, then it might be impossible to obtain a solu-

ion x ∗
N 
such that V (x ∗

N 
) ≤ ε. 

heorem 7 (Wait-and-Judge ( Campi & Garatti, 2016 )) . Given β ∈ (0,

), for any k = 0 , 1 , · · · , n, the polynomial equation in variable t 

β

N + 1 

N ∑ 

i = k 

(
i 

k 

)
t i −k −

(
N 

k 

)
t N−k = 0 (23)

as exactly one solution ε( k ) in the interval (0,1). Under Assumptions

 –3 , for a non-degenerate problem, it holds that 

 
N (V (x ∗N ) ≥ ε(s ∗N )) ≤ β (24)

Theorem 7 is particularly useful in the following cases: (i)

he problem is not fully-support thus difficult to calculate a-priori

ounds on number of support scenarios; or (ii) only a moderate or

mall amount of data points is available, it is difficult to meet the

ample complexity from the a-priori guarantees. 
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Given a candidate solution x �, the most straightforward method

s to approximate V (x 
) by the empirical estimation ˆ ε through

onte-Carlo simulation with ˆ N samples, i.e. 

ˆ = 

1 

ˆ N 

ˆ N ∑ 

i =1 

1 f (x 
,ξ i ) > 0 = 

ˆ V 

ˆ N 

(25) 

here ˆ V := 

∑ ̂ N 
i =1 1 f (x 
,ξ i ) > 0 is the total number of scenarios in

hich x ∗
N 

is infeasible. Although (25) only involves f ( x �, ξ i ) > 0

hich is easy to calculate, it might require an astronomi-

al number ˆ N to have accurate estimation ˆ ε because of (D1).

emirovski and Shapiro (2006) shows a method to bound V (x 
)
rom above using a dataset of a moderate size ˆ N . 

roposition 1 ( Nemirovski & Shapiro, 2006 ) . Given a candidate so-

ution x � and ˆ N samples, let ˆ V := 

∑ ̂ N 
i =1 1 f (x 
,ξ i ) > 0 and 1 − ρ be the

onfidence parameter. 

:= max 
γ ∈ [0 , 1] 

{ γ : 

ˆ V ∑ 

i =0 

(
ˆ N 

i 

)
γ i (1 − γ ) 

ˆ N −i ≥ ρ} (26)

fter finding an upper bound ε, so that if ε ≤ ε, we may be sure that

 (V (x 
) ≤ ε) ≥ 1 − ρ . 

emark 5. Proposition 1 is closely related with the scenario ap-

roach but with one fundamental difference. Theorem 7 holds only

or solution from scenario approach, while Proposition 1 can eval-

ate solutions from other methods. 

.5. Optimality guarantees of scenario approach 

Scenario approach together with order statistics can be used to

onstruct lower bounds o on o � of (CCO). 

roposition 2 ( Nemirovski & Shapiro, 2006 ) . Let { ξ i, j } N 
i =1 

( j =
 , 2 , · · · , K) be K independent datasets of size N. For the jth dataset,

e solve the associated scenario problem SP N and calculate the opti-

al value o ∗
j 
( j = 1 , 2 , · · · , K). Without loss of generality, we assume

hat o ∗
1 

≤ o ∗
2 

≤ · · · ≤ o ∗
K 
. 

Given δ ∈ (0, 1), let us choose positive integers L , N , K in such a

ay that 

L −1 
 

i =0 

(
K 

i 

)
(1 − ε) Ni [1 − (1 − ε) N ] K−i ≤ δ (27)

hen with probability of at least 1 − δ, the random quantity o ∗
L 
gives

 lower bound for the true optimal value x � . 

Pagnoncelli, Ahmed, and Shapiro (2009) shows that appropri-

te N should be the order of O (1/ ε) as [1 − (1 − ε) N ] K ≈ (1 −
xp (−εN)) K . Typically we choose proper values for N and K

rst, then find out the largest positive integer L that (27) holds

rue. 

Proposition 2 turns out to be a general framework to con-

truct lower bounds on (CCO). Pagnoncelli et al. (2009) extends

he framework towards generating bounds using sample average

pproximation, which is introduced in Section 6.4 . 

. Sample average approximation 

.1. Introduction to sample average approximation 

The idea of using sample average approximation to handle

hance constraints first appeared in Sen (1992) and was subse-

uently improved with rigorous theoretical results in Luedtke and

hmed (2008) . 
Let f (x, ξ ) := max 
{
f 1 (x, ξ ) , · · · , f m (x, ξ ) 

}
, then (CCO) is equiv-

lent to min x ∈X c T x, s.t. P ( f (x, ξ ) ≤ 0) ≥ 1 − ε. Sample Aver-

ge Approximation (SAA) approximates the true distribution of

he random variable f (x, ξ ) using the empirical distribution

rom N samples { ξ i } N 
i =1 

, i.e. P ( f (x, ξ ) ≤ 0) is approximated by
1 
N 

∑ N 
i =1 1 

f (x,ξ i ) ≤0 
. 

SAA): min 
x ∈X 

c T  x (28a) 

s.t. 
1 

N 

N ∑ 

i =1 

1 
f (x,ξ i ) > 0 

≤ ε (28b) 

(SAA) is also a chance constrained optimization problem, but

ith two major differences from (CCO): (i) (SAA) is based on the

mpirical (discrete) distribution from the true distribution of ξ as

n (CCO); (ii) (SAA) has the violation probability ε instead of ε in

CCO). 

There are two critical questions to be addressed about (SAA).

hat is the connection of solutions of (SSA) with that of (CCO)?

ow to solve (SAA)? We first answer the second question in

ection 6.2 , then present the theoretical results of connecting

SAA) with (CCO). 

.2. Solving sample average approximation 

(SAA) can be reformulated as a mixed integer program (MIP)

y introducing variables z ∈ {0, 1} N ( Luedtke & Ahmed, 2008;

uszczy ́nski, 2002 ). Binary variable z i is an indicator if f (x, ξ ) ≤ 0

s being violated in sample i , i.e. 

 i = 1 
f (x,ξ i ) > 0 

(29) 

29) can be equivalently written as f (x, ξ i ) ≤ Mz i with a suf-

ciently large coefficient M > 0 . Since f (x, ξ i ) is the maximum

ver m functions { f j (x, ξ i ) } m 

j=1 
, f (x, ξ i ) ≤ Mz i implies f j (x, ξ

i ) ≤
z i , j = 1 , 2 , · · · , m . Then (SAA) is equivalent to (30), in which 1 m 

s an all one vector with size m . 

in 
x,z 

c T  x (30a) 

s.t. f (x, ξ 1 ) − Mz 1 1 m ≤ 0 (30b) 

. . . 

f (x, ξN ) − Mz N 1 m ≤ 0 (30c) 

1 

N 

N ∑ 

i =1 

z i ≤ ε (30d) 

x ∈ X , z i ∈ { 0 , 1 } , i = 1 , 2 , · · · , N (30e) 

(30) is equivalent to (SAA) for general function f ( x , ξ ), but
ormulations with big-M are typically weak formulations. In-

roducing big coefficients M might cause numerical issues as

ell. Stronger formulations of (SAA) are possible by exploit-

ng the structural features of f ( x , ξ ). A good example is the

hance-constrained linear program with separable probabilistic

onstraints: min x ∈X c T x s.t. P (T x ≥ ξ ) ≥ 1 − ε, with a constant ma-

rix T ∈ R 
d ×n . By introducing auxiliary variables v , an equivalent

ut stronger formulation without big M is (31) ( Luedtke et al.,

010 ). 

in 
x ∈X 

c T  x (31a) 

s.t. T x = v (31b) 

v + ξi z i ≥ ξi , i = 1 , 2 , · · · , N (31c) 
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z i ≤ ε (31d)

z i ∈ { 0 , 1 } , i = 1 , 2 , · · · , N (31e)

Various strong formulations for (SAA) can be found in Luedtke

et al. (2010) and references therein. (30) and (31) are mixed integer

programs, some well-known techniques from integer programming

theory can speed up the process of solving (SAA), e.g. adding cuts

( Küükyavuz, 2012; Luedtke et al., 2010; Tanner & Ntaimo, 2010 )

and decompositions ( Zeng & An, 2014; Zeng, An, & Kuznia, 2017 ). 

6.3. Feasibility guarantees of SAA 

Various feasibility guarantees of (SAA) are proved in

Luedtke and Ahmed (2008) and Pagnoncelli et al. (2009) , e.g.

the asymptotic behavior of (SAA) and when f ( x , ξ ) is Lipschitz
continuous. In this section, we only present the Lipschitz case,

which could be used for simulations in Section 9 . 

Assumption 5. There exists L > 0 such that 

| f (x, ξ ) − f (x ′ , ξ ) | ≤ L ‖ x − x ′ ‖ ∞ , ∀ x, x ′ ∈ X and ∀ ξ ∈ �. (32)

Theorem 8 ( Luedtke & Ahmed, 2008 ) . Suppose X is bounded with

diameter D and f (x, ξ ) is L-Lipschitz for any ξ ∈ � ( Assumption 5 ).

