Annual Reviews in Control 47 (2019) 341-363

journal homepage: www.elsevier.com/locate/arcontrol

Contents lists available at ScienceDirect

Annual
Reviews in
Control

Annual Reviews in Control

Data-driven decision making in power systems with probabilistic n
guarantees: Theory and applications of chance-constrained e
optimization

Xinbo Geng*, Le Xie

Texas A&M University, College Station, TX, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 1 February 2019
Revised 29 April 2019
Accepted 7 May 2019
Available online 24 May 2019

Keywords:

Data-driven

Power system

Chance constraint

Probabilistic constraint
Stochastic programming

Robust optimization
Chance-constrained optimization

Uncertainties from deepening penetration of renewable energy resources have posed critical challenges to
the secure and reliable operations of future electric grids. Among various approaches for decision mak-
ing in uncertain environments, this paper focuses on chance-constrained optimization, which provides
explicit probabilistic guarantees on the feasibility of optimal solutions. Although quite a few methods
have been proposed to solve chance-constrained optimization problems, there is a lack of comprehensive
review and comparative analysis of the proposed methods. We first review three categories of existing
methods to chance-constrained optimization: (1) scenario approach; (2) sample average approximation;
and (3) robust optimization based methods. Data-driven methods, which are not constrained by any par-
ticular distributions of the underlying uncertainties, are of particular interest. Key results of the analytical
reformulation approach for specific distributions are briefly discussed. We then provide a comprehensive
review on the applications of chance-constrained optimization in power systems. Finally, this paper pro-
vides a critical comparison of existing methods based on numerical simulations, which are conducted on
standard power system test cases.
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1. Introduction

Real-time decision making in the presence of uncertainties is a
classical problem that arises in many contexts. In the context of
electric energy systems, a pivotal challenge is how to operate a
power grid with an increasing amount of supply and demand un-
certainties. The unique characteristics of such operational problem
include (1) the underlying distribution of uncertainties is largely
unknown (e.g. the forecast error of demand response); (2) deci-
sions have to be made in a timely manner (e.g. a dispatch order
needs to be given by 5 minutes prior to the real-time); and (3)
there is a strong desire to know the risk that the system is exposed
to after a decision is made (e.g. the risk of violating transmis-
sion constraints after the real-time market clears). In response to
these challenges, a class of optimization problems named “chance-
constrained optimization” has received increasing attention in both
operations research and practical engineering communities.

The objective of this article is to provide a comprehensive and
up-to-date review of mathematical formulations, computational al-
gorithms, and engineering implications of chance-constrained op-
timization in the context of electric power systems. In particu-
lar, this paper focuses on the data-driven approaches to solving
chance-constrained optimization without knowing the underlying
distribution of uncertainties. This paper also briefly mentions some
critical results of an alternative approach, which derives equiva-

lent forms of chance-constrained optimization problems for spe-
cific distributions. A more general class of problems, i.e. distri-
butionally robust optimization or ambiguous chance constraint, is
beyond the scope of this paper.

1.1. An overview of chance-constrained optimization

Chance-constrained optimization (CCO) is an important tool
for decision making in uncertain environments. Since its birth
in 1950s, CCO has found many successful applications in various
fields, e.g. economics (Yaari, 1965), control theory (Calafiore, Campi
et al., 2006), chemical process (Henrion et al., 2001; Sahinidis,
2004), water management (Dupacova, Gaivoronski, Kos, & Szan-
tai, 1991) and recently in machine learning (Ben-Tal, Bhadra, Bhat-
tacharyya, & Saketha Nath, 2011; Ben-Tal, El Ghaoui, & Nemirovski,
2009; Caramanis, Mannor, & Xu, 2012; Gabrel, Murat, & Thiele,
2014; Sra, Nowozin, & Wright, 2012; Xu, Caramanis, & Mannor,
2009). Chance-constrained optimization plays a particularly impor-
tant role in the context of electric power systems (Ozturk, Mazum-
dar, & Norman, 2004; Wang, Guan, & Wang, 2012), applications of
CCO can be found in various time-scales of power system opera-
tions and at different levels of the system.

The first chance-constrained program was formulated in
Charnes, Cooper, and Symonds (1958), then was extensively stud-
ied in the following 50 years, e.g. Charnes and Cooper (1959),
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Charnes and Cooper (1963), Kataoka (1963), Pintér (1989), Sen
(1992), Prekopa, Vizvari, and Badics (1998), Ruszczynski and
Shapiro (2003), Ben-Tal et al. (2009) and Prékopa (1995). Pre-
viously, most methods to solve CCO problems deal with spe-
cific families of distributions, such as log-concave distributions
(Miller & Wagner, 1965; Prékopa, 1995). Many novel methods ap-
peared in the past ten years, e.g. scenario approach (Calafiore
et al, 2006), sample average approximation (Luedtke & Ahmed,
2008; Ruszczynski, 2002) and convex approximation (Nemirovski
& Shapiro, 2006). Most of them are generic methods that are not
limited to specific distribution families and require very limited
knowledge about the uncertainties. In spite of many successful ap-
plications of these methods in various fields, there is a lack of com-
prehensive review and a critical comparison.

1.2. Contributions of this paper

The main contributions of this paper are threefold:

1. We provide a detailed tutorial on the existing algorithms to
solve chance-constrained programs and a survey of major the-
oretical results. To the best of our knowledge, there is no such
review available in the literature;

2. We provide a comprehensive review on the applications of
chance-constrained optimization in power systems, with focus
on various interpretations of chance constraints in the context
of power engineering.

3. We implement most of the reviewed methods and develop an
open-source Matlab toolbox (ConvertChanceConstraint), which
is available on Github.! We also provide a critical comparison of
existing methods based numerical simulations on IEEE standard
test systems.

1.3. Organization of this paper

The remainder of this paper is organized as follows. Sec-
tion 2 introduces chance-constrained optimization. Section 3 sum-
marizes the fundamental properties of chance-constrained op-
timization problems. An overview of how to solve chance-
constrained optimization problems is described in Section 4,
which outlines Sections 5-7. Three major approaches to solv-
ing chance-constrained optimization (scenario approach, sample
average approximation and robust optimization based methods)
are presented in Sections 5-7, respectively. Section 8 provides a
comprehensive review on applications of CCO in power systems.
The structure and usage of the Toolbox ConvertChanceConstraint is
in Section 9. Section 9 also conducts numerical simulations and
compares existing approaches to solving CCO problems. Conclud-
ing remarks are in Section 10.

1.4. Notations

The notations in this paper are standard. All vectors and ma-
trices are in the real field R. Sets are in calligraphy fonts, e.g. S.
The upper and lower bounds of a variable x are denoted by X and
X. The estimation of a random variable € is €. We use 1, to de-
note an all-one vector in R", the subscript n is sometimes omitted
for simplicity. The absolute value of vector x is |x|, and the car-
dinality of a set S is |S|. Function [a]. returns the positive part
of variable a. The indicator function 1,.q is one if x> 0. The floor
function |a] returns the largest integer less than or equal to the
real number a. The ceiling function [a] returns the smallest inte-
ger greater than or equal to a. E[£] is the expectation of a random

1 github.com/xb00dx/ConvertChanceConstraint-ccc.

vector &, V(x) denotes the violation probability of a candidate so-
lution x, and P (-) is the probability taken with respect to &. The
transpose of a vector a is aT. Infimum, supremum and essential
supremum are denoted by inf, sup and esssup. The element-wise
multiplication of the same-size vectors a and b is denoted by aob.

2. Chance-constrained optimization
2.1. Introduction

We study the following chance-constrained optimization prob-
lem throughout this paper:

(CCO): mxin cTx (1a)
s.t. ]P’g(f(x,é)50>zl—e (1b)
xeX (1c)

where xcR" is the decision variable and random vector & ¢R?
is the source of uncertainties. Without loss of generality,> we
assume the objective function is linear in x and does not de-
pend on &. Constraint (1b) is the chance constraint (or probabilis-
tic constraint), it requires the inner constraint flx, £)<0 to be
satisfied with high probability 1 — €. The inner constraint f(x, &):
R" xR > R™ consists of m individual constraints, ie. f(x,&) =
(i &), fox. &), -, fm(x. §)). Set X represent the deterministic
constraints. Parameter € is called the violation probability of (CCO).
Notice that fix, £) is random due to the randomness of &, the prob-
ability P is taken with respect to £. Sometimes the probability is
denoted by P to avoid confusion.

It is worth mentioning that CCO is closely related with the the-
ory of risk management. For example, an individual chance con-
straint P(f;(x, &) <0) > 1 —¢; can be equivalently interpreted as a
constraint on the value at risk VaR(f;(x,£);1—¢;) <0. This con-
nection can be directly seen from the definition.

Definition 1 (Value at Risk). Value at risk (VaR) of random variable
¢ at level 1 — € is defined as

VaR(s:1-¢€):=inf{y :P({ <y) = 1-¢} 2

More details about this can be found in Section 7.3.1, (Chen,
Sim, Sun, & Teo, 2010; Rockafellar & Uryasev, 2000) and references
therein.

CCO is closely related with two other major tools for decision
making with uncertainties: stochastic programming and robust op-
timization. The idea of sample average approximation, which orig-
inated from stochastic programming, can be applied on chance-
constrained programs (Section 6). Section 7 demonstrates the con-
nection between robust optimization and CCO.

2.2. Joint and individual chance constraints

Constraint (1b) is called a joint chance constraint because of its
multiple inner constraints (Miller & Wagner, 1965), i.e.

P(ﬁ &) <0, H(X.E) <0, (X, £) < o) Sl e 3)

Alternatively, each one of the following m constraints is called an
individual chance constraint:

]P’(fi(X,E)SO)gl—e,-,i=1,2,...,m (4)
Joint chance constraints typically have more modeling power since

an individual chance constraint is a special case (m = 1) of a joint

2 Using the epigraph formulation as mentioned in Campi, Garatti, and Prandini
(2009) and Boyd and Vandenberghe (2004).
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chance constraint. But individual chance constraints are relatively
easier to deal with (see Sections 3.2 and 7.3). There are several
ways to convert individual and joint chance constraints between
each other.

First, a joint chance constraint can be written as a set of in-
dividual chance constraints using Bonferroni inequality or Boole’s
inequality. Notice (3) can be represented as

B (U {fx ) = 0)) <e. (5)

Since Py (U1, {fi(x.£) = 0}) < Y P ({fi(x. &) = 0}), if Y1, <
€, then any feasible solution to (4) is also feasible to (3). In other
words, (4) is a safe approximation (see Definition 11) to (3) when
Y, € < €. With appropriate {&;},, (4) could be a good approx-
imation of (3). However, it is usually difficult to find such {¢;}",.
Some other issues of this approach are discussed in Section 7.4.1.

Alternatively, a joint chance constraint (3) is equivalent to the
following individual chance constraint:

Pe(f(x.£) <0)=1-¢€ (6)

where f(x,£) :R" x R? - R is the pointwise maximum of func-
tions {f;(x,£)}", over x and &, i.e.

F.&) = maX{ﬁ *E). fo (X, E). - ,fm<x,5)}. (7)

It is worth noting that converting {f;(x,§)}[", to f(x, &) could lose
nice structures of the original constraint f{x, £) <0 and cause more
difficulties.

In this paper, we focus on the chance-constrained optimization
problems with a joint chance constraint.

2.3. Critical definitions and assumptions

Theoretical results in the following sections are based on the
critical definitions and assumptions below.

Definition 2 (Violation Probability). Let x° denote a candidate so-
lution to (CCO), its violation probability is defined as

V() =P (S0, £) 2 0) (8)

Definition 3. x° is a feasible solution to (CCO) if x° e X and
V(x°) < €. Let F¢ denote the set of feasible solutions to the chance
constraint (1b),

Fei={xeR" :V(x)fe}:{xeR”:P§<f(x,§)§0) >1-¢€},
then x° is feasible to (CCO) if x° € X N Fe.

Although (CCO) seeks optimal solutions under uncertainties,
it is a deterministic optimization problem. To better see this,
(CCO) can be equivalently written as minycy cTx, s.t. V(x) <€ or
Minye ynr, CTX.

