
Computational Optimization and Applications
https://doi.org/10.1007/s10589-019-00112-x

A dense initialization for limited-memory quasi-Newton
methods

Johannes Brust1 ·Oleg Burdakov2 · Jennifer B. Erway3 · Roummel F. Marcia4

Received: 24 May 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
We consider a family of dense initializations for limited-memory quasi-Newton meth-
ods. The proposed initialization exploits an eigendecomposition-based separation of
the full space into two complementary subspaces, assigning a different initialization
parameter to each subspace. This family of dense initializations is proposed in the con-
text of a limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) trust-region
method that makes use of a shape-changing norm to define each subproblem. As with
L-BFGS methods that traditionally use diagonal initialization, the dense initialization
and the sequence of generated quasi-Newton matrices are never explicitly formed.
Numerical experiments on the CUTEst test set suggest that this initialization together
with the shape-changing trust-region method outperforms other L-BFGS methods for
solving general nonconvex unconstrained optimization problems. While this dense
initialization is proposed in the context of a special trust-region method, it has broad
applications for more general quasi-Newton trust-region and line search methods. In
fact, this initialization is suitable for use with any quasi-Newton update that admits a
compact representation and, in particular, anymember of the Broyden class of updates.

Keywords Large-scale nonlinear optimization · Limited-memory quasi-Newton
methods · Trust-region methods · Quasi-Newton matrices · Shape-changing norm

Mathematics Subject Classification 90C53 · 90C06 · 90C26 · 65K05 · 65K10 ·
65F10 · 65F15

This research is supported by NSF Grants CMMI-1334042, CMMI-1333326, IIS-1741490, and
IIS-1741264.

B Jennifer B. Erway
erwayjb@wfu.edu

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-019-00112-x&domain=pdf

J. Brust et al.

1 Introduction

In this paper we propose a new dense initialization for quasi-Newton methods to solve
problems of the form

minimize
x∈�n

f (x),

where f : �n → � is at least a continuously differentiable function, which is not
necessarily convex. The dense initialization matrix is designed to be updated each
time a new quasi-Newton pair is computed (i.e., as often as once an iteration); how-
ever, in order to retain the efficiency of limited-memory quasi-Newton methods, the
dense initialization matrix and the generated sequence of quasi-Newton matrices are
not explicitly formed. This proposed initialization makes use of a partial eigendecom-
position of these matrices for separating �n into two orthogonal subspaces – one for
which there is approximate curvature information and the other for which there is
no reliable curvature information. This initialization has broad applications for gen-
eral quasi-Newton trust-region and line search methods. In fact, this work can be
applied to any quasi-Newton method that uses an update with a compact representa-
tion, which includes any member of the Broyden class of updates. For this paper, we
explore its use in one specific algorithm; in particular we consider a limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) trust-region method where each sub-
problem is defined using a shape-changing norm [3]. The reason for this choice is
that the dense initialization is naturally well-suited for solving L-BFGS trust-region
subproblems defined by this norm. Numerical results on the CUTEst test set suggest
that the dense initialization outperforms other L-BFGS methods.

The BFGS update is the most widely-used quasi-Newton update for large-scale
optimization; it is defined by the recursion formula

Bk+1 = Bk − 1

sTk Bksk
Bksks

T
k Bk + 1

sTk yk
yk y

T
k , (1)

where

sk
�= xk+1 − xk and yk

�= ∇ f (xk+1) − ∇ f (xk), (2)

and B0 ∈ �n×n is a suitably-chosen initial matrix. This rank-two update to Bk pre-
serves positive definiteness when sTk yk > 0.

L-BFGS is a limited-memory variant of BFGS that only stores a predetermined
number, m, of the most recently-computed pairs {si , yi } where m � n. (Typically,
m ∈ [3, 7] (see, e.g., [5]).) Together with an initial matrix B0 that depends on k, these
pairs are used to compute Bk . For notational simplicity, we drop the dependence of
the initial matrix on k and simply denote it as B0. This limitation on the number of
stored pairs allows for a practical implementation of the BFGS method for large-scale
optimization.