Let ε ∈ [0 , ε) , θ ∈ (0 , ε − ε) and γ > 0 . Then 

P (F 
N 
ε,γ ⊆ F ε ) ≥ 1 −

⌈ 

1 

θ

⌉ 
⌈
2 LD 

γ

⌉n 

exp (−2 N(ε − ε − θ ) 2 ) (33)

where the feasible region of (SAA) is defined as 

F 
N 
ε,γ := { x ∈ X : 

1 

N 

N ∑ 

i =1 

1 
f (x,ξ )+ γ ≤0 

≥ 1 − ε} . (34)

For fixed ε and ε, if we choose θ = (ε − ε) / 2 and a small num-

ber γ > 0, then Theorem 8 suggests that using 

N ≥ 2 

(ε − ε) 2 

[
ln ( 

1 

β
) + n ln ( 

⌈
2 LD 

γ

⌉
) + ln ( 

⌈ 

2 

ε − ε 

⌉ 

) 
]

(35)

number of samples, solutions of (SAA) is feasible to (CCO) with

high probability 1 − β, i.e. P (F 
N 
ε,γ ⊆ F ε ) ≥ 1 − β . 

The results in Theorem 8 look quite similar to those of the

scenario approach (e.g. Remark 4 ). Indeed, (SAA) with ε = 0 is

the same as the scenario problem SP N . However, one major dif-

ference of Theorem 8 from the scenario approach theory is that:

Theorem 8 holds for the feasible region of (SAA), i.e. F 
N 
ε,γ ⊆ F ε

with high probability. While the theory of the scenario approach

only proves the property of the optimal solution x ∗
N 
, i.e. x ∗

N 
is fea-

sible with high probability. Other feasible solutions to SP N do not

necessarily process the properties guaranteed by the scenario ap-

proach (e.g. Theorem 5 ). 

Although Theorem 8 provides explicit sample complexity

bounds for (SAA) to obtain feasible solution, it requires some ef-

forts to be applied, e.g. tuning parameters ( ε, θ ) and calculation
of L and D . Campi and Garatti (2011) provides a similar but more

straightforward theoretical result. 

Theorem 9 (Sampling & Discarding ( Campi & Garatti, 2011 )) . If we

draw N samples and discard any k of them, then use the scenario

approach with the remaining N − k samples. If N and k satisfy (
k + n − 1 

k 

)
·
k + n −1 ∑ 

i =0 

(
N 

i 

)
ε i (1 − ε) N−i ≤ β (36)

then P 
N 
(

P ξ ( f (x ∗
N,k 

, ξ ) ≤ 0) ≥ 1 − ε
)

≥ 1 − β . 

Given parameters N , ε and β , we find the largest k that

(36) holds, then the solution to (SAA) with ε = k/N is feasible to

(CCO) with probability at least 1 − β . 
.4. Optimality guarantees of sample average approximation 

It is intuitive that if ε > ε, then the objective values of (SAA)
ield lower bounds to (CCO). Theorem 10 formalizes this intuition.

heorem 10 ( Luedtke & Ahmed, 2008 ) . Let ε > ε and assume that

CCO) has an optimal solution. Then 

 

(
ˆ o N ε ≤ o � ε

)
≥ 1 − exp (−2 N(ε − ε) 2 ) . (37)

Theorem 10 directly suggests a method to construct lower

ounds on (CCO). 

roposition 3. If we choose ε > ε and N ≥ 1 
2(ε−ε) 2 

log ( 1 
δ
) , let o SAA ε 

enote the objective value of (SAA), then o ε is a lower bound with

robability at least 1 − δ, i.e. P (o ∗
N,ε ≤ o � ε ) ≥ 1 − δ. 

There is an alternative method using SAA to generate lower

ounds of (CCO). Luedtke and Ahmed (2008) extends the frame-

ork in Proposition 2 towards SAA. 

roposition 4 ( Luedtke & Ahmed, 2008 ) . Take K sets of N indepen-

ent samples { ξ i, j } N 
i =1 

, ( j = 1 , 2 , · · · , K). For the jth dataset { ξ i, j } N 
i =1 

,

e solve the associated (SAA) problem and calculate the associated

bjective value o ∗
N,ε, j 

(for simplicity o ∗
j 
and j = 1 , 2 , · · · , K). Without

oss of generality, we assume that o ∗
1 

≤ o ∗
2 

≤ · · · ≤ o ∗
K 
. 

Given δ ∈ (0, 1), ε ∈ [0, 1), let us choose positive integers N , L , K

L ≤K) such that 

L −1 
 

i =0 

(
K 

i 

)[
b(ε, ε, N) 

]
i 
[
1 − b(ε, ε, N) 

]
K−i ≥ δ (38)

here b(ε, ε, N) := 

∑ � εN � 
i =0 

(
N 
i 

)
ε i (1 − ε) N−i . 

Then o ∗
L 
serves as a lower bound to (CCO) with probability at least

 − δ. 

. Robust optimization related methods 

.1. Introduction to robust optimization 

The last category of solutions to (CCO) is closely related with

obust optimization (RO), its typical form is shown in (39). 

RC): min 
x ∈X 

c T  x (39a)

s.t. f (x, ξ ) ≤ 0 , ∀ ξ ∈ U ε (39b)

(39) finds the optimal solution which is feasible to all realiza-

ions of uncertainties in a predefined uncertainty set U ε . (39) is
alled the Robust Counterpart (RC) of the original problem (CCO).

y constructing an uncertainty set U ε with proper shape and size,

olutions to (RC) could be suboptimal or approximate solutions to

CCO). 

Designing uncertainty sets lies at the heart of robust optimiza-

ion. A good uncertainty set should meet the following two stan-

ards: 

(S1) The resulting (RC) problem is computationally tractable. 

(S2) The optimal solution to (RC) is not too conservative or

overly optimistic. 

Unfortunately, (RC) of general robust convex problems (under

ssumption 2 ) is not always computationally tractable. For ex-

mple, (RC) of a second order cone program (SOCP) with poly-

edral uncertainty set is NP-Hard ( Ben-Tal & Nemirovski, 1998;

en-Tal, Nemirovski, & Roos, 2002; Bertsimas, Brown, & Caramanis,

011 ). Fortunately, robust linear programs are well-studied, and

RC) of linear programs is tractable for common choices of uncer-

ainty sets. Most tractability results of robust linear optimization
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C  
re summarized in Bertsimas et al. (2011) . For tractable formu-

ations of general convex RO problems, various solutions can be

ound in Bertsimas and Sim (2006) and Ben-Tal et al. (2009) . 

For simplicity, we present solutions to the following chance-

onstrained linear program (CCLP). 3 

in 
x ∈X 

c T  x (40a) 

s.t. P ξ

(
x i 0 + ξᵀ x i ≤ 0 , i = 1 , 2 , · · · , m 

)
≥ 1 − ε (40b) 

nd its robust counterpart 

in 
x ∈X 

c T  x (41a) 

s.t. x i 0 + ξᵀ x i ≤ 0 , ∀ ξ ∈ U ε , i = 1 , 2 , · · · , m (41b) 

In (40) and (41), decision variables are { x i 
0 
, x i } m 

i =1 
, where x i 

0 
∈ R

nd x i ∈ R 
n . Uncertainties are represented by ξ ∈ R 

d 4 With a little

buse of notation, we use x = [ x 1 
0 
, x 1 , · · · , x m 

0 
, x m ] T to represent all

he decision variables. 

Standard (S2) is directly connected with chance constraints, we

how the connection between RO and CCO in Sections 7.2 –7.4 . 

.2. Safe approximation 

Almost every RO-related solution to (CCO) is based on the idea

f safe approximation. 

efinition 11 (Safe Approximation) . Let x ∈ F and x ∈ F denote

wo sets of constraints. We say F is a safe approximation (or inner

pproximation) of F if F ⊆ F . 

An optimization problem (SA) is called a safe approximation of

CCO) if F ⊆ F ε , where F ε represents the feasible region of (CCO)

s in Definition 3 . 

SA): min 
x ∈X 

c T  x (42a) 

s.t. x ∈ F (42b) 

F ⊆ F ε indicates that every solution to (SA) is feasible to (CCO).

herefore every optimal solution to (SA) is suboptimal to (CCO) and

erves as an upper bound on (CCO). 

There are two major approaches to constructing safe approxi-

ations of the chance constraint P ξ

(
f (x, ξ ) ≤ 0 

)
≥ 1 − ε: (i) con-

tructing a function π(x ) ≥ P ξ

(
f (x, ξ ) > 0 

)
, then π ( x ) ≤ ε is a

afe approximation of the chance constraint; (ii) constructing a

roper uncertainty set U ε such that F ε ⊇ F U ε := { x ∈ R 
n : f (x, ξ ) ≤

 , ∀ ξ ∈ U ε} . Although these two approaches look quite different,

ection 7.3.2 shows that they are closely related with each other. 

We first review how to apply these two approaches to obtain

afe approximation of individual chance constraints in Section 7.2 .

afe approximations of joint chance constraints ( Section 7.4 ) are

uilt upon the results of individual chance constraints. 

.3. Safe approximation of individual chance constraints 

RO has been quite successful in constructing safe approxima-

ions of individual chance constraints. A general form of individual

hance-constrained programs is (43). 

in 
x ∈X 

c T  x (43a) 
3 A (seemingly) more general form of the linear chance constraint is P 

(
A (ξ ) x ≤

(ξ )) 
)

≥ 1 − ε, where A ( ξ ) and b ( ξ ) denote affine functions of ξ . This could be 

quivalently represented in the form of (40b) by enforcing additional affine con- 

traints ( Chen et al., 2010 ). 
4 Notice d = n in (40) and (41). 

a  

S

D  

(

C

s.t. P ξ

(
f (x, ξ ) ≤ 0 

)
≥ 1 − ε (43b) 

In the individual chance constraint (43b) , the inner function f ( x ,

): R 
n ×R 

d → R 
1 is a scalar-valued function. In Section 7.3 , all f ( x ,

) are scalar-valued functions if not specified. 