Definition 4. Let 0* denote the optimal objective value of (CCO).
For simplicity, we define 0* = +oco when (CCO) is infeasible and
0* = —oo when (CCO) is unbounded. Let x* denote the optimal so-
lution to (CCO) if exists, and o* = cTx*.

Definition 5. We say a candidate solution x°® is conservative if
V(x°) « € or cTx° > 0*.

Most existing theoretical results on (CCO) are built upon the
following two assumptions.

Assumption 1. Let E denote the support of the random variable
&, the distribution & ~ E exists and is fixed.

Assumption 1 only assumes the existence of an underlying dis-
tribution, but we do not necessarily need to know it to solve (CCO).

Removing Assumption 1 leads to a more general class of problem
named distributionally robust optimization or ambiguous chance con-
straints. Section 3.4 discusses cases with Assumption 1 removed.

Assumption 2. (1) Function f{x, £) is convex in x for every instance
of &, and (2) the deterministic constraints define a convex set X.

The convexity assumption above makes it possible to develop
theories on (CCO). However, the feasible region ¢ of (CCO) is often
non-convex even under Assumption 2. More details are presented
in Sections 3.1 and 3.2.

3. Fundamental properties
3.1. Hardness

Although CCO is an important and useful tool for decision mak-
ing under uncertainties, it is very difficult to solve in general. Major
difficulties come from two aspects:

(D1) It is difficult to check the feasibility of a candidate so-
lution x°. Namely, it is intractable to evaluate the prob-
ability P¢(f(x°,€) <0) with high accuracy. More specifi-
cally, calculating the probability involves multivariate inte-
gration, which is NP-Hard (Khachiyan, 1989). The only gen-
eral method might be Monte-Carlo simulation, but it can be
computationally intractable due to the curse of dimension-
ality.

(D2) It is difficult to find the optimal solution x* and o* to
(CCO). Even with the convexity assumption (Assumption 2),
the feasible region 7. of (CCO) is often non-convex except
a few special cases. For example, Section 3.3 shows the fea-
sible region of (CCO) with separable chance constraints is a
union of cones, which is non-convex in general. Although re-
searchers have proved various sufficient conditions on the
convexity of (CCO), it remains challenging to solve (CCO) be-
cause of difficulty (D1). Most of times, however, we are ag-
nostic about the properties of the feasible region F..

Despite that fact that Assumptions 1 and 2 largely simplify the
problem and make theoretical analysis on (CCO) possible, (D1) and
(D2) still exist and pose great challenges to solve (CCO).

Theorem 1 (Luedtke, Ahmed, & Nemhauser, 2010; Qiu, Ahmed,
Dey, & Wolsey, 2014). (CCO) is strongly NP-Hard.

Theorem 2 (Ahmed, 2018). Unless P = NP, it is impossible to obtain
a polynomial time algorithm for (CCO) with a constant approximation
ratio.

Theorem 1 formalizes the hardness results of solving (CCO),
Theorem 2 further demonstrates that it is also difficult to ob-
tain approximate solutions to (CCO): any polynomial algorithm is
not able to find a solution x* (with o* = cTx*) such that |o*/o*|
is bounded by a constant C from above. In other words, any
polynomial-time algorithm could be arbitrarily worse.

3.2. Special cases

Although (CCO) is NP-Hard to solve in general, there are several
special cases in which solving (CCO) is relatively easy. The most
well-known special case is (9), which was first proved in (Kataoka,
1963).

min cTx (9a)
st.P(a™x+bTE +ETDx<e)>1—¢€ (9b)

Parameters acR", beR?, DeR?*" and ecR are fixed coeffi-
cients. £ ~ V' (u, ) is a multivariate Gaussian random vector with
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mean u and covariance X. Notice that (9b) is an individual chance
constraint with multivariate Gaussian coefficients. Let ®(-)~! de-
note the inverse cumulative distribution function (CDF) function of
a standard normal distribution. It is easy to show that if € <1/2, (9)
is equivalent to (10), which is a second order cone program (SOCP)
and can be solved efficiently.

min cTx (10a)
XxeX
st.e—bTu—(@+DTu)Tx >
®'(1—€)y/(b+Dx)TX(b+ Dx) (10b)

(10) also shows the possibility of deriving equivalent refor-
mulations of (CCO), many analytical methods to solve chance-
constrained optimization are built on this observation.

The case of log-concave distribution (Prékopa, 1971, 1995;
Prékopa, Yoda, & Subasi, 2011) is another famous special case
where chance constraint is convex. There are many other suffi-
cient conditions on the convexity of chance constraints, e.g. Lagoa
(1999), Calafiore and El Ghaoui (2006), Henrion and Strugarek
(2008), Henrion and Strugarek (2011) and Van Ackooij (2015).

3.3. Feasible region
A chance-constrained program with only right hand side uncer-

tainties (11) is considered in this section. With this example, we
provide deeper understandings on the non-convexity of (CCO).

1’)21)1(1 cTx (11a)
st P(f(x)<¢)=p (11b)

In (11b), the inner function f{x): R" — R™ is deterministic. The
only uncertainty is the right-hand side value, represented by a ran-
dom vector ¢ eR™. Chance constraints like (11b) are also named
separable chance constraints (or probabilistic constraints) since the
deterministic and random parts are separated. We replace 1 —¢
with p in (11b) to follow the convention in the existing literature.

Definition 6 (p-efficient points (Shapiro, Dentcheva, & Ruszczynski,
2009)). Let pe(0, 1), a point v € R™ is called a p-efficient point of
the probability function P, ({ < z), if P, ({ <v) > p and there is no
z<v, and z # v such that P, ({ <z) > p.

Theorem 3 (Prékopa, 1995; Shapiro et al., 2009). Let £ be the index
set of p-efficient points V', ie £ Let Fp:={xeR": P, (f(x) <{) >
p} denote the feasible region of (11b), then it holds that

Fp = UiceKi (12)
where each cone K; is defined as K; := v + R, iek.

Theorem 3 shows the geometric properties of (CCO). The finite
union of convex sets need not to be convex, therefore the feasible
region of (CCO) is generally non-convex.

Remark 1. Many methods to solve (CCO) (e.g. Beraldi &
Ruszczynski, 2002; Kress, Penn, & Polukarov, 2007; Prekopa et al.,
1998) start with a partial or complete enumeration of p-efficient
points. However, the number of p-efficient points could be as-
tronomic or even infinite. See Shapiro et al. (2009) and Prékopa
(1995) and references therein for the finiteness results of p-
efficient points and complete theories and algorithms on p-efficient
points.

3.4. Ambiguous chance constraints

Ambiguous chance constraint is a generalization of chance con-
straints,

Pep(fx ) <0) 21— VPeP. (13)

It requires the inner chance constraint f{x, £) <0 holds with proba-
bility 1 — € for any distribution P belonging to a set of pre-defined
distributions P.

Ambiguous chance constraints are particularly useful in the
cases where only partial knowledge on the distribution P is avail-
able, e.g. we know only that P belongs a given family of P. How-
ever, it is generally more difficult to solve ambiguous chance con-
straints, and the theoretical results rely on different assumptions of
uncertainties. This paper only reviews solutions to CCO, studies on
ambiguous chance constraints are beyond the scope of this paper.

4. An overview of solutions to CCO

This paper concentrates on solutions to (CCO) with the follow-
ing properties: (i) dealing with both difficulties (D1) and (D2) men-
tioned in Section 3.1; (ii) utilizing information from data (only)
without making suspicious assumptions on the distribution of un-
certainties; and (iii) possessing rigorous guarantees on the feasi-
bility and optimality of the returned solutions. Sections 4.1-4.3
explain these three properties in detail. Section 4.4 provides an
overview of methods with the properties above.

4.1. Classification of solutions

Existing methods on (CCO) can be roughly classified into four
categories (Ahmed & Shapiro, 2008):

(C1) When both difficulties (D1) and (D2) in Section 3.1 are ab-
sent, (CCO) is convex and the probability P(f(x, &) <0) is
easy to calculate. The only known case in this category is
the individual chance constraint (9) with Gaussian distribu-
tions, which might be the only special case of (CCO) that can
be easily solved;

(C2) When (D1) is absent but (D2) is present, it is relatively
easy to calculate P(f(x,&) < 0) (e.g. finite distributions with
not too many realizations). As shown in Theorem 3, the fea-
sible region of (CCO) could be non-convex and solutions typ-
ically rely on integer programming and global optimization
(Ahmed & Shapiro, 2008);

(C3) When (D1) is present but (D2) is absent, (CCO) is proved
to be convex but remains difficult to solve because of the
difficulty (D1) in calculating probabilities. This case often re-
quires approximating the probability via simulations or spe-
cific assumptions. All examples mentioned in Section 3.2 ex-
cept (9) belong to this category.

(C4) When both difficulties (D1) and (D2) are present, it is al-
most impossible to find the optimal solution x* and o*. All
existing methods attempt to obtain approximate solutions or
suboptimal solutions and construct upper and lower bounds
on the true objective value o* of (CCO).

Methods associated with (C1)-(C3) are briefly mentioned in
Section 3, the remaining part of this paper presents more general
and powerful methods in category (C4).

4.2. Prior knowledge

In order to solve (CCO), a reasonable amount of prior knowl-
edge on the underlying distribution & ~ E is necessary. Fig. 1 illus-
trates three categories of prior knowledge:

(K1) We know the exact distribution & ~ E thus have complete
knowledge on the underlying distribution;

(K2) We know partially on the distribution (e.g. multivariate
Gaussian distribution with bounded mean and variance) and
thus have partial knowledge;
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Fig. 1. Different knowledge levels to solve (CCO).

(K3) We have a finite dataset {£/}V

iy, this is another case of
partial knowledge.

It can be seen that prior information in (K2) is a strict subset of
(K1), also by sampling we can construct a dataset in (K3) from the
exact distribution in (K1). It seems (K1) is the best starting point
to solve (CCO). However, probability distributions are not known in
practice, they are just models of reality and exist only in our imagi-
nation. What exists in reality is data. Therefore (K3) might be the
most practical case and becomes the focus of this paper. Almost all
the data-driven methods to solve (CCO) are based on the following
assumption.

Assumption 3. The samples (scenarios) & (i=1,2,---,N) in the

dataset {éf}fi ; are independent and identically distributed (i.i.d.).

4.3. Theoretical guarantees

This paper concentrates on the theoretical aspects of the re-
viewed methods. In particular, we pay special attention to feasi-
bility guarantees and optimality guarantees.

Given a candidate solution x°® to (CCO), the first and possibly
most important thing is to check its feasibility, i.e. if V(x°) < €. Al-
though (D1) demonstrates the difficulty in calculating V(x°) with
high accuracy, there are various feasibility guarantees that either
estimate V(x®) or provide upper bound on V(x°). The feasibility re-
sults can be classified into two categories: a-priori and a-posteriori
guarantees. The a-priori ones typically provide prior conditions on
(CCO) and the dataset {éi}g":l, the feasibility of the correspond-
ing solution x° is guaranteed before obtaining x°. Examples of this
type include Corollary 1, Theorems 6,13 and 11. As the name sug-
gests, the a-posteriori guarantees make effects after obtaining x°.
The a-posteriori guarantees are constructed based on the observa-
tions of the structural features associated with x°. Examples in-
clude Theorem 7 and Proposition 1.

Given a candidate solution x° and the associated objective
value 0° =cTx°, another important question to be answered is
about the optimality gap |o® — 0*|. Although finding o* is often an
impossible mission because of difficulty (D2), bounding from be-
low on o* is relatively easier. Sections 5.5 and 6.4 dedicate to algo-
rithms of constructing lower bounds o < o*.