There are several desirable properties for picking the initial matrix B0. First, in
order for the sequence {Bk} generated by (1) to be symmetric and positive definite, it

123

A dense initialization for limited-memory quasi-Newton…

is necessary that B0 is symmetric and positive definite. Second, it is desirable for B0
to be easily invertible so that solving linear systems with any matrix in the sequence is
computable using the so-called “two-loop recursion” [5] or other recursive formulas
for B−1

k (for an overview of other available methods see [9]). For these reasons, B0 is
often chosen to be a scalar multiple of the identity matrix, i.e.,

B0 = γk I , with γk > 0. (3)

For BFGS matrices, the conventional choice for the initialization parameter γk is

γk = yTk yk

sTk yk
, (4)

which can be viewed as a spectral estimate for ∇2 f (xk) [13]. (This choice was origi-
nally proposed in [14] using a derivation based on optimal conditioning.) It is worth
noting that this choice of γk can also be derived as the minimizer of the scalar mini-
mization problem

γk = argmin
γ

∥
∥
∥B−1

0 yk − sk
∥
∥
∥

2

2
, (5)

where B−1
0 = γ −1 I . For numerical studies on this choice of initialization, see, e.g.,

the references listed within [4].
In this paper, we consider a specific dense initialization in lieu of the usual diagonal

initialization. The aforementioned separation of �n into two orthogonal subspaces
allows for different initialization parameters to be used to estimate the curvature of
the underlying function in these subspaces. In one space (the space spanned by the
most recent updates {si , yi } with k − m ≤ i ≤ k − 1), estimates of the curvature of
the underlying function are available, and thus, one initialization parameter can be set
using this information. However, in its orthogonal complement, curvature information
is not available. Therefore, if the component of the trial step in the orthogonal subspace
is (relatively) too large, the predictive quality of the whole trial step is expected to dete-
riorate. As a result, the trust-region radius might be reduced, despite the fact that the
predictive quality of the component in the aforementioned small subspacemaybe suffi-
ciently good. Separating the whole space into these two subspaces allows users to treat
each subspace differently. An alternative view of this initialization is that it makes use
of two spectral estimates of∇2 f (xk). Finally, the proposed initialization also allows for
efficiently solving and computing products with the resulting quasi-Newton matrices.

The paper is organized in five sections. In Sect. 2, we review properties of L-

BFGS matrices arising from their special recursive structure as well as overview the
shape-changing trust-region method to be used in this paper. In Sect. 3, we present
the proposed trust-region method that uses a shape-changing norm together with a
dense initialization matrix. While this dense initialization is presented in one specific
context, it can be used in combination with any quasi-Newton update that admits a so-
called compact representation. Numerical experiments comparing this method with
other combinations of initializations and L-BFGS methods are reported in Sect. 4, and
concluding remarks are found in Sect. 5.

123

J. Brust et al.

2 Background

In this section, we overview the compact formulation for L-BFGS matrices and how
to efficiently compute a partial eigendecomposition. Finally, we review the shape-
changing trust-region method considered in this paper.

2.1 The compact representation

The special structure of the recursion formula for L-BFGS matrices admits a so-called
compact representation [5], which is overviewed in this section.

Using the m most recently computed pairs {s j } and {y j } given in (2), we define the
following matrices

Sk
�=

[

sk−m · · · sk−1
]

and Yk
�=

[

yk−m · · · yk−1
]

.

With Lk taken to be the strictly lower triangular part of the matrix of STk Yk , and Dk

defined as the diagonal of STk Yk , the compact representation of an L-BFGS matrix is

Bk = B0 + ΨkMkΨ
T
k , (6)

where

Ψk
�= [B0Sk Yk] and Mk

�= −
[

STk B0Sk Lk

LT
k −Dk

]−1

(7)

(see [5] for details). Note that Ψk ∈ �n×2m , and Mk ∈ �2m×2m is invertible provided
sTi yi > 0 for all i [5, Theorem 2.3]. An advantage of the compact representation is
that if B0 is chosen to be a multiple of the identity, then computing products with Bk

or solving linear systems with Bk can be done efficiently [9,12].
It should be noted that L-BFGS matrices are just one member of the Broyden class

of matrices (see, e.g., [13]), and in fact every member of the Broyden class of matrices
admits a compact representation [6,8,12].

2.2 Partial eigendecomposition of Bk

If B0 is taken to be amultiple of the identitymatrix, then the partial eigendecomposition
of Bk can be computed efficiently from the compact representation (6) using either
a partial QR decomposition [3] or a partial singular value decomposition (SVD) [11].
Below, we review the approach that uses the QR decomposition, and we assume that
Ψk has rank r = 2m. (For the rank-deficient case, see the techniques found in [3].)