Section 7.2 outlines two different but related approaches to

onstructing safe approximations. The first approach is presented

n Sections 7.3.1 –7.3.2 . The second approach is summarized in

ection 7.3.3 . 

.3.1. Convex approximation 

Convex approximation is a general framework to build safe ap-

roximations of individual chance constraints. The idea of con-

ex approximation first appeared in Pintér (1989) , then was com-

leted in Nemirovski and Shapiro (2006) . The convex approxima-

ion framework is based on the concept of generating function. 

efinition 12 (Generating Function) . A function φ: R → R is called

 (one-dimensional) generating function if it is nonnegative valued,

ondecreasing, convex and satisfying the following property: 

(z) > φ(0) = 1 , ∀ z > 0 . (44)

The idea of convex approximation starts from the following

emma. 

emma 1. For a positive constant t ∈ R + and a random variable

 ∈ R , it holds that 

 [ φ(t −1 z)] ≥ E [ 1 t −1 z≥0 ] = P z (t 
−1 z ≥ 0) = P (z ≥ 0) (45)

Replace z with f ( x , ξ ), then E [ φ(t −1 f (x, ξ ))] ≥ P ξ

(
f (x, ξ ) >

 

)
= P ξ

(
t −1 f (x, ξ ) > 0 

)
. In other words, E [ φ(t −1 f (x, ξ ))] ≤ ε is a

afe approximation to P ξ

(
f (x, ξ ) ≤ 0 

)
≥ 1 − ε. 

heorem 11 (Convex Approximation ( Nemirovski &

hapiro, 2006 )) . Let φ( ·) be a generating function, then (CA) is
 safe approximation to (CCO). 

CA): min 
x ∈X 

c T  x (46a) 

s.t. inf 
t> 0 

[
t E ξ [ φ( 

f (x, ξ ) 

t 
)] − t ε

]
≤ 0 (46b) 

Under Assumption 2 , (CA) is convex in x. 

emark 6. We can get rid of the strict inequality t > 0 by approx-

mating it using t ≥ δ, where δ is very small positive number (e.g.

= 10 −4 ). Furthermore, we can show that (CA) is equivalent to

47), which is convex in ( x , t ). 

min 
 ∈X ,t≥δ

c T  x (47a) 

s.t. tE ξ [ φ( 
f (x, ξ ) 

t 
)] − tε ≤ 0 (47b) 

Choosing a good generating functions plays a crucial role

n the convex approximation framework. Choices of generating

unctions include: Markov bound φ(z) = [1 + z] + , Chernoff bound

(z) = exp (z) , Chebyshev bound φ(z) = [ z + 1] 2 + and Traditional
hebyshev bound φ(z) = (z + 1) 2 . The least conservative gener-

ting function is the Markov bound φ(z) = [1 + z] + ( Föllmer &

chied, 2011; Nemirovski & Shapiro, 2006 ). 

efinition 13 (Conditional Value at Risk) . Conditional value at risk

CVaR) of a random variable z at level 1 − ε is defined as 

VaR (z;1 − ε) := inf 
γ

(γ + 

1 

ε
E 

[
[ z − γ ] + 

]
) (48) 
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Proposition 5 ( Chen et al., 2010; Nemirovski & Shapiro,

2006 ) . (CA) with Markov bound φ(z) = [ z + 1] + is equivalent to (49).

min 
x ∈X 

c T  x (49a)

s.t. CVaR 
(
f (x, ξ ) ;1 − ε

)
≤ 0 (49b)

Section 2 shows an individual chance constraint P 

(
f (x, ξ ) ≤

0 
)

≥ 1 − ε is equivalent to VaR ( f (x, ξ ) ;1 − ε) ≤ 0 . It is

well-known that CVaR (z;1 − ε) ≥ VaR (z;1 − ε) . Therefore,

CVaR ( f (x, ξ ) ;1 − ε) ≤ 0 implies VaR ( f (x, ξ ) ;1 − ε) ≤ 0 . In other

words, CVaR ( f (x, ξ ) ;1 − ε) ≤ 0 is a safe approximation to both

VaR ( f (x, ξ ) ;1 − ε) ≤ 0 and the chance constraint (43b) . 

Remark 7 (Sample Approximation of CVaR) . Rockafellar and Urya-

sev (20 0 0) utilizes a dataset { ξ i } N 
i =1 

to estimate CVaR. 

min 
x ∈ X,t 

c T  x (50a)

s.t. 
1 

N 

N ∑ 

i =1 

[ f (x, ξ i ) + t ] + ≤ t ε (50b)

By introducing N auxiliary variables, Rockafellar and Uryasev

(20 0 0) shows that (50) can be reformulated as a convex prob-

lem that is easy to solve. Detailed reformulation can be found in

Rockafellar and Uryasev (20 0 0) and the full-length version of this

paper ( Geng & Xie, 2019a ). With a sufficient number of data points

( N is large enough), (50) is a safe approximation to (CCO). However,

it remains unknown about the exact requirement on the number of

samples needed. The sample approximation of CVaR may not nec-

essarily yield a safe approximation ( Chen et al., 2010 ). 

The generating function based framework in Nemirovski and

Shapiro (2006) was further improved and completed in Ben-Tal

et al. (2009) and Nemirovski (2012) . But the methods proposed

there are mainly analytical and aim at solving distributionally ro-

bust problems, which is beyond the scope of this paper. More de-

tails can be found in Fig. 2 and references therein. 

7.3.2. CVaR-based convex approximation of individual chance 

constraints 

As pointed out in Nemirovski and Shapiro (2006) , calculating

CVaR is computationally intractable. In order to obtain tractable

forms of the CVaR-based convex approximation, one approach is

the sample approximation in Remark 7 . An alternative approach

is to bound the CVaR function from above, e.g. finding a function

π(x ) ≥ CVaR ( f (x, ξ ) ;1 − ε) , then π ( x ) ≤0 is a safe approximation

to both CVaR ( f (x, ξ ) ;1 − ε) ≤ 0 and the original chance constraint

(43). In the latter approach, the uncertainties ξ ∼� are partially

characterized using directional deviations. 

Definition 14 (Directional Deviations ( Chen, Sim, & Sun,

2007 )) . Given a random variable ξ ∈ R with zero mean, the

forward deviation is defined as 

δ+ (ξ ) := sup 
θ> 0 

{√ 

2 ln (E [ exp (θξ )]) 

θ2 

}
(51)

and the backward deviation is defined as 

δ−(ξ ) := sup 
θ> 0 

{√ 

2 ln (E [ exp (−θξ )]) 

θ2 

}
. (52)

Assumption 6 ( Chen & Sim, 2009 ) . Let W denote the smallest

closed convex set containing the support � of ξ . We assume that

the support set is a second-order conic representable set (e.g. poly-

hedral and ellipsoidal sets). 
ssumption 7 ( Chen & Sim, 2009 ) . Assume the uncertainties

 ξi } d i =1 
are zero mean random variables, with a positive definite co-

ariance matrix �. We define the following index set: 

 + := { i : δ+ (ξi ) < ∞} , I + := { i : δ+ (ξi ) = ∞} , (53)

 − := { i : δ−(ξi ) < ∞} , I − := { i : δ−(ξi ) = ∞} . (54)

For notation simplicity, we define two matrices diagonal P and

 as: 

 := diag (δ+ (ξ1 ) , · · · , δ+ (ξd )) , Q := diag (δ−(ξ1 ) , · · · , δ−(ξd )) . 

ajor results developed in Chen et al. (2007) and Chen and Sim

2009) are for the individual linear chance constraint (55) with de-

ision variables x 0 ∈ R , x ∈ R 
n : 

 ξ

(
x 0 + ξᵀ x ≤ 0 

)
≥ 1 − ε (55)

ts convex approximation using CVaR (or Markov bound) is 

 + 

1 

ε
E 

[
[ x 0 + ξᵀ x − t] + 

]
≤ 0 (56)

f we are able to find a function π ( x 0 , x ) as an upper bound on

 

[
[ x 0 + ξᵀ x ] + 

]
, then 

 + 

1 

ε
π(x 0 − t, x ) ≤ 0 (57)

s a safe approximation to (56) . 

heorem 12. ( Chen & Sim, 2009 ) Suppose that the primitive un-

ertainty ξ satisfies Assumptions 6 and 7 . The following functions
i (x 0 , x ) , i = 1 , · · · , 5 are upper bounds of E ξ

[
[ x 0 + ξᵀ x ] + 

]
: 

1 (x 0 , x ) := 

[
x 0 + max 

ξ∈W 

ξᵀ x 
]

+ (58)

2 (x 0 , x ) := x 0 + 

[
− x 0 + max 

ξ∈W 

(−ξ ) T  x 
]

+ (59)

3 (x 0 , x ) := 

1 

2 

(
x 0 + 

√ 

x 2 
0 

+ x T  �x 

)
(60)

4 (x 0 , x ) := inf 
μ> 0 

{
μ

ε
exp 

(
x 0 
μ

+ 

u T  u 

2 μ2 

)}
. (61)

here u j = max { x j δ+ (ξ j ) , −x j δ−(ξ j ) } , j = 1 , · · · , n . This bound is fi-

ite if and only if x j ≤ 0 , ∀ j ∈ I + and x j ≥ 0 , ∀ j ∈ I −. 