4.4. A schematic overview

A schematic overview of solutions to (CCO) and their relation-
ships are presented in Fig. 2. Akin methods are plotted in similar
colors, and links among two circles indicate the connection of the
two methods. The tree-like structure of Fig. 2 illustrates the hier-
archical relationship of the reviewed methods. Key references of
each method are also provided. The root node of Fig. 2 is the “am-
biguous chance constraint” or distributionally robust optimization
(DRO), which is the parent node of “chance-constrained optimiza-
tion”. This indicates that DRO contains CCO as a special case. Simi-
larly, for example, node “scenario approach” has three child nodes

” o«

“prior”, “posterior” and “sampling and discarding”, this indicates
the scenario approach has three major variations.

As shown in Fig. 2, CCO is a special case of ambiguous
chance constraints where the set of distributions P is a singleton
(Section 3.4). Therefore methods to solve ambiguous chance con-
straints can be applied on chance constraints as well. The methods
and algorithms to solve CCO are the main focus of this paper, we
will briefly mention the connection if some methods are related
with ambiguous chance constraints.

Fig. 2 also outlines the first half of this paper, which dedi-
cates to a review and tutorial on chance-constrained optimiza-
tion. We summarize key results on the basic properties (Section 3),
three main approaches to solving chance-constrained optimization
problems, scenario approach (Section 5), sample average approx-
imation (Section 6) and robust optimization (RO) based methods
(Section 7).

5. Scenario approach
5.1. Introduction to the scenario approach
Scenario approach utilizes a dataset with N scenarios {éi}:.": , to

approximate the chance-constrained program (1) and obtains the
following scenario problem (SP)y:

(SP)y: min cTx (14a)
st. fx, ') <0, f(x,EN) <0 (14b)

SPy seeks the optimal solution xj which is feasible for all N
scenarios. The scenario approach is a very simple yet powerful
method. The most attractive feature of the scenario approach is its
generality. It requires nothing except the convexity of constraints
fix, &) and X. It is purely data-driven and makes no assumption on
the underlying distribution.

Remark 2. SPy is a random program. Both its optimal objective
value o} and optimal solution xj; depend on the random samples
{éi}f": ,» therefore they are random variables. In consequence, V(xy)
is also a random variable. Let A :={1,2,---,N} denote the index
set of scenarios. The optimal objective value of SPy is denoted by
0*(N') to emphasize its dependence on the random samples.

Theoretical results of the scenario approach are built upon the
following assumption in addition to Assumptions 1-3.

Assumption 4 (Feasibility and Uniqueness (Campi &
Garatti, 2008)). Every scenario problem (SP)y is feasible, and
its feasibility region has a non-empty interior. Moreover, the
optimal solution x} of (SP)y exists and is unique.

If there exist multiple optimal solutions, the tie-break rules in
Calafiore and Campi (2005) can be applied to obtain a unique so-
lution.

Remark 3. (Sample Complexity N). We first provide some intuition
on the scenario approach. When solving (SP)y with a very large
number of scenarios, the solution xy will be robust to almost ev-
ery realization of &, thus the violation probability goes to zero. Al-
though x}, is a feasible solution to (CCO) as N — +oo0, it is overly
conservative because V(x*) ~ 0 « €. On the other hand, using too
few scenarios for SPy might result in infeasible solutions x5 to
(CCO). Notice that N is the only tuning parameter in the scenario
approach, the most important question in the scenario approach
theory is: what is the right sample complexity N? Namely, what is
the smallest N such that V(xy) < € (with high probability)? Rigor-
ous answers to the sample complexity question are built upon the
structural properties of the scenario problem SPy.
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Fig. 2. A schematic overview of existing methods and algorithms to solve chance-constrained optimization problems.

5.2. Structural properties of the scenario problem
Among N scenarios in the dataset {é‘i}f’: 1» there are some im-
portant scenarios having direct impacts on the optimal solution xj,.

Definition 7  (Support Scenario (Calafiore &  Campi,
2005)). Scenario &' is a support scenario for (SP)y if its re-
moval changes the solution of (SP)y. The set of support scenarios
of (SPy) is denoted by S.

Theorem 4 (Calafiore & Campi, 2005; Calafiore, 2010). Under
Assumption 2, the number of support scenarios in SPy is at most
n, ie |S| <n

Theorem 4 is built upon Helly’s theorem and Radon’s theorem
(Rockafellar, 2015) in convex analysis. For non-convex problems,
the number of support scenarios could be greater than the num-
ber of decision variables n. An example for non-convex problems
is provided in Campi, Garatti, and Ramponi (2018).

Definition 8 (Fully-supported Problem (Campi & Garatti, 2008)). A
scenario problem SPy with N >n is fully-supported if the number of

support scenarios is exactly n. Scenario problems with |S| < n are
referred as non-fully-supported problems.

Definition 9 (Non-degenerate Problem (Calafiore, 2010; Campi
& Garatti, 2008)). Problem SPy is said to be non-degenerate, if
0*(N) = 0*(S). In other words, SPy is non-degenerate if the solu-
tion of (SP)y with all scenarios in place coincides with the solution
to the program with only the support scenarios are kept.

5.3. A-priori feasibility guarantees

Obtaining a-priori feasibility guarantees on the solution xy to
SPy typically involves the following three steps:

1. Exploring the problem structure of SPy and obtain an upper
bound h on the number of support scenarios;

2. Choosing a good sample complexity N(e, 8, h)
Corollary 1, Theorem 6 or Remark 4;

3. Solving the scenario problem SPy and obtain xy, and of,.

using
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Theorem 5 (Campi & Garatti, 2008). Under Assumptions 1-3, for a
non-degenerate problem SPy, it holds that

n-1
IP’N<V(X;‘\,) > 6) < Z (I;J)e"(l — )N, (15)
i=1

N

The probability PN is taken with respect to N random samples {'}N .

and the inequality is tight for fully-supported problems.

As mentioned in Remark 2, V(xy) is a random variable, its
randomness comes from drawing scenarios {5"}?’:. For fully-
supported problems, Theorem 5 shows the exact probability dis-
tribution of the violation probability V(x}), i.e.

n-1
N\ . )
]PN<V X e) = el — )N, 16
Gy >e) =3 (,) (1-e) (16)
the tail of a binomial distribution. We could use Theorem 5 to an-
swer the sample complexity question in Remark 3.

Corollary 1 (Campi & Garatti, 2008). Given a violation probability
€€(0, 1) and a confidence parameter (0, 1), if we choose the
number of scenarios N (the smallest such N is denoted by Nygog) such
that

n—1
3 (’j)aa —eMi=p (17)

i=0
Let x3, denote the optimal solution to SPy, it holds that

PN<V(X,*\,) < e) >1-8 (18)

In other words, the optimal solution xy, is a feasible solution to (CCO)
with probability at least 1 — .

Remark 2 states that the scenario approach is a randomized al-
gorithm. Thus it is possible that the scenarios {Ei}ﬁ": , are drawn
from a “bad” set and lead to infeasible solutions x5, i.e. V(xy) > €.
The confidence parameter B denotes the risk of failure associated
to the randomized solution algorithm (Calafiore et al., 2006), and
it bounds the probability that x, is infeasible.

For fully-supported problems, N,gqg is the tightest upper bound
on sample complexity, which cannot be improved. For non-fully
supported problems, it turns out N,pog can be further tight-
ened. An improved sample complexity bound is provided in
Theorem 6 based on the definition of Helly’s dimension.

Definition 10 (Helly’s Dimension (Calafiore, 2010)). Helly’s dimen-
sion of SPy is the smallest integer h such that
ess sup; x| S()| < h

holds for any finite N> 1. The essential supremum is denoted by
esssup. We emphasize the dependence of support scenarios S on

& by S(§).

Theorem 6 (Calafiore, 2010). Let h denote the Helly’s dimension for
SPy, under Assumptions 1-3, for a non-degenerate problem SPy, it
holds that

NN .
PN(V(xy) > €) <Z(,~>6’(1 — )N (19)
i=0

Equivalently, for a fixed confidence parameter B (0, 1), if the sample
complexity N satisfies

h-1 N ) )
Z<i>f'(1 -V <p (20)

i=0
then the following probabilistic guarantee holds
PN(V(xy) > €) < B (21)

The only difference between Theorems 6 and 5 (and
Corollary 1) is replacing n with Helly’s dimension h in (19) and
(20). Unfortunately, Helly’s dimension is often difficult to calcu-
late, while finding upper bounds h on Helly’s dimension is usu-
ally a much easier task. Similarly we can replace h by h in
(19) and (20), the same theoretical guarantees still hold because
of the monotonicity of (19) and (20) in N and h. The support-
rank defined in Schildbach, Fagiano, and Morari (2013) is an upper
bound on Helly’s dimension, some other upper bounds can be ob-
tained by exploiting the structural properties of the problem, e.g.
Zhang, Grammatico, Schildbach, Goulart, and Lygeros (2015).

Remark 4 (Sample Complexity Revisited). A binary search type al-
gorithm could be used to find N,gog. And a looser but handy upper
bound is provided in (Campi et al., 2009):

%) +n) (22)

Notice n in (22) can be replaced by h or h.

2
N; =1
2009 e( n(

5.4. A-posteriori feasibility guarantees

When the desired violation probability € is very small, the
sample complexity of the a-priori guarantees grows with 1/e
(Remark 4) and could be prohibitive. In other words, the a-priori
approach is only suitable for the case where a sufficient amount
of scenarios is always available. In many real-world applications
(e.g. medical experiments, tests conducted by NASA), however, the
amount of data is quite limited, and it could take months or cost a
fortune to obtain a data point (experiment). Because of the limita-
tion on the data availability, one of the most fundamental problem
in data-driven decision making (e.g. system identification, quan-
titative finance) is to come up with good decisions or estimates
with a moderate or even small amount of data. To overcome this,
the scenario approach is extended towards a-posteriori feasibility
guarantees.

Similar with the a-priori guarantees, obtaining a-posteriori
guarantees typically requires taking the following three steps:

1. given dataset {S"}y: 1» solve the corresponding scenario problem
SPy and obtain xy;

2. find support scenarios in {Ei}f’zl, whose number is denoted as
g -
NI

3. calculate the posterior violation probability (B, sy.N) using
Theorem 7.

If the resulting violation probability € (8, sy. N) is greater than
the acceptable level €, we could repeat this process with more
scenarios until reaching € (. sy, N) < €. If the number of available
scenarios is limited, then it might be impossible to obtain a solu-
tion x5 such that V(xy) <e.

Theorem 7 (Wait-and-Judge (Campi & Garatti, 2016)). Given B (0,
1), for any k=0,1, --. ,n, the polynomial equation in variable t

B~ (i Nk (N v _
Nt1 g;(k)t ‘- (k)tN =0 (23)

has exactly one solution €(k) in the interval (0,1). Under Assumptions
1-3, for a non-degenerate problem, it holds that

PN(V(xy) = €(sy)) < B (24)

Theorem 7 is particularly useful in the following cases: (i)
the problem is not fully-support thus difficult to calculate a-priori
bounds on number of support scenarios; or (ii) only a moderate or
small amount of data points is available, it is difficult to meet the
sample complexity from the a-priori guarantees.



X. Geng and L. Xie/Annual Reviews in Control 47 (2019) 341-363 349

Given a candidate solution x°, the most straightforward method
is to approximate V(x°) by the empirical estimation € through
Monte-Carlo simulation with N samples, i.e.

Lo giy=0 = (25)

2)\ <>

My
I
= =
M-

i=1

where V:= Y} 1. ¢iy.0 is the total number of scenarios in
which x3 is infeasible. Although (25) only involves f(x°, £H>0
which is easy to calculate, it might require an astronomi-
cal number N to have accurate estimation é because of (D1).
Nemirovski and Shapiro (2006) shows a method to bound V(x°)
from above using a dataset of a moderate size N.

Proposition 1 (Nemirovski & Shapiro, 2006). Given a candidate so-
lution x° and N samples, let V := Y"1 1 zio and 1— p be the
confidence parameter.

€:= max{y: Z( )y(l YN > p) (26)

yel0.1]

After finding an upper bound €, so that if € < €, we may be sure that
P(Vx®) <€)=1-p.

Remark 5. Proposition 1 is closely related with the scenario ap-
proach but with one fundamental difference. Theorem 7 holds only
for solution from scenario approach, while Proposition 1 can eval-
uate solutions from other methods.