Let

Ψk = QR,

123

A dense initialization for limited-memory quasi-Newton…

be the so-called “thin” QR factorization of Ψk , where Q ∈ �n×r and R ∈ �r×r .
Since the matrix RMk RT is a small (r × r) matrix with r � n (recall that r = 2m,
where m is typically between 3 and 7), it is computationally feasible to calculate its
eigendecomposition; thus, suppose W Λ̂WT is the eigendecomposition of RMk RT .

Then,

ΨkMkΨ
T
k = QRMk R

T QT = QW Λ̂WT QT = Ψk R
−1W Λ̂WT R−TΨ T

k .

Defining

P‖ = Ψk R
−1W , (8)

gives that

ΨkMkΨ
T
k = P‖Λ̂PT‖ . (9)

Thus, for B0 = γk I , the eigendecomposition of Bk can be written as

Bk = γk I + ΨkMkΨ
T
k = PΛPT , (10)

where

P �=
[

P‖ P⊥
]

, Λ
�=

[

Λ̂ + γk Ir
γk In−r

]

, (11)

and P⊥ ∈ R
n×(n−r) is defined as the orthogonal complement of P‖, i.e., PT⊥ P⊥ = In−r

and PT‖ P⊥ = 0r×(n−r). Hence, Bk has r eigenvalues given by the diagonal elements

of Λ̂ + γk Ir and the remaining eigenvalues are γk with multiplicity n − r .

2.2.1 Practical computations

Using the above method yields the eigenvalues of Bk as well as the ability to compute
products with P‖. Formula (8) indicates that Q is not required to be explicitly formed
in order to compute products with P‖. For this reason, it is desirable to avoid forming
Q by computing only R via the Cholesky factorization of Ψ T

k Ψk , i.e., Ψ T
k Ψk = RT R

(see [3]).
At an additional expense, the eigenvectors stored in the columns of P‖ may be

formed and stored. For the shape-changing trust-region method used in this paper, it is
not required to store P‖. In contrast, the matrix P⊥ is prohibitively expensive to form.
It turns out that for this work it is only necessary to be able to compute projections
into the subspace P⊥PT⊥ , which can be done using the identity

P⊥PT⊥ = I − P‖PT‖ . (12)

123

J. Brust et al.

2.3 A shape-changing L-BFGS trust-regionmethod

Generally speaking, at the kth step of a trust-region method, a search direction is
computed by approximately solving the trust-region subproblem

p∗ = argmin
‖p‖≤Δk

Q(p) �= gTk p + 1

2
pT Bk p, (13)

where gk
�= ∇ f (xk), Bk ≈ ∇2 f (xk), and Δk > 0 is the trust-region radius. When

second derivatives are unavailable or computationally too expensive to compute,
approximations using gradient information may be preferred. Not only do quasi-
Newton matrices use only gradient and function information, but in the large-scale
case, these Hessian approximations are never stored; instead, a recursive formula or
methods that avoid explicitly forming Bk may be used to compute matrix-vector prod-
ucts with the approximate Hessians or their inverses [5,8,9,12].

Consider the trust-region subproblem defined by the shape-changing infinity norm:

minimize‖p‖P,∞≤Δk
Q(p) = gTk p + 1

2
pT Bk p, (14)

where

‖p‖P,∞
�= max

(

‖PT‖ p‖∞, ‖PT⊥ p‖2
)

(15)

and P‖ and P⊥ are given in (11). Note that the ratio ‖p‖2/‖p‖P,∞ does not depend on
n and only moderately depends on r . (In particular, 1 ≤ ‖p‖2/‖p‖P,∞ ≤ √

r + 1.)
Because this norm depends on the eigenvectors of Bk , the shape of the trust region
changes each time the quasi-Newton matrix is updated, which is possibly every iter-
ation of a trust-region method. (See [3] for more details and other properties of this
norm.) The motivation for this choice of norm is that the the trust-region subproblem
(14) decouples into two separate problems for which closed-form solutions exist.

We now review the closed-form solution to (14), as detailed in [3]. Let

v = PT p =
[
PT‖ p
PT⊥ p

]

�=
[

v‖
v⊥

]

and PT gk =
[
PT‖ gk
PT⊥ gk

]

�=
[

g‖
g⊥

]

. (16)

With this change of variables, the objective function of (14) becomes

Q (Pv) = gTk Pv + 1

2
vT

(

Λ̂ + γk In
)

v

= gT‖ v‖ + gT⊥v⊥ + 1

2

(

vT‖
(

Λ̂ + γk Ir
)

v‖ + γk ‖v⊥‖22
)

= gT‖ v‖ + 1

2
vT‖

(

Λ̂ + γk Ir
)

v‖ + gT⊥v⊥ + 1

2
γk ‖v⊥‖22 .