5 (x 0 , x ) := x 0 + inf 
μ> 0 

{
μ

ε
exp 

(
− x 0 

μ
+ 

v T  v 
2 μ2 

)}
. (62)

here v j = max {−x j δ+ (ξ j ) , x j δ−(ξ j ) } , j = 1 , · · · , n . This bound is fi-

ite if and only if x j ≥ 0 , ∀ j ∈ I + and x j ≤ 0 , ∀ j ∈ I −. 

emark 8. The epigraphs of π i (x 0 , x ) , i = 1 , · · · , 5 can be repre-

ented as second-order cones. Explicit representations depend on

he form of W . More details about the representation of (57) with

ifferent choices of π i ( x 0 , y ) can be found in Chen and Sim

2009) and Geng and Xie (2019a) . 

.3.3. Constructing uncertainty sets 

We consider the individual linear chance constraint (55) as in

ection 7.3.2 . The robust counterpart of (55) is 

 0 + ξᵀ x ≤ 0 , ∀ ξ ∈ U ε (63)

ssumption 8. { ξi } d i =1 
are independent of each other with zero

ean and take values on [ −1 , 1] d , i.e. E [ ξi ] = 0 and ξi ∈ [ −1 , 1] for

 = 1 , 2 , · · · , d. 

Clearly, under Assumption 8 , a natural choice of uncertainty

et is the box U box := { ξ ∈ R 
d : −1 ≤ ξ ≤ 1 } . Then F 

box := { x ∈ R 
n :
U 
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5 Most people simply choose εi = ε/m ( Chen et al., 2007; Nemirovski & Shapiro, 

2006 ), which could be quite conservative if m is a large number. 
f (x, ξ ) ≤ 0 , ∀ ξ ∈ U box } is a safe approximation to F ε , i.e. F 
box 
U ⊆

 ε . However, using U box leads to P ( f (x, ξ ) ≥ 0) = 0 � ε, which

auses conservativeness or even infeasibility in many cases. The

ollowing choices of uncertainty sets are less conservative. 

heorem 13 ( Ben-Tal et al., 2009; Ben-Tal & Nemirovski, 1999;

ertsimas & Sim, 2004 ) . (63) is a safe approximation to (55) if U ε
s one of the following: 

 
ball 
ε := 

{ 

ξ ∈ R 
d : ‖ ξ‖ 2 ≤

√ 

2 ln (1 /ε) 
} 

(64a) 

 
ball-box 
ε := 

{ 

ξ ∈ R 
d : ‖ ξ‖ ∞ ≤ 1 , ‖ ξ‖ 2 ≤

√ 

2 ln (1 /ε) 
} 

(64b) 

 

budget 
ε := 

{ 

ξ ∈ R 
d : ‖ ξ‖ 1 ≤

√ 

2 d ln (1 /ε) 
} 

(64c) 

And the resulting robust counterparts (RC)s are second-order cone

epresentable (see Chapter 2 of Ben-Tal et al. (2009) and the full-

ength version of this paper ( Geng & Xie, 2019a )). 

It turns out that constructing uncertainty set U ε is closely re-

ated with the convex approximation framework in Sections 7.3.1 –

.3.2 . 

heorem 14 ( Chen et al., 2010 ) . Suppose that π ( x 0 , x ) is a con-

ex, closed and positively homogeneous, and is an upper bound to

 ξ

[
[ x 0 + ξᵀ x ] + 

]
with π(x 0 , 0) = x + 

0 
. Then under Assumptions 6 and

 and given ε ∈ (0, 1), it holds that for all ( x 0 , x ) such that π ( x 0 ,

 ) < ∞ , we have 

nf 
t 

(
t + 

1 

ε
π(x 0 − t, x ) 

)
= x 0 + max 

z∈U ε
x T  z (65)

or some convex uncertainty set U ε . 

Given an upper bound π ( x 0 , x ) on E 

[
[ x 0 + ξᵀ x ] + 

]
with required

roperties, the safe approximation (57) can be represented in the

orm of x 0 + max ξ∈U ε ξᵀ x for some U ε . Theorem 14 only proves

he existence of a corresponding uncertainty set U ε . For the π i ( x 0 ,

 ) functions given in Theorem 12 , their corresponding uncertainty

ets can be explicitly calculated. 

roposition 6 ( Chen et al., 2010 ) . For the functions π i (x 0 , x ) , i =
 , 2 , · · · , 5 in Theorem 12 , their corresponding uncertainty sets are

 
1 
ε ∼ U 5 ε below. 

 
1 
ε := W, (66) 

 
2 
ε := 

{ 

ξ ∈ R 
d : ξ = (1 − 1 

ε
) ζ , for some ζ ∈ W 

} 

, (67) 

 
3 
ε := 

{ 

ξ ∈ R 
d : ‖ �− 1 

2 ξ‖ 2 ≤
√ 

1 − ε

ε

} 

(68) 

 
4 
ε := 

{ 

ξ ∈ R 
d : ∃ s, t ∈ R 

d , ξ = s − t, 

‖ P −1 s + Q 
−1 t‖ 2 ≤

√ 

−2 ln (ε) 
} 

, (69) 

 
5 
ε := 

{ 

ξ ∈ R 
d : ∃ s, t ∈ R 

d , ξ = s − t, 

‖ P −1 s + Q 
−1 t‖ 2 ≤ 1 − ε

ε

√ 

2 ln ( 
1 

1 − ε
) 
} 

. (70) 

here matrices �, P and Q are defined in Assumptions 6 and 7 . 

Theorem 14 and Proposition 6 demonstrate that the two seem-

ngly different approaches to constructing safe approximations in

ection 7.2 are equivalent in many circumstances. 
.4. Safe approximation of joint chance constraints 

Although RO has been successful in approximating individual

hance constraints, it is rather unsatisfactory in approximating

oint chance constraints ( Chen et al., 2010 ). We restate the joint

hance constraint (1b) below 

 ξ

(
f (x, ξ ) ≤ 0 

)
≥ 1 − ε. (71)

ost RO-based approaches convert a joint chance constraint to

everal individual chance constraints, then apply the techniques in

ection 7.3 on each individual chance constraint. Results along this

ine are summarized in Section 7.4.1 . Very few approaches directly

eal with joint chance constraints, these approaches are mentioned

n Section 7.4.2 . 

.4.1. Conversion between joint chance constraints and individual 

hance constraints 

Section 2.2 presents two common approaches to converting a

oint chance constraint to individual chance constraints. 

First, according to the Bonferroni inequality, if 
∑ m 

i =1 εi ≤ ε, then

he set of m individual chance constraints 

 

(
f i (x, ξ ) ≤ 0 

)
≤ 1 − εi , i = 1 , · · · , m (72)

s a safe approximation to the joint chance constraint P ( f (x, ξ ) ≤
) ≤ 1 − ε. The main issue of this approach is the choice of { εi } m 

i =1 
.

he problem becomes intractable if taking { εi } m 

i =1 
as decision vari-

bles ( Chen et al., 2010; Nemirovski & Shapiro, 2006 ). It remains

nclear about how to find the optimal choices of { εi } m 

i =1 
. 5 Ob-

iously, this approach could be quite conservative in the follow-

ng two cases: (i) the individual constraints f i (x, ξ ) , i = 1 , 2 , · · · , m

re correlated; and (ii) the choices of { εi } m 

i =1 
are suboptimal. Chen

t al. (2010) provides some deep observations on the limitation of

his approach: the Bonferroni’s inequality could still lead to conser-

ativeness even when (i) the individual chance constraints (72) are

ndependent; and (ii) the optimal choices of { εi } m 

i =1 
are found. In

ther words, (72) is only a safe approximation at best, it may not

e equivalent to (1b) even with optimal { εi } m 

i =1 
. 

The second approach is to define the pointwise maximum of

unctions { f i (x, ξ ) } m 

i =1 
over x and ξ , i.e. 

f (x, ξ ) := max 

{ 

f 1 (x, ξ ) , · · · , f m (x, ξ ) 
} 

. 

hen the joint chance constraint P ( f (x, ξ ) ≤ 0) ≥ 1 − ε is equiv-

lent to the individual chance constraint P ξ

(
f (x, ξ ) ≤ 0 

)
≥ 1 − ε.

he advantage of this approach is that it does not require param-

ter tuning or induce additional conservativeness. In some cases,

.g. the scenario approximation of CVaR in Remark 7 , this could

ead to formulations that are easy to solve ( Geng & Xie, 2019a ).

owever, in most cases, the structure of f (x, ξ ) is too complicated

o apply the techniques in Section 7.3 . 

.4.2. Other approaches 

There might be only three RO-related approaches that directly

eal with joint chance constraints. The first approach is robust

onic optimization (see Chapter 5–11 of Ben-Tal et al. (2009) ). The

nner constraint f ( x , ξ ) ≤0 is written as a conic inequality, then

ractable safe approximations of the robust conic inequality are de-

ived and solved. This approach can model a majority of optimiza-

ion problems under uncertainties. However, the main limitation

s that the resulting robust counterparts are not tractable in many

ircumstances. 
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Fig. 3. Representative feed-forward decisions made in power system planning and operation. 
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6 Wind generation is treated as negative loads. 
The second approach ( Chen et al., 2010 ) generalizes the CVaR-

based convex approximation in Theorem 12 and Proposition 6 . It

proposes a safe approximation to the joint chance constraint (1b) ,

and the safe approximation is second-order cone representable.