5.5. Optimality guarantees of scenario approach

Scenario approach together with order statistics can be used to
construct lower bounds o on o* of (CCO).

Proposition 2 (Nemirovski & Shapiro, 2006). Let {S”}N (j=
1,2,---,K) be K independent datasets of size N. For the jth dataset,
we solve the associated scenario problem SPy and calculate the opti-
mal value O*Ji (j=1,2,---,K). Without loss of generality, we assume
that o} <0y <--- < 0.

Given § (0, 1), let us choose positive integers L, N, K in such a
way that

L-1
(’f)(l —eoMi1-qa
i=0

then with probability of at least 1 — 8, the random quantity o} gives
a lower bound for the true optimal value x*.

- < (27)

Pagnoncelli, Ahmed, and Shapiro (2009) shows that appropri-
ate N should be the order of O(1/¢) as [1 - (1—-€e)N[K~ (1 -
exp(—eN))X. Typically we choose proper values for N and K
first, then find out the largest positive integer L that (27) holds
true.

Proposition 2 turns out to be a general framework to con-
struct lower bounds on (CCO). Pagnoncelli et al. (2009) extends
the framework towards generating bounds using sample average
approximation, which is introduced in Section 6.4.

6. Sample average approximation
6.1. Introduction to sample average approximation

The idea of using sample average approximation to handle
chance constraints first appeared in Sen (1992) and was subse-
quently improved with rigorous theoretical results in Luedtke and
Ahmed (2008).

Let f(x. &) :=max {f;(x.£). -+, fm(x. &)}, then (CCO) is equiv-
alent to minyey cTx, st. P(f(x,£) <0)>1—¢. Sample Aver-
age Approximation (SAA) approximates the true distribution of
the random variable f(x,§) using the empirical distribution
from N samples {E"}?’:P ie. P(f(x,€) <0) is approximated by

1 N
N st i <o

(SAA): rggl cTx (28a)
1 N

sty > L5 im0 < € (28b)
i=1

(SAA) is also a chance constrained optimization problem, but
with two major differences from (CCO): (i) (SAA) is based on the
empirical (discrete) distribution from the true distribution of & as
in (CCO); (ii) (SAA) has the violation probability ¢ instead of € in
(CCo).

There are two critical questions to be addressed about (SAA).
What is the connection of solutions of (SSA) with that of (CCO)?
How to solve (SAA)? We first answer the second question in
Section 6.2, then present the theoretical results of connecting
(SAA) with (CCO).

6.2. Solving sample average approximation

(SAA) can be reformulated as a mixed integer program (MIP)
by introducing variables ze{0, 1}¥ (Luedtke & Ahmed, 2008;
Ruszczyfski, 2002). Binary variable z; is an indicator if f(x,£) <0
is being violated in sample i, i.e.

zi=1+ (29)

f(x.£)>0
(29) can be equivalently written as f&x,é")lgMz,‘ with a suf-
ficiently large coefficient M > 0. Since f(x,&') is the maximum
over m functions {fj(x,é")}’J?;], f(x. &) < Mz; implies f;(x.&") <

Mz;, j=1,2,---,m. Then (SAA) is equivalent to (30), in which 1,
is an all one vector with size m.

min cTx (30a)

X,z

st f(x, €'Y —Mz;1, <0 (30b)

. EY) —Mzy1,, <0 (30c)

N Zzl < (30d)

xeX,z,e{O,l},i:l,Z,---,N (30e)

(30) is equivalent to (SAA) for general function f(x, &), but
formulations with big-M are typically weak formulations. In-
troducing big coefficients M might cause numerical issues as
well. Stronger formulations of (SAA) are possible by exploit-
ing the structural features of flx, £). A good example is the
chance-constrained linear program with separable probabilistic
constraints: mingcy cTx s.tP(Tx > £) > 1 — €, with a constant ma-
trix TeRY*", By introducing auxiliary variables v, an equivalent
but stronger formulation without big M is (31) (Luedtke et al.,
2010).

min cTx (31a)
XeX

st. Tx=v (31b)

v+&iz>&,i=12,--- N (31c)
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sz,_

Zie{O,l},lzl,Z,m,N (31e)

Various strong formulations for (SAA) can be found in Luedtke
et al. (2010) and references therein. (30) and (31) are mixed integer
programs, some well-known techniques from integer programming
theory can speed up the process of solving (SAA), e.g. adding cuts
(Kiitikyavuz, 2012; Luedtke et al., 2010; Tanner & Ntaimo, 2010)
and decompositions (Zeng & An, 2014; Zeng, An, & Kuznia, 2017).

(31d)

6.3. Feasibility guarantees of SAA

Various feasibility guarantees of (SAA) are proved in
Luedtke and Ahmed (2008) and Pagnoncelli et al. (2009), e.g.
the asymptotic behavior of (SAA) and when f(x, &) is Lipschitz
continuous. In this section, we only present the Lipschitz case,
which could be used for simulations in Section 9.

Assumption 5. There exists L >0 such that
[fx. &) — f(X. &) <Llx—X|lo, VX, X € X and VE € E.  (32)

Theorem 8 (Luedtke & Ahmed, 2008). Suppose X is bounded with
diameter D and f(x,&) is L-Lipschitz for any & € E (Assumption 5).
Let € €[0,€),0 € (0,€ —¢) and y > 0. Then

P(FY, CF)=1- {%-‘ PJL/D—‘ exp(-2N(e —e —0)?)  (33)

where the feasible region of (SAA) is defined as

={xex: Nz]lf(xé)ﬂmo—‘1 —&}. (34)

For fixed € and ¢, if we choose 6 = (¢ — ¢)/2 and a small num-
ber y >0, then Theorem 8 suggests that using

Nz E)Z[m(ﬁ) nln(’r y —‘) 1({ W)] (35)

number of samples, solutions of (SAA) is feasible to (CCO) with
high probability 1— 8, i.e. P(FY, < Feo) = 1 - B.

The results in Theorem 8 look quite similar to those of the
scenario approach (e.g. Remark 4). Indeed, (SAA) with ¢ =0 is
the same as the scenario problem SPy. However, one major dif-
ference of Theorem 8 from the scenario approach theory is that:
Theorem 8 holds for the feasible region of (SAA), i.e. 8], C Fe
with high probability. While the theory of the scenario approach
only proves the property of the optimal solution x5, i.e. xy is fea-
sible with high probability. Other feasible solutions to SPy do not
necessarily process the properties guaranteed by the scenario ap-
proach (e.g. Theorem 5).

Although Theorem 8 provides explicit sample complexity
bounds for (SAA) to obtain feasible solution, it requires some ef-
forts to be applied, e.g. tuning parameters (¢, ) and calculation
of L and D. Campi and Garatti (2011) provides a similar but more
straightforward theoretical result.

Theorem 9 (Sampling & Discarding (Campi & Garatti, 2011)). If we
draw N samples and discard any k of them, then use the scenario
approach with the remaining N — k samples. If N and k satisfy

k-‘rn—] k+n-1 N . i
( K ) g <i>6(1—6) <B (36)
then IPN(IF’S(f(X;iLk,S)SO)zl—e)21—,3.

Given parameters N, € and B, we find the largest k that
(36) holds, then the solution to (SAA) with & = k/N is feasible to
(CCO) with probability at least 1 — .

6.4. Optimality guarantees of sample average approximation

It is intuitive that if & > ¢, then the objective values of (SAA)
yield lower bounds to (CCO). Theorem 10 formalizes this intuition.

Theorem 10 (Luedtke & Ahmed, 2008). Let ¢ > ¢ and assume that
(CCO) has an optimal solution. Then

P<ag’ < o;) > 1— exp(—2N(e — €)?). (37)

Theorem 10 directly suggests a method to construct lower
bounds on (CCO).

Proposition 3. If we choose € >¢ and N > 2 6)2 log( ), let 032

denote the objective value of (SAA), then o. is a lower bound with
probability at least 1 — 6, i.e. P(oy, <0t) = 1- 8.

There is an alternative method using SAA to generate lower
bounds of (CCO). Luedtke and Ahmed (2008) extends the frame-
work in Proposition 2 towards SAA.

Proposition 4 (Luedtke & Ahmed, 2008). Take K sets of N indepen-
dent samples {§"9}N . (j=1.,2,.-- K). For the jth dataset {§"J}} .
we solve the associated (SAA) problem and calculate the associated
objective value oy, (for simplicity o* and j=1,2,---,K). Without

loss of generallty, we assume that o} 5 05 <--- < 0.
Given §€(0, 1), e€[0, 1), let us choose positive integers N, L, K
(L <K) such that

K be, e, N)]{[1 - b(e, e, NH|F > 68 (38)
Z

iz0
where b(e, €,N) 1= ZLENJ ( )ei(1 — )N,

Then of serves as a lower bound to (CCO) with probability at least
1-56.

7. Robust optimization related methods
7.1. Introduction to robust optimization

The last category of solutions to (CCO) is closely related with
robust optimization (RO), its typical form is shown in (39).

(RC): r)gl)gl cTx (39a)
st f(x,§) <0, V& elle (39b)

(39) finds the optimal solution which is feasible to all realiza-
tions of uncertainties in a predefined uncertainty set Ue. (39) is
called the Robust Counterpart (RC) of the original problem (CCO).
By constructing an uncertainty set ¢ with proper shape and size,
solutions to (RC) could be suboptimal or approximate solutions to
(Cco).

Designing uncertainty sets lies at the heart of robust optimiza-
tion. A good uncertainty set should meet the following two stan-
dards:

(S1) The resulting (RC) problem is computationally tractable.
(S2) The optimal solution to (RC) is not too conservative or
overly optimistic.

Unfortunately, (RC) of general robust convex problems (under
Assumption 2) is not always computationally tractable. For ex-
ample, (RC) of a second order cone program (SOCP) with poly-
hedral uncertainty set is NP-Hard (Ben-Tal & Nemirovski, 1998;
Ben-Tal, Nemirovski, & Roos, 2002; Bertsimas, Brown, & Caramanis,
2011). Fortunately, robust linear programs are well-studied, and
(RC) of linear programs is tractable for common choices of uncer-
tainty sets. Most tractability results of robust linear optimization
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are summarized in Bertsimas et al. (2011). For tractable formu-
lations of general convex RO problems, various solutions can be
found in Bertsimas and Sim (2006) and Ben-Tal et al. (2009).

For simplicity, we present solutions to the following chance-
constrained linear program (CCLP).

min cTx (40a)
XxeX

s.t.PS<xg+sTx"so, i=1,2,-~,m>zl—6 (40b)
and its robust counterpart
min cTx (41a)
XxeX

stxh+ETX <0, VEel, i=1,2,---,m (41b)

In (40) and (41), decision variables are {x.x/}" . where xi € R
and x' ¢R". Uncertainties are represented by £ e R9* With a little
abuse of notation, we use x = [x(l),x1, -+, XxJ,x™]T to represent all
the decision variables.

Standard (S2) is directly connected with chance constraints, we

show the connection between RO and CCO in Sections 7.2-7.4.
7.2. Safe approximation

Almost every RO-related solution to (CCO) is based on the idea
of safe approximation.

Definition 11 (Safe Approximation). Let x ¢ 7 and x € F denote
two sets of constraints. We say F is a safe approximation (or inner
approximation) of F if F C F.

An optimization problem (SA) is called a safe approximation of
(CCO) if F < Fe, where F, represents the feasible region of (CCO)
as in Definition 3.

(SA): min cTx (42a)
st.xe F (42b)

F C F indicates that every solution to (SA) is feasible to (CCO).
Therefore every optimal solution to (SA) is suboptimal to (CCO) and
serves as an upper bound on (CCO).

There are two major approaches to constructing safe approxi-
mations of the chance constraint P (f(x, £) < 0) >1—e€: (i) con-
structing a function 7 (x) > P (f(x.€) > 0), then 7(x)<e is a
safe approximation of the chance constraint; (ii) constructing a
proper uncertainty set e such that 7 > 7, :={x e R": f(x,§) <
0, V& e Uc}. Although these two approaches look quite different,
Section 7.3.2 shows that they are closely related with each other.