123

A dense initialization for limited-memory quasi-Newton…

The trust-region constraint ‖p‖P,∞ ≤ Δk implies
∥
∥v‖

∥
∥∞ ≤ Δk and ‖v⊥‖2 ≤ Δk ,

which decouples (14) into the following two trust-region subproblems:

minimize‖v‖‖∞≤Δk

q‖
(

v‖
) �= gT‖ v‖ + 1

2
vT‖

(

Λ̂ + γk Ir
)

v‖ (17)

minimize‖v⊥‖2≤Δk
q⊥ (v⊥)

�= gT⊥v⊥ + 1

2
γk ‖v⊥‖22 . (18)

Observe that the resulting minimization problems are considerably simpler than the
original problem since in both cases the Hessian of the new objective functions are
diagonal matrices. The solutions to these decoupled problems have closed-form ana-
lytical solutions [2,3]. Specifically, letting λi

�= λ̂i + γk , the solution to (17) is given
coordinate-wise by

[v∗||]i =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− [g||]i
λi

if
∣
∣
∣
[g||]i

λi

∣
∣
∣ ≤ Δk and λi > 0,

c if
[

g‖
]

i = 0 and λi = 0,

−sgn(
[

g‖
]

i)Δk if
[

g‖
]

i �= 0 and λi = 0,

±Δk if
[

g‖
]

i = 0 and λi < 0,

− Δk|[g||]i |
[

g||
]

i otherwise,

, (19)

where c is any real number in [−Δk,Δk] and ‘sgn’ denotes the signum function.
Meanwhile, the minimizer of (18) is given by

v∗⊥ = βg⊥, (20)

where

β =
{

− 1
γk

if γk > 0 and ‖g⊥‖2 ≤ Δk |γk |,
− Δk‖g⊥‖2 otherwise.

(21)

Note that the solution to (14) is then

p∗ = Pv∗ = P‖v∗‖ + P⊥v∗⊥ = P‖v∗‖ + βP⊥g⊥ = P‖v∗‖ + βP⊥PT⊥ gk, (22)

where the latter term is computed using (12). Additional simplifications yield the
following expression for p∗:

p∗ = βg + P‖(v∗‖ − βg‖). (23)

The overall cost of computing the solution to (14) is comparable to that of using the
Euclidean norm (see [3]). The main advantage of using the shape-changing norm (15)
is that the solution p∗ in (23) has a closed-form expression.

123

J. Brust et al.

3 The proposedmethod

In this section,we present a newdense initialization and demonstrate how it is naturally
well-suited for trust-region methods defined by the shape-changing infinity norm.
Finally, we present a full trust-region algorithm that uses the dense initialization,
consider its computational cost, and prove global convergence.

3.1 Dense initial matrix̂B0

In this section, we propose a new dense initialization for quasi-Newton methods.
Importantly, in order to retain the efficiency of quasi-Newton methods the dense ini-
tializationmatrix and subsequently updatedquasi-Newtonmatrices are never explicitly
formed. This initialization can be used with any quasi-Newton update for which there
is a compact representation; however, for simplicity, we continue to refer to the BFGS

update throughout this section. For notational purposes, we use the initial matrix B0
to represent the usual initialization and B̂0 to denote the proposed dense initialization.
Similarly, {Bk} and {B̂k} will be used to denote the sequences of matrices obtained
using the initializations B0 and B̂0, respectively.

Our goal in choosing an alternative initialization is four-fold: (i) to be able to treat
subspaces differently depending on whether curvature information is available or not,
(ii) to preserve properties of symmetry and positive-definiteness, (iii) to be able to
efficiently compute products with the resulting quasi-Newton matrices, and (iv) to be
able to efficiently solve linear systems involving the resulting quasi-Newton matrices.
The initialization proposed in this paper leans upon two different parameter choices
that can be viewed as an estimate of the curvature of ∇2 f (xk) in two subspaces: one
spanned by the columns of P‖ and another spanned by the columns of P⊥.

The usual initialization for a BFGS matrix Bk is B0 = γk I , where γk > 0. Note that
this initialization is equivalent to

B0 = γk P PT = γk P‖PT‖ + γk P⊥PT⊥ .

In contrast, for a given γk, γ
⊥
k ∈ �, consider the following symmetric, and in general,

dense initialization matrix:

B̂0 = γk P‖PT‖ + γ ⊥
k P⊥PT⊥ , (24)

where P‖ and P⊥ are the matrices of eigenvectors defined in Sect. 2.2. We now derive
the eigendecomposition of B̂k .