The performance of this approach depends on the choice of a

few tuning parameters. Although it is difficult to find the optimal

setting, Chen et al. (2010) designed an algorithm that is guaran-

teed to improve the choice of parameters. Chen et al. (2010) also

shows that it is possible to combine all the π i ( x 0 , x ) functions in

Theorem 12 together to reduce conservativeness. 

The third approach directly dealing with joint chance con-

straints is the data-driven robust optimization proposed in

Bertsimas, Gupta, and Kallus (2018) . It shows that by running dif-

ferent hypothesis tests on datasets, it is possible to construct dif-

ferent uncertainty sets that lead to safe approximations of the joint

chance constraint (1b) with high probability. It is worth noting that

the theoretical results in Bertsimas et al. (2018) holds for non-

convex functions f ( x , ξ ), albeit the resulting (RC) is very likely to
be computationally intractable. 

8. Applications in power systems 

A pivotal task in modern power system operation is to maintain

the real-time balance of supply and demand while ensuring the

system is low-cost and reliable. This pivotal task, however, faces

critical challenges in the presence of rapid growth of renewable

energy resources. Chance-constrained optimization, which explic-

itly models the risk that the system is exposed to, is a suitable

conceptual framework to ensure the security and reliability of a

power system under uncertainties. 

There is a large body of literature adopting CCO for power

system applications. Fig. 3 presents some existing applications of

CCO in power systems. In the following sections, we introduce

three important applications of CCO in power systems: security-

constrained economic dispatch ( Section 8.1 ), security-constrained

unit commitment ( Section 8.2 ) and generation and transmission

expansion ( Section 8.3 ). 

Fig. 3 also presents a feed-forward decision making framework

for power system operations. The feed-forward framework parti-

tions the overall decision making process into several time seg-

ments. The longer-term decisions (e.g. generation expansion) are

fed into shorter-term decision making processes (e.g. unit com-

mitment). The shorter-term decisions (e.g. generation commitment

from SCUC) have direct impacts on real-time operations (e.g. dis-

patch results in SCED). As time draws closer to the actual physical

operation, information gets much sharper and the prediction about

future could be significantly improved ( Xie et al., 2011 ). 

8.1. Security-constrained economic dispatch 

8.1.1. Deterministic SCED 

Security-constrained Economic Dispatch (SCED) lies at the cen-

ter of modern electricity markets and short-term power system op-
rations. It determines the most cost-efficient output levels of gen-

rators while keeping the real-time balance between supply and

emand. Different variations of the SCED problem are all based

n the direct current optimal power flow (DCOPF) problem. We

resent a typical form of DCOPF with wind generation. 

det-DCOPF): min 
g 

c(g) (73a)

s.t 1 T  g = 1 T  d − 1 T  ˆ w (73b)

f = H g g + H w ˆ w − H d d (73c)

f ≤ f ≤ f (73d)

g ≤ g ≤ g (73e)

The decision variables are generation output levels g ∈ R 
n g . The

bjective of (det-DCOPF) is to minimize total generation cost c ( g ),

hile ensuring total generation equates total net demand 6 (73b) .

onstraints include transmission line flow limits (73c) –(73d) and

eneration capacity limits (73e) . Transmission line flows f ∈ R 
n l 

re calculated using (73c) , in which H is the power transfer dis-

ribution factor (PTDF) matrix, and H g ∈ R 
n l ×n g ( H d ∈ R 

n l ×n d , H w ∈
 
n l ×n w ) denotes the submatrix formed by the columns of H cor-

esponding to generators (loads, wind farms). (73) utilizes the ex-

ected wind generation or wind forecast ˆ w , we refer to (73) as

eterministic DCOPF (det-DCOPF) since no uncertainties are being

onsidered. 

.1.2. Chance-constrained SCED 

Many researchers advance (det-DCOPF) towards a chance-

onstrained formulation with wind uncertainties. A representative

ormulation is (74), which appears in a majority of the existing lit-

ratures, e.g. ( Bienstock, Chertkov, & Harnett, 2014; Vrakopoulou,

argellos, Lygeros, & Andersson, 2013a ). 

(cc-DCOPF): 

in 
g,η

c(g) (74a)

s.t 1 T  g = 1 T  d − 1 T  ˆ w (74b)

f ( ̂  w , ˜ w ) = H g (g − 1 T  ˜ w η) 

− H d d + H w ( ̂  w + ˜ w ) (74c)

P ̃ w 

(
f ≤ f ( ̂  w , ˜ w ) ≤ f and 

g ≤ g − 1 T  ˜ w η ≤ g 

)
≥ 1 − ε (74d)

1 T  η = 1 (74e)
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7 Many papers still utilize the first sample complexity bound proved in 

Calafiore and Campi (2005) , which was significantly tightened in Campi and Garatti 

(2008) and following works ( Calafiore, 2010 ). 
g ≤ g ≤ g (74f) 

− 1 ≤ η ≤ 1 (74g) 

Unlike (det-DCOPF) using wind forecast ˆ w , chance-constrained

COPF (cc-DCOPF) explicitly models wind generation as a ran-

om vector w ∈ R 
n w . The wind generation w = ˆ w + ˜ w is decom-

osed into two components: the deterministic wind forecast value

ˆ  ∈ R 
n w and the uncertain forecast error ˜ w ∈ R 

n w . To guarantee the

eal-time balance of supply and demand, (cc-DCOPF) introduces an

ffine control policy η ∈ [ −1 , 1] n g to proportionally allocate total

ind fluctuations 1 T ˜ w to each generator. It is easy to verify that

onstraints (74b) and (74e) imply the supply-demand balance in

he presence of wind uncertainties, i.e. 

 T
 (g − 1 T  ˜ w η) = 1 T  d − 1 T  ( ̂  w + ˜ w ) , (75)

he affine policy vector η ∈ R 
n g is sometimes referred as participa-

ion factor or distribution vector ( Vrakopoulou et al., 2013a ). The

joint) chance constraint (74d) constrains the transmission flow

nd generation within their capacities with high probability 1 − ε
n the presence of wind uncertainties. 

For simplicity, we only account for the major source of uncer-

ainties (i.e. wind) in the real-time. Many references provides more

omplicated formulation of (cc-DCOPF), e.g. considering joint un-

ertainties from load and wind ( Doostizadeh, Aminifar, Ghasemi, &

esani, 2016; Mühlpfordt, Faulwasser, Roald, & Hagenmeyer, 2017 ),

nd contingencies of potential generator or transmission line out-

ges ( Roald, Misra, Chertkov, & Andersson, 2015 ). 

There exist a few different but similar formulations of (cc-

COPF). In general, policies of any form could help balance sup-

ly with demand under uncertainties. The affine policy in (cc-

COPF) is the simplest choice and lead to optimization problems

hat are easy to solve. There are other papers applying differ-

nt forms of policies, e.g. Jabr (2013) introduces a matrix form of

he affine policy ϒ ∈ R 
n g ×n w , which specifies the corrective con-

rol of each generator on each wind farm. (cc-DCOPF) is a single

napshot dispatch problem, it is straightforward to extend it to

 multi-period or look-ahead dispatch problem ( Modarresi et al.,

018; Vrakopoulou et al., 2013a ). Many papers evaluate the im-

acts of new elements in modern power systems, such as demand

esponse ( Ming, Xie, Campi, Garatti, & Kumar, 2017; Zhang, Shen, &

athieu, 2017 ), ambient temperatures and meteorological quanti-

ies ( Bucher, Vrakopoulou, & Andersson, 2013 ), and frequency con-

rol ( Li & Mathieu, 2015; Zhang, Shen et al., 2017 ). 

Although DC power flow equations have been widely accepted

n modern power system operations and planning, it is only a lin-

ar approximation of the alternating current (AC) version, which

s a more accurate model of the underlying physical laws. Many

ffort s have been made to solve the chance-constrained AC op-

imal power flow (cc-ACOPF) problem, e.g. Vrakopoulou, Katsam-

ani, Margellos, Lygeros, and Andersson (2013) , Roald and Anders-

on (2017) , Venzke, Halilbasic, Markovic, Hug, and Chatzivasileiadis

2017) and Anese, Baker, and Summers (2017) . Major difficulties

o solve cc-ACOPF come from the non-convexity of AC power flow

quations. It remains as an open question that how to ensure the

easibility of the non-convex AC power flow equations under un-

ertainties. 

.1.3. Solving cc-DCOPF 

Table 1 summarizes various methods to solve (cc-DCOPF). The

ost popular one consists of two steps: (i) decomposing the joint

hance constraint (74d) into individual ones P ξ ( f i (x, ξ ) ≤ 0) ≥ 1 −
i , i = 1 , 2 , · · · , m ; (ii) deriving the deterministic equivalent form of

ach individual chance constraint by making the Gaussian assump-

ion. More technical details of this method are in Section 3.2 . This
ethod is taken by many researchers for its simplicity and compu-

ationally tractable reformulation. Although the Gaussian assump-

ion enjoys the law of large numbers, it is often an approxima-

ion or even doubtful assumption. For example, Hodge and Milli-

an (2011) shows that the wind forecast error is better represented

y Cauchy distributions instead of Gaussian ones. The first step of

his method is to decompose a joint chance constraint P ξ ( f (x, ξ ) ≤
) ≥ 1 − ε into individual ones. As discussed in Sections 2.2 and

.4.1 , this step often introduces conservativeness because of the

imitation of the Bonferroni inequality. The level of conservative-

ess could be significant when the number of constraints m is

arge, which is typically the case in power systems. 