We first review how to apply these two approaches to obtain
safe approximation of individual chance constraints in Section 7.2.
Safe approximations of joint chance constraints (Section 7.4) are
built upon the results of individual chance constraints.

7.3. Safe approximation of individual chance constraints

RO has been quite successful in constructing safe approxima-
tions of individual chance constraints. A general form of individual
chance-constrained programs is (43).

min cTx
XeX

(43a)

3 A (seemingly) more general form of the linear chance constraint is JP’(A(S )X <

b(g))) >1—¢€, where A(¢) and b(§) denote affine functions of £. This could be
equivalently represented in the form of (40b) by enforcing additional affine con-
straints (Chen et al., 2010).

4 Notice d = n in (40) and (41).

St P (f(x, £) < 0) 1 (43b)

In the individual chance constraint (43b), the inner function f(x,
£): R"x R4 R! is a scalar-valued function. In Section 7.3, all f(x,
&) are scalar-valued functions if not specified.

Section 7.2 outlines two different but related approaches to
constructing safe approximations. The first approach is presented
in Sections 7.3.1-7.3.2. The second approach is summarized in
Section 7.3.3.

7.3.1. Convex approximation

Convex approximation is a general framework to build safe ap-
proximations of individual chance constraints. The idea of con-
vex approximation first appeared in Pintér (1989), then was com-
pleted in Nemirovski and Shapiro (2006). The convex approxima-
tion framework is based on the concept of generating function.

Definition 12 (Generating Function). A function ¢: R— R is called
a (one-dimensional) generating function if it is nonnegative valued,
nondecreasing, convex and satisfying the following property:

¢(2) > ¢(0)=1,Vz>0. (44)

The idea of convex approximation starts from the following
lemma.

Lemma 1. For a positive constant t e R, and a random variable
zeR, it holds that

E[p(t7'2)] = E[1p-1,.0] = P2(t 7'z > 0) = P(z > 0) (45)

Replace z with fix, £). then E[$(t~"f(x.£))] = Py (F(.£)
0) =P (r]f(x,g) . o). In other words, E[¢(t~1 f(x, £))] < € is a
safe approximation to Pg (f(x, &) < 0) >1-—¢.

Theorem 11  (Convex  Approximation (Nemirovski &
Shapiro, 2006)). Let ¢(-) be a generating function, then (CA) is
a safe approximation to (CCO).

(CA): min cTx (46a)
s.t. ;Eg[tEg[(ﬁ(f(xT’g))] —te] <0 (46b)

Under Assumption 2, (CA) is convex in X.

Remark 6. We can get rid of the strict inequality t> 0 by approx-
imating it using t>§, where § is very small positive number (e.g.
§ = 1074). Furthermore, we can show that (CA) is equivalent to
(47), which is convex in (x, t).

min cTx (47a)
XeX t>8
s.t. ruzg[qs(f("f"?))] —te<0 (47b)

Choosing a good generating functions plays a crucial role
in the convex approximation framework. Choices of generating
functions include: Markov bound ¢(z) = [1 + z]+, Chernoff bound
¢(z) = exp(z), Chebyshev bound ¢(z) =[z + 1]«2+ and Traditional
Chebyshev bound ¢(z) = (z+ 1)2. The least conservative gener-
ating function is the Markov bound ¢(z) =[1+z]+ (Follmer &
Schied, 2011; Nemirovski & Shapiro, 2006).

Definition 13 (Conditional Value at Risk). Conditional value at risk
(CVaR) of a random variable z at level 1 — € is defined as

CVaR(z;1—¢€) := iI)}f(J/ + EE[[Z -vI)D (48)
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Proposition 5 (Chen et al, 2010; Nemirovski & Shapiro,
2006). (CA) with Markov bound ¢(z) = [z + 1] is equivalent to (49).

1;21/{1 cTx (49a)
st. CVaR(f(x,£);1-¢€) <0 (49b)

Section 2 shows an individual chance constraint IP’(f(x,é) <
O) >1-€ is equivalent to VaR(f(x,£);1-€)<0. It is
well-known that CVaR(z;1-¢€)>VaR(z;1—-¢€). Therefore,
CVaR(f(x,£);1—¢€) <0 implies VaR(f(x,£€);1—¢€) <0. In other
words, CVaR(f(x,£);1—¢€) <0 is a safe approximation to both
VaR(f(x,&);1—¢€) <0 and the chance constraint (43b).

Remark 7 (Sample Approximation of CVaR). Rockafellar and Urya-
sev (2000) utilizes a dataset {£'}} | to estimate CVaR.

xng)l(l} cTx (50a)
1 ,
st l;[f(x, E') +t], <te (50b)

By introducing N auxiliary variables, Rockafellar and Uryasev
(2000) shows that (50) can be reformulated as a convex prob-
lem that is easy to solve. Detailed reformulation can be found in
Rockafellar and Uryasev (2000) and the full-length version of this
paper (Geng & Xie, 2019a). With a sufficient number of data points
(N is large enough), (50) is a safe approximation to (CCO). However,
it remains unknown about the exact requirement on the number of
samples needed. The sample approximation of CVaR may not nec-
essarily yield a safe approximation (Chen et al., 2010).

The generating function based framework in Nemirovski and
Shapiro (2006) was further improved and completed in Ben-Tal
et al. (2009) and Nemirovski (2012). But the methods proposed
there are mainly analytical and aim at solving distributionally ro-
bust problems, which is beyond the scope of this paper. More de-
tails can be found in Fig. 2 and references therein.

7.3.2. CVaR-based convex approximation of individual chance
constraints

As pointed out in Nemirovski and Shapiro (2006), calculating
CVaR is computationally intractable. In order to obtain tractable
forms of the CVaR-based convex approximation, one approach is
the sample approximation in Remark 7. An alternative approach
is to bound the CVaR function from above, e.g. finding a function
7 (x) > CVaR(f(x,&); 1 —€), then m(x)<0 is a safe approximation
to both CVaR(f(x,£); 1 —¢€) < 0 and the original chance constraint
(43). In the latter approach, the uncertainties £ ~ E are partially
characterized using directional deviations.

Definition 14 (Directional Deviations (Chen, Sim, & Sun,
2007)). Given a random variable £ R with zero mean, the
forward deviation is defined as

8.(§) :=sup sz(gg)]) (51)
6>0 9

and the backward deviation is defined as

5_(5) = sup \/ 2in(Elexp(-65)) | -
6>0 0

Assumption 6 (Chen & Sim, 2009). Let W denote the smallest
closed convex set containing the support E of £. We assume that
the support set is a second-order conic representable set (e.g. poly-
hedral and ellipsoidal sets).

Assumption 7 (Chen & Sim, 2009). Assume the uncertainties
{Ei}le are zero mean random variables, with a positive definite co-
variance matrix . We define the following index set:

Jri={i:8:(&) < oo}, T, :={i:6,(§) = o0}, (53)

J-i={i:6-(5) < oo}, Z_:=1{i:6_(&§) = oo}. (54)

For notation simplicity, we define two matrices diagonal P and

Q as:

P:=diag(6;(§1), -+ .0+(&4)), Q:=diag(6_(&1),---.,8-(5q)).

Major results developed in Chen et al. (2007) and Chen and Sim
(2009) are for the individual linear chance constraint (55) with de-
cision variables xy R, x € R™:

]P’g(xo-i—észO)zl—e (55)
Its convex approximation using CVaR (or Markov bound) is
t+éﬂ£[[xo +ETx—t]] <0 (56)
If we are able to find a function m(xg, x) as an upper bound on
E[[xo +£7x]: ], then

t+%n(x0—t,x) <0 (57)
is a safe approximation to (56).

Theorem 12. (Chen & Sim, 2009) Suppose that the primitive un-
certainty & satisfies Assumptions 6 and 7. The following functions
7' (X0, X),i=1,---,5 are upper bounds of E [[xo +$Tx]+]:

7! (%0, X) = [Xo + max&Tx], (58)
Eew
72 (X0, X) 1= Xo + [—xo + max(—é)W]+ (59)
Eew
73 (X, X) = %(xg + /X2 +xTEx> (60)
o i inf ] B exp (%0 4 17
7T%(X0, X) ._lirlg{eexp(,u—kzm)}. (61)

where u; = max{x;8, (§;), —x;6_(§;)}, j=1,--- ,n. This bound is fi-
nite if and only if x; <0, VjeZ, and x; >0, VjeZ..

5 o inf A % _X VTV
7T(X0,X)-—X0+L1L§£{66XP( M+2M2>}' (62)

where v; = max{—x;6, (§;).x;0_(§;)},j=1,---,n. This bound is fi-
nite if and only if x; >0, Vje I, and x; <0, VjeZ .

Remark 8. The epigraphs of mi(xg,x), i=1,---,5 can be repre-
sented as second-order cones. Explicit representations depend on
the form of W. More details about the representation of (57) with
different choices of mi(xy, y) can be found in Chen and Sim
(2009) and Geng and Xie (2019a).

7.3.3. Constructing uncertainty sets
We consider the individual linear chance constraint (55) as in
Section 7.3.2. The robust counterpart of (55) is

Xo+&Tx <0, V€ clUe (63)

Assumption 8. {Ei};'Ll are independent of each other with zero

mean and take values on [—1,1]¢, i.e. E[£] =0 and &; € [-1,1] for
i: 1,2,'-' ,d.

Clearly, under Assumption 8, a natural choice of uncertainty
set is the box UP* := {§ e R?: -1 <& <1}. Then 72 := {x e R":
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f(x.&) <0, V& e P} is a safe approximation to F, i.e. Fo* C
Fe. However, using U leads to P(f(x,£) > 0) =0 <« €, which
causes conservativeness or even infeasibility in many cases. The
following choices of uncertainty sets are less conservative.

Theorem 13 (Ben-Tal et al., 2009; Ben-Tal & Nemirovski, 1999;
Bertsimas & Sim, 2004). (63) is a safe approximation to (55) if Ue
is one of the following:

uph = [ <R el < y2InC1/0) | (642)
upt = e <R el < 1l =20 (64b)
it = e RO gl < V2dIn(1/6)| (64c)

And the resulting robust counterparts (RC)s are second-order cone
representable (see Chapter 2 of Ben-Tal et al. (2009) and the full-
length version of this paper (Geng & Xie, 2019a)).

It turns out that constructing uncertainty set U, is closely re-
lated with the convex approximation framework in Sections 7.3.1-
7.3.2.

Theorem 14 (Chen et al., 2010). Suppose that m(xg, x) is a con-
vex, closed and positively homogeneous, and is an upper bound to
Eg [[%o + £Tx]4 ] with 7 (xo, 0) = x{. Then under Assumptions 6 and
7 and given € (0, 1), it holds that for all (xq, x) such that mw(xo,
X) < oo, we have

. 1
inf (t + —m(xo — t, x)) =X + maxxTz (65)
t € zelle

for some convex uncertainty set Uk.

Given an upper bound m(xg, X) on ]E[[xo + ‘§Tx]+] with required
properties, the safe approximation (57) can be represented in the
form of xp + maxgq, §7x for some . Theorem 14 only proves
the existence of a corresponding uncertainty set 2. For the 7i(xo,
x) functions given in Theorem 12, their corresponding uncertainty
sets can be explicitly calculated.

Proposition 6 (Chen et al., 2010). For the functions mi(xg,x),i=
1,2,---,5 in Theorem 12, their corresponding uncertainty sets are
ul ~u?2 below.

Ut =1 cR: 35 teRE=5—t,

ul ==w, (66)
1

Uu? = {gekd;gz(l—g)g‘, for some{eW}, (67)

U = {EeR":HE’%E”zE 126} (68)

P15 +Q e, < /=2 1n<e>}, (69)
U = {?;‘ eRY:3s,teRLE=5—1t,

]_
IP-1s+Q Tt < —<

1
- 21n(m)}. (70)

where matrices X, P and Q are defined in Assumptions 6 and 7.