Theorem 3.1 Let B̂0 be defined as in (24). Then B̂k generated using (1) has the eigen-
decomposition

B̂k = [

P‖ P⊥
]
[

Λ̂ + γk Ir
γ ⊥
k In−r

]
[

P‖ P⊥
]T

, (25)

where P‖, P⊥, and Λ̂ are given in (8), (11), and (9), respectively.

123

A dense initialization for limited-memory quasi-Newton…

Proof First note that the columns of Sk are in Range(Ψk), where Ψk is defined in (7).
From (8), Range(Ψk) = Range(P‖); thus, P‖PT‖ Sk = Sk and PT⊥ Sk = 0. This gives
that

B̂0Sk = γk P‖PT‖ Sk + γ ⊥
k P⊥PT⊥ Sk = γk Sk = B0Sk . (26)

Combining the compact representation of B̂k ((6) and (7)) together with (26) yields

B̂k = B̂0 − [

B̂0Sk Yk
]
[

STk B̂0Sk Lk

LT
k −Dk

]−1 [

STk B̂0

Y T
k

]

= B̂0 − [B0Sk Yk]

[

STk B0Sk Lk

LT
k −Dk

]−1 [

STk B0

Y T
k

]

= γk P‖PT‖ + γ ⊥
k P⊥PT⊥ + P‖Λ̂PT‖

= P‖
(

Λ̂ + γk Ir
)

PT‖ + γ ⊥
k P⊥PT⊥ ,

which is equivalent to (25). ��

It can be easily verified that (25) holds also for P‖ defined in [3] for possibly
rank-deficientΨk . (Note that (8) applies only to the special case whenΨk is full-rank.)

Theorem 3.1 shows that the matrix B̂k that results from using the initialization
(24) shares the same eigenvectors as Bk , generated using B0 = γk I . Moreover, the
eigenvalues corresponding to the eigenvectors stored in the columns of P‖ are the
same for B̂k and Bk . The only difference in the eigendecompositions of B̂k and Bk

is in the eigenvalues corresponding to the eigenvectors stored in the columns of P⊥.
This is summarized in the following corollary.

Corollary 3.1 Suppose Bk is a BFGS matrix initialized with B0 = γk I and B̂k is a BFGS

matrix initialized with (24). Then Bk and B̂k have the same eigenvectors; moreover,
these matrices have r eigenvalues in common given by λi

�= λ̂i + γk where Λ̂ =
diag(λ̂1, . . . , λ̂r).

Proof The corollary follows immediately by comparing (10) with (25). ��

The results of Theorem 3.1 and Corollary 3.1 may seem surprising at first since
every term in the compact representation ((6) and (7)) depends on the initialization;
moreover, B̂0 is, generally speaking, a dense matrix while B0 is a diagonal matrix.
However, viewed from the perspective of (24), the parameter γ ⊥

k only plays a role in
scaling the subspace spanned by the columns of P⊥.

The initialization B̂0 allows for two separate curvature approximations for the BFGS

matrix: one in the space spanned by columns of P‖ and another in the space spanned
by the columns of P⊥. In the next subsection, we show that this initialization is natu-
rally well-suited for solving trust-region subproblems defined by the shape-changing
infinity norm.

123

J. Brust et al.

3.2 The trust-region subproblem

Here we will show that the use of B̂0 provides the same subproblem separability as
B0 does in the case of the shape-changing infinity norm.

For B̂0 given by (24), consider the objective function of the trust-region subproblem
(14) resulting from the change of variables (16):

Q(Pv) = gTk Pv + 1

2
vT PT B̂k Pv

= gT‖ v‖ + 1

2
vT‖

(

Λ̂ + γk Ir
)

v‖ + gT⊥v⊥ + 1

2
γ ⊥
k ‖v⊥‖22 .

Thus, (14) decouples into two subproblems: The corresponding subproblem for q‖(v‖)
remains (17) and the subproblem for q⊥(v⊥) becomes

minimize‖v⊥‖2≤Δk
q⊥ (v⊥)

�= gT⊥v⊥ + 1

2
γ ⊥
k ‖v⊥‖22 . (27)

The solution to (27) is now given by

v∗⊥ = β̂g⊥, (28)

where

β̂ =
{− 1

γ ⊥
k

if γ ⊥
k > 0 and ‖g⊥‖2 ≤ Δk |γ ⊥

k |,
− Δk‖g⊥‖2 otherwise.