The scenario approach is another commonly-accepted method.

t provides rigorous guarantees on the quality of the solution and

oes not assume the distribution is Gaussian or any particular

ype. Most papers adopting the scenario approach apply the a-

riori guarantees (e.g. Theorem 5 and 6 ) on (cc-DCOPF) and verify

he a-posteriori feasibility of solutions through Monte-Carlo sim-

lations (25) . One common observation is that the solution x ∗
N 

s often quite conservative, i.e. V (x ∗
N 
) � ε. One major source of

onservativeness is the loose sample complexity bounds N . 7 Since

cc-DCOPF) is convex, Theorem 4 states that the number of deci-

ion variables n is an upper bound of the number of support sce-

arios |S| or Helly’s dimension h . This upper bound, as pointed

ut in Modarresi et al. (2018) , is indeed very loose. ( Modarresi

t al., 2018 ) reported only ∼5 support scenarios for a chance-

onstrained look-ahead SCED problem with thousands of decision

ariables. By exploiting the structural features of (cc-DCOPF), the

ample complexity bound N can be significantly improved. Unfor-

unately, only Modarresi et al. (2018) and Ming et al. (2017) fol-

owed this path to reduce conservativeness. 

There are also many papers utilizing the robust optimiza-

ion related methods to solve (cc-DCOPF). Jiang, Wang, and Guan

2012) constructs uncertainty sets with the help of probabilis-

ic guarantees in Bertsimas and Sim (2004) . References Summers,

arrington, Morari, and Lygeros (2014, 2015) incorporate the con-

ex approximation framework and compare different choices of

enerating functions φ( z ) on (cc-DCOPF). Although there are no ex-

licit forms of chance constraints in Zhang and Giannakis (2013) ,

he CVaR-oriented approach therein can be interpreted as solving

c-DCOPF using convex approximation with the choice of Markov

ound. 

Most papers in Table 1 aim at finding suboptimal solutions

o (cc-DCOPF). However, it is somewhat surprising to note that

one of them estimates how suboptimal the solution is via ap-

roaches like Proposition 2 or 4 . Almost all the papers evaluate

he a-posteriori feasibility by Monte-Carlo simulations with a huge

ample size. Methods like Proposition 1 would be more attractive

hen data is limited, which is closer to the reality. 

.2. Security-constrained unit commitment 

.2.1. Deterministic SCUC 

Security-Constrained Unit Commitment (SCUC) is one of the

ost important procedures in power system day-ahead or intra-

ay operations. 

(det-SCUC): 

min 
,u, v ,g,s 

n t ∑ 

t=1 

c T  n z 
t + c T  u u 

t + c T  v v t + c T  g g 
t, 0 + c T  s s 

t (76a) 

s.t. 1 T  g t,k ≥ 1 T  ˆ d t − 1 T  ˆ w 
t (76b) 
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Table 1 

Power system applications of chance-constrained optimization. 

Methods Expansion SCUC SCED Other Applications 

Deterministic 

Equivalent 

Gaussian ( López et al., 2007; 

Manickavasagam et al., 

2015; Mazadi et al., 

2009; Sanghvi et al., 

1982 ) 

( Ding, Lee, Jianxue, & Liu, 

2010; Pozo & Contreras, 

2013; Wu et al., 2014 ) 

( Bent, Bienstock, & Chertkov, 2013; 

Bienstock, Chertkov, & Harnett, 2013; 

2014; Doostizadeh et al., 2016; Jabr, 

2013; Li & Mathieu, 2015; Li, 

Vrakopoulou, & Mathieu, 2019; Lubin, 

Dvorkin, & Backhaus, 2016; Roald, 

Misra et al., 2015; Roald, Misra, Krause, 

& Andersson, 2017; Roald, Misra, 

Morrison, & Andersson, 2017; Roald, 

Oldewurtel, Krause, & Andersson, 2013; 

Vrakopoulou, Li, & Mathieu, 2019; 

Wang et al., 2017; Zhang, Shen, & 

Mathieu, 2015 ) 

( Franco, Rider, & 

Romero, 2016; 

López, Pozo, 

Contreras, & 

Mantovani, 2015 ) 

Scenario 

Approach 

a-priori - ( Geng et al., 2019; 

Margellos et al., 2013 ) 

( Bucher et al., 2013; Geng & Xie, 

2019b; Ming et al., 2017; Modarresi 

et al., 2018; Roald, Vrakopoulou, 

Oldewurtel, & Andersson, 2014; Roald, 

Vrakopoulou, Oldewurtel, & Andersson, 

2015; Vrakopoulou et al., 2013a; 2013b; 

Zhang, Shen et al., 2015 ) 

( Yang & 

Nehorai, 2014 ) 

a-posteriori - ( Geng et al., 2019; 

Hreinsson, Vrakopoulou, & 

Andersson, 2015; Margellos 

et al., 2013 ) 

( Geng & Xie, 2019b; Modarresi et al., 

2018 ) 

- 

Sample Average 

Approximation 

- ( Zhang, Wang, Li, & 

Cao, 2017 ) 

( Bagheri et al., 2017; Tan & 

Shaaban, 2016; Wang et al., 

2012; Wang et al., 2013; 

Zhang, Wang, Zeng et al., 

2017; Zhao et al., 2014 ) 

( Geng & Xie, 2019b ) - 

RO-based 

Approach 

RLO - Jiang et al. (2012) ( Geng & Xie, 2019b ) - 

Convex 

Approximation 

- - ( Geng & Xie, 2019b; Summers et al., 

2014; 2015; Zhang & Giannakis, 2013 ) 

- 

Others - ( Qiu et al., 2016; Yang 

& Wen, 2005 ) 

( Martínez & Anderson, 

2015; Wu, Zeng, Zhang, & 

Zhou, 2016 ) 

( Bienstock et al., 2014; Doostizadeh 

et al., 2016; Ke, Chung, & Sun, 2016; 

Mühlpfordt et al., 2017; Vrakopoulou 

et al., 2013a; Wang et al., 2017 ) 

- 
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f ≤ H 
t,k 
g g 

t,k − H 
t,k 
d 

ˆ d t + H 
t,k 
w ˆ w 

t ≤ f (76c)

r ≤ g t,k − g t−1 ,k ≤ r (76d)

a k ◦ (g t, 0 − s t ) ≤ g t,k ≤ a k ◦ (g t, 0 + s t ) (76e)

k ∈ [0 , n k ] , t ∈ [1 , n t ] 

g ◦ z t ≤ g t, 0 ≤ g ◦ z t (76f)

s ◦ z t ≤ s t ≤ s ◦ z t (76g)

g ◦ z t ≤ g t, 0 − s t ≤ g t, 0 + s t ≤ g ◦ z t (76h)

z t−1 − z t + u t ≥ 0 (76i)

z t − z t−1 + v t ≥ 0 (76j)

t ∈ [1 , n t ] 

z t i − z t−1 
i 

≤ z ιi , ι ∈ [ t + 1 , min { t + u i − 1 , n t } ] (76k)

z t−1 
i 

− z t i ≤ 1 − z ιi , ι ∈ [ t + 1 , min { t + v i − 1 , n t } ] (76l)

i ∈ [1 , n g ] , t ∈ [2 , n t ] 

Deterministic SCUC (det-SCUC) seeks the optimal commitment

and generation schedule of n g generators for the upcoming n t 
snapshot while ensuring system security in n k contingencies. De-

cision variables include commitment and startup/shutdown deci-

sions (z t , u t , v t ) , as well as generation and reserve schedules ( g t , k ,
 
t ). The objective of (76) is to minimize total operation costs, which

nclude no-load costs c T n z 
t , startup costs c T u u 

t , shutdown costs c T v v t ,
eneration costs c T g g 

t, 0 and reserve costs c T s s 
t . Constraint (76b) as-

ures there is enough supply to meet net demand. Constraints

76c), (76d) and (76g) are about transmission capacity, generation

amping capability and reserve limit in contingency scenario k at

ime t . In contingency scenarios, the adjusted output g t,k 
i 

of genera-

or i is bounded by its reserve s t 
i 
. Vector a k ∈ { 0 , 1 } n g represents the

vailability of generators in contingency k . When a k 
i 

= 0 , generator

 is not available in contingency k , thus has zero generation output.

eneration and reserve capacity constraints are in (76f) and (76g) .

onstraints (76f) –(76h) also ensure the consistency of generation

ith commitment decisions. (76i) –(76j) are the logistic constraints

bout commitment status, startup and shutdown decisions. Min-

mum on/off time constraints for all generators are presented in

76k) –(76l) . 

.2.2. Chance-constrained SCUC 

Many researchers proposed various advanced formulations of

CUC to deal with uncertainties, e.g. using robust optimization

 Bertsimas, Litvinov, Sun, Zhao, & Zheng, 2013 ) and stochastic pro-

ramming ( Takriti, Birge, & Long, 1996 ). A good overview of SCUC

ormulations with uncertainties is in Zheng, Wang, and Liu (2015) .

n this paper, we formulate the chance-constrained SCUC problem.

nlike the case of SCED, there is no unified formulation of chance-

onstrained SCUC. We present one simplified formulation in (77).

lternative formulations of chance-constrained SCUC can be found

n ( Jiang et al., 2012; Wu, Shahidehpour, & Li, 2007; Zheng et al.,

015 ). 