Theorem 14 and Proposition 6 demonstrate that the two seem-
ingly different approaches to constructing safe approximations in
Section 7.2 are equivalent in many circumstances.

7.4. Safe approximation of joint chance constraints

Although RO has been successful in approximating individual
chance constraints, it is rather unsatisfactory in approximating
joint chance constraints (Chen et al., 2010). We restate the joint
chance constraint (1b) below

IP%_(f(x,E)fO)zl—e. (71)

Most RO-based approaches convert a joint chance constraint to
several individual chance constraints, then apply the techniques in
Section 7.3 on each individual chance constraint. Results along this
line are summarized in Section 7.4.1. Very few approaches directly
deal with joint chance constraints, these approaches are mentioned
in Section 7.4.2.

7.4.1. Conversion between joint chance constraints and individual
chance constraints

Section 2.2 presents two common approaches to converting a
joint chance constraint to individual chance constraints.

First, according to the Bonferroni inequality, if }"I"; €; < €, then
the set of m individual chance constraints

P(fi(x,S)SO)sl—ei,i=1,-~~,m (72)

is a safe approximation to the joint chance constraint P(f(x, &) <
0) <1 — €. The main issue of this approach is the choice of {€;}7",.
The problem becomes intractable if taking {€;}[", as decision vari-
ables (Chen et al,, 2010; Nemirovski & Shapiro, 2006). It remains
unclear about how to find the optimal choices of {ei};’;1.5 Ob-
viously, this approach could be quite conservative in the follow-
ing two cases: (i) the individual constraints f;(x,£), i=1,2,---,m
are correlated; and (ii) the choices of {¢;}I", are suboptimal. Chen
et al. (2010) provides some deep observations on the limitation of
this approach: the Bonferroni’s inequality could still lead to conser-
vativeness even when (i) the individual chance constraints (72) are
independent; and (ii) the optimal choices of {¢;}!", are found. In
other words, (72) is only a safe approximation at best, it may not
be equivalent to (1b) even with optimal {;}",.

The second approach is to define the pointwise maximum of
functions {f;(x,§)}", over x and &, i.e.

Fx.£) = max{ﬁ(x,s),--- ,fm<x,5)}.

then the joint chance constraint P(f(x,£) <0) > 1 —¢ is equiv-
alent to the individual chance constraint Pg (f(x, §) < 0) >1—€.
The advantage of this approach is that it does not require param-
eter tuning or induce additional conservativeness. In some cases,
e.g. the scenario approximation of CVaR in Remark 7, this could
lead to formulations that are easy to solve (Geng & Xie, 2019a).
However, in most cases, the structure of f(x, £) is too complicated
to apply the techniques in Section 7.3.

7.4.2. Other approaches

There might be only three RO-related approaches that directly
deal with joint chance constraints. The first approach is robust
conic optimization (see Chapter 5-11 of Ben-Tal et al. (2009)). The
inner constraint f{x, £)<0 is written as a conic inequality, then
tractable safe approximations of the robust conic inequality are de-
rived and solved. This approach can model a majority of optimiza-
tion problems under uncertainties. However, the main limitation
is that the resulting robust counterparts are not tractable in many
circumstances.

5 Most people simply choose €; = €/m (Chen et al., 2007; Nemirovski & Shapiro,
2006), which could be quite conservative if m is a large number.
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Fig. 3. Representative feed-forward decisions made in power system planning and operation.

The second approach (Chen et al., 2010) generalizes the CVaR-
based convex approximation in Theorem 12 and Proposition 6. It
proposes a safe approximation to the joint chance constraint (1b),
and the safe approximation is second-order cone representable.
The performance of this approach depends on the choice of a
few tuning parameters. Although it is difficult to find the optimal
setting, Chen et al. (2010) designed an algorithm that is guaran-
teed to improve the choice of parameters. Chen et al. (2010) also
shows that it is possible to combine all the mi(xo, x) functions in
Theorem 12 together to reduce conservativeness.

The third approach directly dealing with joint chance con-
straints is the data-driven robust optimization proposed in
Bertsimas, Gupta, and Kallus (2018). It shows that by running dif-
ferent hypothesis tests on datasets, it is possible to construct dif-
ferent uncertainty sets that lead to safe approximations of the joint
chance constraint (1b) with high probability. It is worth noting that
the theoretical results in Bertsimas et al. (2018) holds for non-
convex functions f(x, £), albeit the resulting (RC) is very likely to
be computationally intractable.

8. Applications in power systems

A pivotal task in modern power system operation is to maintain
the real-time balance of supply and demand while ensuring the
system is low-cost and reliable. This pivotal task, however, faces
critical challenges in the presence of rapid growth of renewable
energy resources. Chance-constrained optimization, which explic-
itly models the risk that the system is exposed to, is a suitable
conceptual framework to ensure the security and reliability of a
power system under uncertainties.

There is a large body of literature adopting CCO for power
system applications. Fig. 3 presents some existing applications of
CCO in power systems. In the following sections, we introduce
three important applications of CCO in power systems: security-
constrained economic dispatch (Section 8.1), security-constrained
unit commitment (Section 8.2) and generation and transmission
expansion (Section 8.3).

Fig. 3 also presents a feed-forward decision making framework
for power system operations. The feed-forward framework parti-
tions the overall decision making process into several time seg-
ments. The longer-term decisions (e.g. generation expansion) are
fed into shorter-term decision making processes (e.g. unit com-
mitment). The shorter-term decisions (e.g. generation commitment
from SCUC) have direct impacts on real-time operations (e.g. dis-
patch results in SCED). As time draws closer to the actual physical
operation, information gets much sharper and the prediction about
future could be significantly improved (Xie et al., 2011).

8.1. Security-constrained economic dispatch

8.1.1. Deterministic SCED
Security-constrained Economic Dispatch (SCED) lies at the cen-
ter of modern electricity markets and short-term power system op-

erations. It determines the most cost-efficient output levels of gen-
erators while keeping the real-time balance between supply and
demand. Different variations of the SCED problem are all based
on the direct current optimal power flow (DCOPF) problem. We
present a typical form of DCOPF with wind generation.

(det-DCOPF): mgin c(g) (73a)
st17g=17d -1"w (73b)

f = Hog + HyW — Hyd (73¢c)

f<f=<¥ (73d)

g§<8<¢g (73e)

The decision variables are generation output levels g € R"%. The
objective of (det-DCOPF) is to minimize total generation cost c(g),
while ensuring total generation equates total net demand® (73b).
Constraints include transmission line flow limits (73c)-(73d) and
generation capacity limits (73e). Transmission line flows f e R
are calculated using (73c), in which H is the power transfer dis-
tribution factor (PTDF) matrix, and Hg € R%"*"¢ (H; € R"*" H,, €
R"*™w) denotes the submatrix formed by the columns of H cor-
responding to generators (loads, wind farms). (73) utilizes the ex-
pected wind generation or wind forecast w, we refer to (73) as
deterministic DCOPF (det-DCOPF) since no uncertainties are being
considered.

8.1.2. Chance-constrained SCED

Many researchers advance (det-DCOPF) towards a chance-
constrained formulation with wind uncertainties. A representative
formulation is (74), which appears in a majority of the existing lit-
eratures, e.g. (Bienstock, Chertkov, & Harnett, 2014; Vrakopoulou,
Margellos, Lygeros, & Andersson, 2013a).

(cc-DCOPF):
min c(g) (74a)
g0
st17g=17d - 1w (74b)
f(W, W) = Hg(g — 17wn)
— Hyd + Hy (W + W) (74¢)
Po(f < SO0, W) < T and
gsg—lTWnsE)zl—e (74d)
1Tp=1 (74e)

6 Wind generation is treated as negative loads.
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g§<8<%8 (74f)

-1<n=<1 (74g)

Unlike (det-DCOPF) using wind forecast w, chance-constrained
DCOPF (cc-DCOPF) explicitly models wind generation as a ran-
dom vector w € R™, The wind generation w =W + W is decom-
posed into two components: the deterministic wind forecast value
W e R™ and the uncertain forecast error w € R™. To guarantee the
real-time balance of supply and demand, (cc-DCOPF) introduces an
affine control policy n € [-1,1]" to proportionally allocate total
wind fluctuations 17w to each generator. It is easy to verify that
constraints (74b) and (74e) imply the supply-demand balance in
the presence of wind uncertainties, i.e.

17(g-1"wn) =17d - 1T (W + W), (75)

The affine policy vector n € R% is sometimes referred as participa-
tion factor or distribution vector (Vrakopoulou et al., 2013a). The
(joint) chance constraint (74d) constrains the transmission flow
and generation within their capacities with high probability 1 — €
in the presence of wind uncertainties.

For simplicity, we only account for the major source of uncer-
tainties (i.e. wind) in the real-time. Many references provides more
complicated formulation of (cc-DCOPF), e.g. considering joint un-
certainties from load and wind (Doostizadeh, Aminifar, Ghasemi, &
Lesani, 2016; Miihlpfordt, Faulwasser, Roald, & Hagenmeyer, 2017),
and contingencies of potential generator or transmission line out-
ages (Roald, Misra, Chertkov, & Andersson, 2015).

There exist a few different but similar formulations of (cc-
DCOPF). In general, policies of any form could help balance sup-
ply with demand under uncertainties. The affine policy in (cc-
DCOPF) is the simplest choice and lead to optimization problems
that are easy to solve. There are other papers applying differ-
ent forms of policies, e.g. Jabr (2013) introduces a matrix form of
the affine policy Y € R"%>*™_ which specifies the corrective con-
trol of each generator on each wind farm. (cc-DCOPF) is a single
snapshot dispatch problem, it is straightforward to extend it to
a multi-period or look-ahead dispatch problem (Modarresi et al.,
2018; Vrakopoulou et al., 2013a). Many papers evaluate the im-
pacts of new elements in modern power systems, such as demand
response (Ming, Xie, Campi, Garatti, & Kumar, 2017; Zhang, Shen, &
Mathieu, 2017), ambient temperatures and meteorological quanti-
ties (Bucher, Vrakopoulou, & Andersson, 2013), and frequency con-
trol (Li & Mathieu, 2015; Zhang, Shen et al.,, 2017).

Although DC power flow equations have been widely accepted
in modern power system operations and planning, it is only a lin-
ear approximation of the alternating current (AC) version, which
is a more accurate model of the underlying physical laws. Many
efforts have been made to solve the chance-constrained AC op-
timal power flow (cc-ACOPF) problem, e.g. Vrakopoulou, Katsam-
pani, Margellos, Lygeros, and Andersson (2013), Roald and Anders-
son (2017), Venzke, Halilbasic, Markovic, Hug, and Chatzivasileiadis
(2017) and Anese, Baker, and Summers (2017). Major difficulties
to solve cc-ACOPF come from the non-convexity of AC power flow
equations. It remains as an open question that how to ensure the
feasibility of the non-convex AC power flow equations under un-
certainties.

8.1.3. Solving cc-DCOPF

Table 1 summarizes various methods to solve (cc-DCOPF). The
most popular one consists of two steps: (i) decomposing the joint
chance constraint (74d) into individual ones P¢ (fi(x,§) <0) > 1—
€,i=1,2,.-.,m; (ii) deriving the deterministic equivalent form of
each individual chance constraint by making the Gaussian assump-
tion. More technical details of this method are in Section 3.2. This

method is taken by many researchers for its simplicity and compu-
tationally tractable reformulation. Although the Gaussian assump-
tion enjoys the law of large numbers, it is often an approxima-
tion or even doubtful assumption. For example, Hodge and Milli-
gan (2011) shows that the wind forecast error is better represented
by Cauchy distributions instead of Gaussian ones. The first step of
this method is to decompose a joint chance constraint Pg (f(x, §) <
0) > 1 — € into individual ones. As discussed in Sections 2.2 and
7.4.1, this step often introduces conservativeness because of the
limitation of the Bonferroni inequality. The level of conservative-
ness could be significant when the number of constraints m is
large, which is typically the case in power systems.