X. Geng and L. Xie / Annual Reviews in Control 47 (2019) 341–363 357 

z

 

e  

e  

d  

r  

e  

u  

s

 

t

P

P

 

t  

p  

a  

(  

d  

s  

2

 

j  

s  

L

P

P

 

g  

d  

W  

f  

c

8

 

l  

c  

T  

m

 

t  

(  

2  

e  

m  

r  

s  

a

 

b  

T  

r  

b  

p  

a  

G  

e  

s  

i  

p  

 

d

8

 

i  

n  

i  

m  

e  

w  

c  

o  

r  

e  

b  

b  

g

 

t  

n  

l

 

e  

t  

l  

L  

l  

h  

t  

Y  

s  

t

 

t  

i  

l  

f  

t

 

(cc-SCUC): 

min 
,u, v ,g,s 

n t ∑ 

t=1 

c T  n z 
t + c T  u u 

t + c T  v v t + c T  g g 
t, 0 + c T  s s 

t (77a) 

s.t. (76 b) , (76 c) , (76 d) , (76 e ) , k ∈ [0 , n k ] , t ∈ [1 , n t ] 

(76 f ) , (76 g) , (76 h )) , (76 i ) , (76 j) , t ∈ [1 , n t ] 

(76 k ) , (76 l) , i ∈ [1 , n g ] , t ∈ [2 , n t ] 

P 

(
1 T  g t,k ≥ 1 T  ( ̂  d t + 

˜ d t ) − 1 T  ( ̂  w 
t + ˜ w 

t ) , (77b) 

f ≤ H 
t,k 
g g 

t,k − H 
t,k 
d 

( ̂  d t + 
˜ d t ) 

+ H 
t,k 
w ( ̂  w 

t + ˜ w 
t ) ≤ f , (77c) 

k ∈ [0 , n k ] , t ∈ [1 , n t ] 

)
≥ 1 − ε (77d) 

The formulation of (cc-SCUC) is almost identical to (det-SCUC)

xcept the chance constraint (77b) –(77d) . In (cc-SCUC), wind gen-

ration w ∈ R 
n w is modeled as a random vector consisting of a

eterministic predicted component ˆ w ∈ R 
n w and a stochastic er-

or component ˜ w ∈ R 
n w . The chance constraint (77b) –(77d) ensures

nough supply to meet demand and line flows within limits under

ncertainties with probability at least 1 − ε for any contingency

cenario k at any time t . 

The joint chance constraint (77b) –(77d) is sometimes written as

wo (joint) chance constraints: 

 

(
1 T  g t,k ≥ 1 T  ( ̂  d t + 

˜ d t ) − 1 T  ( ̂  w 
t + ˜ w 

t ) , 

k ∈ [0 , n k ] , t ∈ [1 , n t ] 

)
≥ 1 − εLOLP (78a) 

 

(
f ≤ H 

t,k 
g g 

t,k − H 
t,k 
d 

( ̂  d t + 
˜ d t ) + H 

t,k 
w ( ̂  w 

t + ˜ w 
t ) ≤ f , 

k ∈ [0 , n k ] , t ∈ [1 , n t ] 

)
≥ 1 − εTLOP (78b) 

An important metric to evaluate power system reliability is

hrough the loss of load probability (LOLP), which is defined as the

robability that the total demand is not met by the total gener-

tion ( Allan & others, 2013; Qiu et al., 2016 ). It can be seen that

78a) is essentially ensuring the value of LOLP will not exceed a

esired level εLOLP . Similarly, we could define the concept transmis-

ion line overload probability (TLOP) ( Wu, Shahidehpour, Li, & Tian,

014 ). Then (78b) is the same as TLOP ≤ εTLOP . 

Some papers (e.g. ( Wu et al., 2014 )) further break down the

oint chance constraint (78a) –(78b) into individual chance con-

traints (79a) –(79b) , which can be interpreted as constraints on

OLP or TLOP for each time period t . 

 

(
1 T  g t,k ≥ 1 T  ( ̂  d t + 

˜ d t ) − 1 T  ( ̂  w 
t + ˜ w 

t ) 
)

≥ 1 − εLOLP 
t,k , 

k ∈ [0 , n k ] , t ∈ [1 , n t ] . (79a) 

 

(
f ≤ H 

t,k 
g g 

t,k − H 
t,k 
d 

( ̂  d t + 
˜ d t ) + H 

t,k 
w ( ̂  w 

t + ˜ w 
t ) ≤ f 

)
≥ 1 − εTLOP 

t,k , 

k ∈ [0 , n k ] , t ∈ [1 , n t ] . (79b) 

Another interesting application of chance constraints in cc-SCUC

uarantees the utilization ratio of wind generation greater than a

esired threshold with high probability 1 − ε ( Wang et al., 2012;

ang, Wang, & Guan, 2013; Zhao, Wang, Wang, & Guan, 2014 ). Dif-

erent variations of the chance constraint on wind utilization ratios

an be found in Wang et al. (2012) . 

.2.3. Solving chance-constrained SCUC 

As mentioned in Section 8.2.2 , there is no uniform formu-

ation of chance-constrained SCUC. Many references in Table 1

c  
oncentrate on exploring alternative formulations of cc-SCUC.

herefore theoretical guarantees on the solution quality is not a

ajor concern. 

Among all the reviewed methods, sample average approxima-

ion is commonly used when solving chance-constrained SCUC

 Bagheri, Zhao, & Guo, 2017; Tan & Shaaban, 2016; Wang et al.,

012; Wang et al., 2013; Zhang, Wang, Zeng, & Hu, 2017; Zhao

t al., 2014 ). Section 6 shows that SAA reformulates (CCO) to a

ixed integer program, which is difficult to solve in general. Many

eferences apply various techniques from integer programming to

peed up the computation, e.g. Zhao et al. (2014) and Jiang, Guan,

nd Watson (2016) . 

Section 5.2 shows that there is no upper bound on the num-

er of support scenarios for non-convex problems in general.

hus, a majority of results of the scenario approach cannot be di-

ectly applied on cc-SCUC. Reference Margellos et al. (2013) might

e the first attempt to solve cc-SCUC with the scenario ap-

roach. Recently, Campi et al. (2018) extends the a-posteriori guar-

ntees of the scenario approach towards non-convex problems.

eng, Modarresi, and Xie (2019) adopts the approach in Campi

t al. (2018) and shows the possibility to apply the theoretical re-

ults of the scenario approach on (cc-SCUC). It is worth mention-

ng that some theoretical results in robust optimization still ap-

ly in spite of the non-convexity of SCUC from integer variables

(z t , u t , v t ) , e.g. Bertsimas et al. (2018) . This could be an interesting

irection to explore. 

.3. Generation and transmission expansion 

Generation and transmission expansion (the expansion problem

n short) is a critical component in long-term power system plan-

ing exercises. The expansion problem answers the following crit-

cal questions: (i) when to invest on new elements such as trans-

ission lines and generators in the system; (ii) what types of new

lements are necessary; and (iii) how much capacity is needed and

here the best locations would be for those new elements. A typi-

al objective of the expansion problem is to minimize (i) total cost

f investment in new generators and transmission line; (ii) envi-

onmental impacts; and (iii) cost of generation. Constraints of the

xpansion problem often include total or individual costs within

udget, capacity constraint, reliability requirement, supply-demand

alance, power flow equations, and operation requirements such as

eneration or transmission limits. 

The expansion problem typically needs to deal with uncertain-

ies from demand, generation and transmission outages, and re-

ewables. Chance constraints often appear as requirements on re-

iability metrics such as LOLP (78a) and TLOP (78b) . 

Among all the papers incorporating chance constraints in the

xpansion problem, a majority of them assume the underlying dis-

ribution is Gaussian and derive the second order cone equiva-

ent form as in Section 3.2 , e.g. Sanghvi, Shavel, and Spann (1982) ,

ópez, Ponnambalam, and Quintana (2007) , Mazadi, Rosehart, Ma-

ik, and Aguado (2009) and Manickavasagam, Anjos, and Rose-

art (2015) . A few papers design its own simulation-based itera-

ive algorithms because of complicated problem formulations, e.g.

ang and Wen (2005) and Qiu et al. (2016) . Although Monte-Carlo

imulation is typically performed to evaluate the actual feasibility,

here is no rigorous guarantees on these results. 

Similar to the chance constrained DCOPF problem, deriving de-

erministic equivalent forms is the most popular choice. Consider-

ng the expansion problem is usually ultra-large-scale and involves

ots of integer variables, the simplicity of deterministic equivalent

orm becomes particularly attractive. Additional pros and cons of

his approach are analyzed in Section 8.1.3 . 

Similar to chance-constrained SCUC, the expansion problem in-

ludes many integer variables and is non-convex in nature. As
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Fig. 4. Solving and analyzing a chance-constrained program via CCC. 
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discussed in Section 8.2.3 , the scenario approach and sample aver-

age approximation can still be applied on the expansion problem.

Because of the size of the expansion problem, the required sam-

ple complexity could be astronomic, which lead to major compu-

tational issues. Although the scenario approach and sample average

approximation could provide better theoretical guarantees, it is es-

sential to overcome the major obstacles in computation to apply

some better methods on the expansion problem. 

9. Numerical simulations 

9.1. ConvertChanceConstraint (CCC): a Matlab toolbox 

Most existing optimization solvers cannot directly solve (CCO).

All reviewed methods in Sections 5 –7 translate (CCO) to forms that

can be recognized and solved by optimization solvers, e.g. SAA con-

verts (CCO) to a mixed integer program (MIP), which can be solved

by Gurobi. When solving a chance-constrained program, a typical

approach is to write the converted formulation (e.g. the MIP of

SAA) in the compact format that a solver recognizes then rely on

the solver to get optimal solutions. This approach is unnecessar-

ily repetitive as it needs to be repeated by different researchers on

different problems. In addition, different solvers often take various

input formats, thus this typical approach is limited to one specific

solver. To overcome these issues, an interface or toolbox that auto-

matically converts (CCO) to suitable forms for a variety of solvers

is needed. 

The remaining part of this subsection introduces the open-

source Matlab toolbox ConvertChanceConstraint (CCC), which is de-

veloped to automate the process of converting chance constraints.

CCC is written in Matlab, one of the most popular tools in en-

gineering and many other fields. In consideration of flexibility in

modeling and compatibility with existing solvers, CCC is built on

YALMIP ( Löfberg, 2004 ), a modeling language for optimization in

Matlab. CCC is open-source on Github, 8 other researchers and en-

gineers could freely use, modify and improve it. 

Fig. 4 illustrates the logic flow when using CCC to solve and

analyze a chance-constrained program. The problem is first formu-

lated in the language of Matlab and YALMIP, then the chance con-

straint is modeled using the prob() function defined in CCC. Af-
8 https://github.com/xb00dx/ConvertChanceConstraint-ccc . 

f  

c  

t

Fig. 5. Structure and main function
er receiving the problem formulation and specified method to use

e.g. scenario approach), CCC translates the chance constraint to

he formulation that YALMIP could understand. Then YALMIP inter-

aces with various solvers and further translates the problem for a

pecific solver. After optimization solver returns the optimal solu-

ion, CCC provides a few functions for result analysis, e.g. checking

ut-of-sample violation probability, calculating the posterior guar-

ntees of the scenario approach. 

Fig. 5 presents the structure and main functions of CCC.

hree major methods to solve (CCO) are implemented: scenario

pproach, sample average approximation and robust optimiza-

ion related methods. The implementation of RO-related methods

s based on the robust optimization module ( Löfberg, 2012 ) of

ALMIP. As illustrated in Fig. 4 and 5 , CCC is interfaced via YALMIP

ith most existing optimization solvers, e.g. Cplex ( CPLEX, 2009 ),

urobi ( Gurobi Optimization, 2016 ), Mosek ( Mosek, 2015 ) and Se-

umi ( Sturm, 1999 ). 

.2. Simulation settings 

Chance-constrained DCOPF (74) serves as a benchmark problem

or a critical comparison of solutions to (CCO). We provide numeri-

al solutions of cc-DCOPF on two test systems: a 3-bus system and

he IEEE 24-bus RTS test system. 
s of ConvertChanceConstraint. 

https://www.github.com/xb00dx/ConvertChanceConstraint-ccc
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Fig. 6. Objective values (cc-DCOPF of the 3-bus System). 
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The 3-bus system is a modified version of the 3-bus system in

esieutre, Molzahn, Borden, and DeMarco (2011) . The major dif-

erence is the removal of the load at bus 2 and the synchronous

ondensor at bus 3 in order to visualize the feasible region and

he space of uncertainties. The original 3-bus system “case3sc.m ”

s available in the Matpower toolbox ( Zimmerman, Murillo-Snchez,

 Thomas, 2011 ). The modified system in this paper can be found

n the examples of CCC. 9 For simplicity, we only consider uncer-

ainties of loads, which is modeled as Gaussian variables with 5%

tandard variation. 

The 24-bus system in this paper is a modified version of the

EEE 24-bus RTS benchmark system ( Grigg, Wong, Billinton, & oth-

rs, 1999 ). The transmission line capacities are set to be 60% of the

riginal capacities. We conduct two sets of simulations on the 24-

us system with different distributions of uncertainties. The first

ne is similar with the 3-bus case, nodal loads are modeled as in-

ependent Gaussian variables with 5% standard deviation. The sec-

nd one models the errors of nodal load forecasts as independent

eta-distributed random variables, with parameters α = 25 . 2414

nd β = 25 . 2692 . 10 

Ten Monte-Carlo simulations are conducted on every method

o examine the randomness of solutions. For the 3-bus case, each

onte-Carlo simulation uses 100 i.i.d samples to solve cc-DCOPF.

048 points are used in each run to solve (cc-DCOPF) of the 24-bus

ystem. The returned solutions are evaluated on an independent

et of 10 4 points ( Fig. 6 ). 

We use Gurobi 7.10 ( Gurobi Optimization, 2016 ) to get results of

cenario approach and sample average approximation. Cplex 12.8 is

sed to solve (CCO) with robust counterpart and convex approxi-

ation. 

.3. Simulation results 

We solve cc-DCOPF on the 3-bus system with eight different

ethods: (1) scenario approach with prior guarantees, (SA:prior,

orollary 1 ); (2) scenario approach with posterior guarantees

SA:posterior, Theorem 7 ); (3) sample average approximation,
9 github.com/xb00dx/ConvertChanceConstraint-ccc/tree/master/examples . 
10 This setting of beta distribution is from Hodge and Milligan (2011) , and scaled 

rom [0,1] to [ −18% , 18%] . 
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Fig. 7. Violation probabilities (cc-D
here N and ε are chosen based on the sampling and discard-

ng Theorem (SAA:s&d, Theorem 9 ); (4–7) Robust counterpart with

ifferent uncertainty sets specified in Theorem 13 : box (RC:box),

all (RC:ball), ball-box (RC:ball-box) and budget (RC:budget) un-

ertainty sets; (8) convex approximation with Markov bound

CA:markov, Theorem 11 and Proposition 5 ). 

We first examine the feasibility of the returned solutions from

ight algorithms. Figs. 7 and 8 show the out-of-sample viola-

ion probabilities ˆ ε versus desired ε in the setting. The green

ashed lines in Figs. 7 and 8 denote the ideal case where ˆ ε = ε.
ny points above the green dashed line indicate infeasible solu-

ions that V (x ) > ε. Clearly all methods return feasible solutions

with high probability) to (CCO). From Fig. 7 , sample average ap-

roximation and convex approximation are less conservative than

ther methods. However, it is worth noting that when ε is small

e.g. 10 −2 ), the data-driven approximation of CVaR ( Proposition 5 )

oes not necessarily give a safe approximation to (CCO) ( Chen

t al., 2010 ). The robust counterpart methods are typically 10 ∼100
COPF of the 3-bus System). 

https://www.github.com/xb00dx/ConvertChanceConstraint-ccc/tree/master/examples
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Fig. 8. Violation probabilities (cc-DCOPF of the 24-bus System, Gaussian Distributions). 

Fig. 9. Objective values (cc-DCOPF of the 24-bus System, Gaussian Distributions). 

Fig. 10. Violation probabilities in logarithmic scale (cc-DCOPF of the 24-bus System, 

Beta Distributions). 

 

 

 

 

 

 

Fig. 11. Violation probabilities with error bars showing standard deviations (cc- 

DCOPF of the 24-bus System, Beta Distributions). 
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times more conservative than other methods, as illustrated in the

comparison of Fig. 8 a with Fig. 8 b. The conservativeness could be

significantly reduced by better construction of uncertainty sets, e.g.

Chen et al. (2010) and Bertsimas et al. (2018) . Among four differ-

ent choices of uncertainty sets, the ball-box set is the least con-

servative one, which combines the advantages of the ball and box

uncertainty sets. 
Figs. 8 and 9 present the results of the 24-bus system with

aussian distributions. Simulation results of the beta distribution

re in Figs. 10 –12 . Observations from Figs. 10 –12 are similar with

he case of Gaussian distributions. Every method behaves more

onservative in the case of beta distributions than the case of

aussian distributions. It is worth noting that the RO-based meth-

ds (RC:box, RC:ball, RC:ball-box in Fig. 11 ) are so conservative that

ead to zero empirical violation probability ˆ ε. 
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Fig. 12. Objective values (cc-DCOPF of the 24-bus System, Beta Distributions). 
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0. Concluding remarks 

This paper consists of two parts. The first part presents a com-

rehensive review on the fundamental properties, key theoreti-

al results, and three classes of algorithms for chance-constrained

ptimization. An open-source MATLAB toolbox ConvertChance-

onstraint is developed to automate the process of translating

hance constraints to compatible forms for mainstream optimiza-

ion solvers. The second part of this paper presents three major

pplications of chance-constrained optimization in power systems.

e also present a critical comparison of existing algorithms to

olve chance-constrained programs on IEEE benchmark systems. 

Many interesting directions are open for future research. More

horough and detailed comparisons of solutions to (CCO) on var-

ous problems with realistic datasets is needed. In terms of the-

retical investigation, an analytical comparison of existing solu-

ions to chance-constrained optimization is necessary to substanti-

te the fundamental insights obtained from numerical simulations.

n terms of applications, many existing results can be improved by

xploiting the structural properties of the problem to be solved.

he application of chance-constrained optimization in electric en-

rgy systems could go beyond operational planning practices. For

xample, it would be worth investigating into the economic in-

erpretation of market power issues through the lens of chance-

onstrained optimization. 
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