The scenario approach is another commonly-accepted method.
It provides rigorous guarantees on the quality of the solution and
does not assume the distribution is Gaussian or any particular
type. Most papers adopting the scenario approach apply the a-
priori guarantees (e.g. Theorem 5 and 6) on (cc-DCOPF) and verify
the a-posteriori feasibility of solutions through Monte-Carlo sim-
ulations (25). One common observation is that the solution xj
is often quite conservative, i.e. V(xy) < €. One major source of
conservativeness is the loose sample complexity bounds N.” Since
(cc-DCOPF) is convex, Theorem 4 states that the number of deci-
sion variables n is an upper bound of the number of support sce-
narios |S| or Helly’s dimension h. This upper bound, as pointed
out in Modarresi et al. (2018), is indeed very loose. (Modarresi
et al., 2018) reported only ~5 support scenarios for a chance-
constrained look-ahead SCED problem with thousands of decision
variables. By exploiting the structural features of (cc-DCOPF), the
sample complexity bound N can be significantly improved. Unfor-
tunately, only Modarresi et al. (2018) and Ming et al. (2017) fol-
lowed this path to reduce conservativeness.

There are also many papers utilizing the robust optimiza-
tion related methods to solve (cc-DCOPF). Jiang, Wang, and Guan
(2012) constructs uncertainty sets with the help of probabilis-
tic guarantees in Bertsimas and Sim (2004). References Summers,
Warrington, Morari, and Lygeros (2014, 2015) incorporate the con-
vex approximation framework and compare different choices of
generating functions ¢(z) on (cc-DCOPF). Although there are no ex-
plicit forms of chance constraints in Zhang and Giannakis (2013),
the CVaR-oriented approach therein can be interpreted as solving
cc-DCOPF using convex approximation with the choice of Markov
bound.

Most papers in Table 1 aim at finding suboptimal solutions
to (cc-DCOPF). However, it is somewhat surprising to note that
none of them estimates how suboptimal the solution is via ap-
proaches like Proposition 2 or 4. Almost all the papers evaluate
the a-posteriori feasibility by Monte-Carlo simulations with a huge
sample size. Methods like Proposition 1 would be more attractive
when data is limited, which is closer to the reality.

8.2. Security-constrained unit commitment

8.2.1. Deterministic SCUC

Security-Constrained Unit Commitment (SCUC) is one of the
most important procedures in power system day-ahead or intra-
day operations.

(det-SCUC):
ne
. , ) ) P
g, L e b et v (762)
st 1Tghk > 17dt — 1Tt (76b)

7 Many papers still utilize the first sample complexity bound proved in
Calafiore and Campi (2005), which was significantly tightened in Campi and Garatti
(2008) and following works (Calafiore, 2010).
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Power system applications of chance-constrained optimization.

Methods Expansion Scuc SCED Other Applications
Deterministic Gaussian (Lopez et al., 2007; (Ding, Lee, Jianxue, & Liu, (Bent, Bienstock, & Chertkov, 2013; (Franco, Rider, &
Equivalent Manickavasagam et al., 2010; Pozo & Contreras, Bienstock, Chertkov, & Harnett, 2013; Romero, 2016;
2015; Mazadi et al., 2013; Wu et al.,, 2014) 2014; Doostizadeh et al., 2016; Jabr, Lopez, Pozo,
2009; Sanghvi et al., 2013; Li & Mathieu, 2015; Li, Contreras, &
1982) Vrakopoulou, & Mathieu, 2019; Lubin, Mantovani, 2015)
Dvorkin, & Backhaus, 2016; Roald,
Misra et al., 2015; Roald, Misra, Krause,
& Andersson, 2017; Roald, Misra,
Morrison, & Andersson, 2017; Roald,
Oldewurtel, Krause, & Andersson, 2013;
Vrakopoulou, Li, & Mathieu, 2019;
Wang et al,, 2017; Zhang, Shen, &
Mathieu, 2015)
Scenario a-priori - (Geng et al., 2019; (Bucher et al., 2013; Geng & Xie, (Yang &
Approach Margellos et al., 2013) 2019b; Ming et al., 2017; Modarresi Nehorai, 2014)

Sample Average
Approximation

RO-based
Approach

Others

a-posteriori

RLO
Convex
Approximation

(Zhang, Wang, Li, &
Cao, 2017)

(Qiu et al., 2016; Yang
& Wen, 2005)

(Geng et al., 2019;
Hreinsson, Vrakopoulou, &
Andersson, 2015; Margellos
et al., 2013)

(Bagheri et al., 2017; Tan &

Shaaban, 2016; Wang et al.,

2012; Wang et al., 2013;
Zhang, Wang, Zeng et al.,
2017; Zhao et al., 2014)
Jiang et al. (2012)

(Martinez & Anderson,
2015; Wu, Zeng, Zhang, &
Zhou, 2016)

et al., 2018; Roald, Vrakopoulou,
Oldewurtel, & Andersson, 2014; Roald,

Vrakopoulou, Oldewurtel, & Andersson,
2015; Vrakopoulou et al., 2013a; 2013b;

Zhang, Shen et al., 2015)
(Geng & Xie, 2019b; Modarresi et al.,
2018)

(Geng & Xie, 2019b)

(Geng & Xie, 2019b)

(Geng & Xie, 2019b; Summers et al.,
2014; 2015; Zhang & Giannakis, 2013)
(Bienstock et al., 2014; Doostizadeh
et al,, 2016; Ke, Chung, & Sun, 2016;
Miihlpfordt et al., 2017; Vrakopoulou

et al., 2013a; Wang et al., 2017)

f < Hikgtk — HUkdE 4 HEWt < F (76¢)
r<ght-g k<7 (76d)
a“o (g0 —s") =gt <do (g0 +s) (76e)
kel0,n te[l,n]
goz' <g¥=<go7 (76f)
sozt <st <507 (76g)
goz =gl s <g¥+s <gozt (76h)
22— yut >0 (76i)
2141t >0 (76)
te[1,n]
-2 <z ve[t+ 1, min{t +u; — 1,n}] (76k)
27—z <1-2z, te[t+1, min{t +v;—1,n}] (761)

ie[l,ng], tel2 n]

Deterministic SCUC (det-SCUC) seeks the optimal commitment
and generation schedule of ng generators for the upcoming n;
snapshot while ensuring system security in n, contingencies. De-
cision variables include commitment and startup/shutdown deci-
sions (zf,ut, V"), as well as generation and reserve schedules (g,

st). The objective of (76) is to minimize total operation costs, which
include no-load costs ¢fzt, startup costs cJuf, shutdown costs cjvf,
generation costs c%gﬁ0 and reserve costs cst. Constraint (76b) as-
sures there is enough supply to meet net demand. Constraints
(76¢), (76d) and (76g) are about transmission capacity, generation
ramping capability and reserve limit in contingency scenario k at
time t. In contingency scenarios, the adjusted output gﬁ”‘ of genera-
tor i is bounded by its reserve sl?. Vector a¥ e {0, 1}" represents the

availability of generators in contingency k. When af.‘ =0, generator
i is not available in contingency k, thus has zero generation output.
Generation and reserve capacity constraints are in (76f) and (76g).
Constraints (76f)-(76h) also ensure the consistency of generation
with commitment decisions. (76i)—(76j) are the logistic constraints
about commitment status, startup and shutdown decisions. Min-
imum on/off time constraints for all generators are presented in
(76k)-(761).

8.2.2. Chance-constrained SCUC

Many researchers proposed various advanced formulations of
SCUC to deal with uncertainties, e.g. using robust optimization
(Bertsimas, Litvinov, Sun, Zhao, & Zheng, 2013) and stochastic pro-
gramming (Takriti, Birge, & Long, 1996). A good overview of SCUC
formulations with uncertainties is in Zheng, Wang, and Liu (2015).
In this paper, we formulate the chance-constrained SCUC problem.
Unlike the case of SCED, there is no unified formulation of chance-
constrained SCUC. We present one simplified formulation in (77).
Alternative formulations of chance-constrained SCUC can be found
in (Jiang et al., 2012; Wu, Shahidehpour, & Li, 2007; Zheng et al.,
2015).



X. Geng and L. Xie/Annual Reviews in Control 47 (2019) 341-363 357

(cc-SCUC):
ne
z,rlpvi,gs X;C,Izt +oqut + v +cfg 0+ TSt (77a)
s.t. (76b), (76¢), (76d), (76¢€), k < [0, n]. ¢t € [1, n;]
(76f). (76g), (76h)), (76i), (76j), t € [1, n¢]
(76k), (761), ie[1,ng], t €[2,n]
IP(ITg"k > 1T(d 4 dt) — 17 (@ + W), (77b)
i < Hé’kg'[’k _ Hctl,k(d‘t + Jt)
+H W + W) < . (77¢)
kelo, nk],te[l,nt]> >1—e¢ (77d)

The formulation of (cc-SCUC) is almost identical to (det-SCUC)
except the chance constraint (77b)-(77d). In (cc-SCUC), wind gen-
eration w € R™ is modeled as a random vector consisting of a
deterministic predicted component W € R™ and a stochastic er-
ror component w € R™, The chance constraint (77b)-(77d) ensures
enough supply to meet demand and line flows within limits under
uncertainties with probability at least 1 — € for any contingency
scenario k at any time t.

The joint chance constraint (77b)-(77d) is sometimes written as
two (joint) chance constraints:

IP’(ng“‘ > 1T(d 4 dt) — 17 (@ + W),

kel0,n], tell, nt]) >1—¢low (78a)
IP’(i < Hgkg'[‘k _Hctl,k(d‘t + Jt) —I—Hﬁ‘,k(ﬁ/t +Wt) < T’
kel0,n tell, nt]) >1—¢MoP (78b)

An important metric to evaluate power system reliability is
through the loss of load probability (LOLP), which is defined as the
probability that the total demand is not met by the total gener-
ation (Allan & others, 2013; Qiu et al., 2016). It can be seen that
(78a) is essentially ensuring the value of LOLP will not exceed a
desired level €'O'P, Similarly, we could define the concept transmis-
sion line overload probability (TLOP) (Wu, Shahidehpour, Li, & Tian,
2014). Then (78b) is the same as TLOP < €TLOP,

Some papers (e.g. (Wu et al., 2014)) further break down the
joint chance constraint (78a)-(78b) into individual chance con-
straints (79a)-(79b), which can be interpreted as constraints on
LOLP or TLOP for each time period t.

tk >

P<1Tg“‘ >17(d +d') - 1T (W +Wt)) 1 elow

ke[0,n], te[l,n]. (79a)

P(i < Hé’kg'[’k _Hctl,k(d‘r + Jt) _,’_H&/k(wt W) < T) > 1 — oP,

t.k

ke[0,n], tell,n]. (79b)

Another interesting application of chance constraints in cc-SCUC

guarantees the utilization ratio of wind generation greater than a

desired threshold with high probability 1 —e (Wang et al., 2012;

Wang, Wang, & Guan, 2013; Zhao, Wang, Wang, & Guan, 2014). Dif-

ferent variations of the chance constraint on wind utilization ratios
can be found in Wang et al. (2012).

8.2.3. Solving chance-constrained SCUC
As mentioned in Section 8.2.2, there is no uniform formu-
lation of chance-constrained SCUC. Many references in Table 1

concentrate on exploring alternative formulations of cc-SCUC.
Therefore theoretical guarantees on the solution quality is not a
major concern.

Among all the reviewed methods, sample average approxima-
tion is commonly used when solving chance-constrained SCUC
(Bagheri, Zhao, & Guo, 2017; Tan & Shaaban, 2016; Wang et al.,
2012; Wang et al.,, 2013; Zhang, Wang, Zeng, & Hu, 2017; Zhao
et al., 2014). Section 6 shows that SAA reformulates (CCO) to a
mixed integer program, which is difficult to solve in general. Many
references apply various techniques from integer programming to
speed up the computation, e.g. Zhao et al. (2014) and Jiang, Guan,
and Watson (2016).

Section 5.2 shows that there is no upper bound on the num-
ber of support scenarios for non-convex problems in general.
Thus, a majority of results of the scenario approach cannot be di-
rectly applied on cc-SCUC. Reference Margellos et al. (2013) might
be the first attempt to solve cc-SCUC with the scenario ap-
proach. Recently, Campi et al. (2018) extends the a-posteriori guar-
antees of the scenario approach towards non-convex problems.
Geng, Modarresi, and Xie (2019) adopts the approach in Campi
et al. (2018) and shows the possibility to apply the theoretical re-
sults of the scenario approach on (cc-SCUC). It is worth mention-
ing that some theoretical results in robust optimization still ap-
ply in spite of the non-convexity of SCUC from integer variables
(zt, ut, v'), e.g. Bertsimas et al. (2018). This could be an interesting
direction to explore.

8.3. Generation and transmission expansion

Generation and transmission expansion (the expansion problem
in short) is a critical component in long-term power system plan-
ning exercises. The expansion problem answers the following crit-
ical questions: (i) when to invest on new elements such as trans-
mission lines and generators in the system; (ii) what types of new
elements are necessary; and (iii) how much capacity is needed and
where the best locations would be for those new elements. A typi-
cal objective of the expansion problem is to minimize (i) total cost
of investment in new generators and transmission line; (ii) envi-
ronmental impacts; and (iii) cost of generation. Constraints of the
expansion problem often include total or individual costs within
budget, capacity constraint, reliability requirement, supply-demand
balance, power flow equations, and operation requirements such as
generation or transmission limits.

The expansion problem typically needs to deal with uncertain-
ties from demand, generation and transmission outages, and re-
newables. Chance constraints often appear as requirements on re-
liability metrics such as LOLP (78a) and TLOP (78b).

Among all the papers incorporating chance constraints in the
expansion problem, a majority of them assume the underlying dis-
tribution is Gaussian and derive the second order cone equiva-
lent form as in Section 3.2, e.g. Sanghvi, Shavel, and Spann (1982),
Lopez, Ponnambalam, and Quintana (2007), Mazadi, Rosehart, Ma-
lik, and Aguado (2009) and Manickavasagam, Anjos, and Rose-
hart (2015). A few papers design its own simulation-based itera-
tive algorithms because of complicated problem formulations, e.g.
Yang and Wen (2005) and Qiu et al. (2016). Although Monte-Carlo
simulation is typically performed to evaluate the actual feasibility,
there is no rigorous guarantees on these results.

Similar to the chance constrained DCOPF problem, deriving de-
terministic equivalent forms is the most popular choice. Consider-
ing the expansion problem is usually ultra-large-scale and involves
lots of integer variables, the simplicity of deterministic equivalent
form becomes particularly attractive. Additional pros and cons of
this approach are analyzed in Section 8.1.3.

Similar to chance-constrained SCUC, the expansion problem in-
cludes many integer variables and is non-convex in nature. As
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discussed in Section 8.2.3, the scenario approach and sample aver-
age approximation can still be applied on the expansion problem.
Because of the size of the expansion problem, the required sam-
ple complexity could be astronomic, which lead to major compu-
tational issues. Although the scenario approach and sample average
approximation could provide better theoretical guarantees, it is es-
sential to overcome the major obstacles in computation to apply
some better methods on the expansion problem.

9. Numerical simulations
9.1. ConvertChanceConstraint (CCC): a Matlab toolbox

Most existing optimization solvers cannot directly solve (CCO).
All reviewed methods in Sections 5-7 translate (CCO) to forms that
can be recognized and solved by optimization solvers, e.g. SAA con-
verts (CCO) to a mixed integer program (MIP), which can be solved
by Gurobi. When solving a chance-constrained program, a typical
approach is to write the converted formulation (e.g. the MIP of
SAA) in the compact format that a solver recognizes then rely on
the solver to get optimal solutions. This approach is unnecessar-
ily repetitive as it needs to be repeated by different researchers on
different problems. In addition, different solvers often take various
input formats, thus this typical approach is limited to one specific
solver. To overcome these issues, an interface or toolbox that auto-
matically converts (CCO) to suitable forms for a variety of solvers
is needed.

The remaining part of this subsection introduces the open-
source Matlab toolbox ConvertChanceConstraint (CCC), which is de-
veloped to automate the process of converting chance constraints.
CCC is written in Matlab, one of the most popular tools in en-
gineering and many other fields. In consideration of flexibility in
modeling and compatibility with existing solvers, CCC is built on
YALMIP (Lofberg, 2004), a modeling language for optimization in
Matlab. CCC is open-source on Github,® other researchers and en-
gineers could freely use, modify and improve it.

Fig. 4 illustrates the logic flow when using CCC to solve and
analyze a chance-constrained program. The problem is first formu-
lated in the language of Matlab and YALMIP, then the chance con-
straint is modeled using the prob() function defined in CCC. Af-

8 https://github.com/xb00dx/ConvertChanceConstraint-ccc.

Results
Analysis

Chance-constrained
Optimization Problem

ConvertChanceConstraint

(CCC)

YALMIP Optimization Solvers

Gurobi/Cplex/Sedumi

Fig. 4. Solving and analyzing a chance-constrained program via CCC.

ter receiving the problem formulation and specified method to use
(e.g. scenario approach), CCC translates the chance constraint to
the formulation that YALMIP could understand. Then YALMIP inter-
faces with various solvers and further translates the problem for a
specific solver. After optimization solver returns the optimal solu-
tion, CCC provides a few functions for result analysis, e.g. checking
out-of-sample violation probability, calculating the posterior guar-
antees of the scenario approach.

Fig. 5 presents the structure and main functions of CCC.
Three major methods to solve (CCO) are implemented: scenario
approach, sample average approximation and robust optimiza-
tion related methods. The implementation of RO-related methods
is based on the robust optimization module (Lofberg, 2012) of
YALMIP. As illustrated in Fig. 4 and 5, CCC is interfaced via YALMIP
with most existing optimization solvers, e.g. Cplex (CPLEX, 2009),
Gurobi (Gurobi Optimization, 2016), Mosek (Mosek, 2015) and Se-
dumi (Sturm, 1999).

9.2. Simulation settings

Chance-constrained DCOPF (74) serves as a benchmark problem
for a critical comparison of solutions to (CCO). We provide numeri-
cal solutions of cc-DCOPF on two test systems: a 3-bus system and
the IEEE 24-bus RTS test system.
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Fig. 5. Structure and main functions of ConvertChanceConstraint.
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The 3-bus system is a modified version of the 3-bus system in
Lesieutre, Molzahn, Borden, and DeMarco (2011). The major dif-
ference is the removal of the load at bus 2 and the synchronous
condensor at bus 3 in order to visualize the feasible region and
the space of uncertainties. The original 3-bus system “case3sc.m”
is available in the Matpower toolbox (Zimmerman, Murillo-Snchez,
& Thomas, 2011). The modified system in this paper can be found
in the examples of CCC.? For simplicity, we only consider uncer-
tainties of loads, which is modeled as Gaussian variables with 5%
standard variation.

The 24-bus system in this paper is a modified version of the
IEEE 24-bus RTS benchmark system (Grigg, Wong, Billinton, & oth-
ers, 1999). The transmission line capacities are set to be 60% of the
original capacities. We conduct two sets of simulations on the 24-
bus system with different distributions of uncertainties. The first
one is similar with the 3-bus case, nodal loads are modeled as in-
dependent Gaussian variables with 5% standard deviation. The sec-
ond one models the errors of nodal load forecasts as independent
beta-distributed random variables, with parameters o = 25.2414
and B = 25.2692.1°

Ten Monte-Carlo simulations are conducted on every method
to examine the randomness of solutions. For the 3-bus case, each
Monte-Carlo simulation uses 100 i.i.d samples to solve cc-DCOPF.
2048 points are used in each run to solve (cc-DCOPF) of the 24-bus
system. The returned solutions are evaluated on an independent
set of 10* points (Fig. 6).

We use Gurobi 7.10 (Gurobi Optimization, 2016) to get results of
scenario approach and sample average approximation. Cplex 12.8 is
used to solve (CCO) with robust counterpart and convex approxi-
mation.

9.3. Simulation results

We solve cc-DCOPF on the 3-bus system with eight different
methods: (1) scenario approach with prior guarantees, (SA:prior,
Corollary 1); (2) scenario approach with posterior guarantees
(SA:posterior, Theorem 7); (3) sample average approximation,

9 github.com/xb00dx/ConvertChanceConstraint-ccc/tree/master/examples.
10 This setting of beta distribution is from Hodge and Milligan (2011), and scaled
from [0,1] to [—18%, 18%].
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Fig. 6. Objective values (cc-DCOPF of the 3-bus System).

where N and ¢ are chosen based on the sampling and discard-
ing Theorem (SAA:s&d, Theorem 9); (4-7) Robust counterpart with
different uncertainty sets specified in Theorem 13: box (RC:box),
ball (RC:ball), ball-box (RC:ball-box) and budget (RC:budget) un-
certainty sets; (8) convex approximation with Markov bound
(CA:markov, Theorem 11 and Proposition 5).

We first examine the feasibility of the returned solutions from
eight algorithms. Figs. 7 and 8 show the out-of-sample viola-
tion probabilities é versus desired € in the setting. The green
dashed lines in Figs. 7 and 8 denote the ideal case where é = €.
Any points above the green dashed line indicate infeasible solu-
tions that V(x) > €. Clearly all methods return feasible solutions
(with high probability) to (CCO). From Fig. 7, sample average ap-
proximation and convex approximation are less conservative than
other methods. However, it is worth noting that when € is small
(e.g. 1072), the data-driven approximation of CVaR (Proposition 5)
does not necessarily give a safe approximation to (CCO) (Chen
et al., 2010). The robust counterpart methods are typically 10 ~ 100
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Fig. 7. Violation probabilities (cc-DCOPF of the 3-bus System).
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Fig. 10. Violation probabilities in logarithmic scale (cc-DCOPF of the 24-bus System,
Beta Distributions).

times more conservative than other methods, as illustrated in the
comparison of Fig. 8a with Fig. 8b. The conservativeness could be
significantly reduced by better construction of uncertainty sets, e.g.
Chen et al. (2010) and Bertsimas et al. (2018). Among four differ-
ent choices of uncertainty sets, the ball-box set is the least con-
servative one, which combines the advantages of the ball and box
uncertainty sets.

violation probability (setting)

Fig. 11. Violation probabilities with error bars showing standard deviations (cc-
DCOPF of the 24-bus System, Beta Distributions).

Figs. 8 and 9 present the results of the 24-bus system with
Gaussian distributions. Simulation results of the beta distribution
are in Figs. 10-12. Observations from Figs. 10-12 are similar with
the case of Gaussian distributions. Every method behaves more
conservative in the case of beta distributions than the case of
Gaussian distributions. It is worth noting that the RO-based meth-
ods (RC:box, RC:ball, RC:ball-box in Fig. 11) are so conservative that
lead to zero empirical violation probability €.
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Fig. 12. Objective values (cc-DCOPF of the 24-bus System, Beta Distributions).

10. Concluding remarks

This paper consists of two parts. The first part presents a com-
prehensive review on the fundamental properties, key theoreti-
cal results, and three classes of algorithms for chance-constrained
optimization. An open-source MATLAB toolbox ConvertChance-
Constraint is developed to automate the process of translating
chance constraints to compatible forms for mainstream optimiza-
tion solvers. The second part of this paper presents three major
applications of chance-constrained optimization in power systems.
We also present a critical comparison of existing algorithms to
solve chance-constrained programs on IEEE benchmark systems.

Many interesting directions are open for future research. More
thorough and detailed comparisons of solutions to (CCO) on var-
ious problems with realistic datasets is needed. In terms of the-
oretical investigation, an analytical comparison of existing solu-
tions to chance-constrained optimization is necessary to substanti-
ate the fundamental insights obtained from numerical simulations.
In terms of applications, many existing results can be improved by
exploiting the structural properties of the problem to be solved.
The application of chance-constrained optimization in electric en-
ergy systems could go beyond operational planning practices. For
example, it would be worth investigating into the economic in-
terpretation of market power issues through the lens of chance-
constrained optimization.
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