(29)

Thus, the solution p∗ can be expressed as

p∗ = β̂g + P‖(v∗‖ − β̂g‖), (30)

which can computed as efficiently as the solution in (23) for conventional initial
matrices since they differ only by the scalar (β̂ in (30) versus β in (23)).

3.3 Determining the parameter �⊥
k

The values γk and γ ⊥
k can be updated at each iteration. Since we have little information

about the underlying function f in the subspace spanned by the columns of P⊥, it is
reasonable to make conservative (i.e., large) choices for γ ⊥

k . Note that in the case that
γ ⊥
k > 0 and ‖g⊥‖2 ≤ Δk |γ ⊥

k |, the parameter γ ⊥
k scales the solution v∗⊥ (see 29);

thus, large values of γ ⊥
k will reduce these step lengths in the space spanned by P⊥.

Since the space P⊥ does not explicitly use information produced by past iterations,
it seems desirable to choose γ ⊥

k to be large. However, the larger that γ ⊥
k is chosen,

the closer v∗⊥ will be to the zero vector. Also note that if γ ⊥
k < 0 then the solution to

the subproblem (27) will always lie on the boundary, and thus, the actual value of γ ⊥
k

123

A dense initialization for limited-memory quasi-Newton…

becomes irrelevant. Moreover, for values γ ⊥
k < 0, B̂k is not guaranteed to be positive

definite. For these reasons, we suggest sufficiently large and positive values for γ ⊥
k

related to the curvature information gathered in γ1, . . . , γk . Specific choices for γ ⊥
k

are presented in the numerical results section.

3.4 Implementation details

In this section, we describe how we incorporate the dense initialization within the
existing LMTR algorithm [3]. At the beginning of each iteration, the LMTR algorithm
with dense initialization checks if the unconstrained minimizer (also known as the full
quasi-Newton trial step),

p∗
u = −B̂−1

k gk (31)

lies inside the trust region defined by the two-norm. Because our proposedmethod uses
a dense initialization, the so-called “two-loop recursion” [6] is not applicable for com-
puting the unconstrained minimizer p∗

u in (31). However, products with B̂−1
k can be

performed using the compact representation without involving a partial eigendecom-
position. Specifically, if Vk = [Sk Yk] with Cholesky factorization V T

k Vk = RT
k Rk ,

then

B̂−1
k = 1

γ ⊥
k

I + Vk M̂kV
T
k , (32)

where

M̂k =
[

T−T
k (Dk + γ −1

k Y T
k Yk)T

−1
k −γ −1

k T−T
k

−γ −1
k T−1

k 0m

]

+ αk R
−1
k R−T

k ,

αk =
(

1

γk
− 1

γ ⊥
k

)

, Tk is the upper triangular part of the matrix STk Yk , and Dk is its

diagonal. Thus, the inequality

‖p∗
u‖2 ≤ Δk (33)

is easily verified without explicitly forming p∗
u using the identity

‖p∗
u‖22 = gTk B̂

−2
k gk = γ −2

k ‖gk‖2 + 2γ −1
k uTk M̂kuk + uTk M̂k(R

T
k Rk)M̂kuk . (34)

Here, as in the LMTR algorithm, the vector uk = V T
k gk and ‖gk‖2 can be computed

efficiently at each iteration (see [3] for details). Thus, the computational cost of ‖p∗
u‖2

is lowbecause (34) involves linear algebra operations in a small 2m-dimensional space,
the most expensive of which are related to solving triangular systems with Tk and Rk .
These operations grow in proportion tom2 while the number of operations in (31)–(32)
grows in proportion to mn. Thus, the computational complexity ratio between using

123

J. Brust et al.

(34) and (31)–(32) is m2/(nm) = m/n � 1 since we assume that m � n. The norm
equivalence for the shape-changing infinity norm studied in [3] guarantees that (33)
implies that the inequality ‖p∗

u‖P,∞ ≤ Δk is satisfied; in this case, p∗
u is the exact

solution of the trust-region subproblem defined by the shape-changing infinity norm.
If (33) holds, the algorithm computes p∗

u for generating the trial point xk + p∗
u . It

can be easily seen that the cost of computing p∗
u is 4mn operations, i.e. it is the same

as for computing search direction in the line search L-BFGS algorithm [6].
On the other hand, if (33) does not hold, then for producing a trial point, the partial

eigendecomposition is computed, and the trust-region subproblem is decoupled and
solved exactly as described in Sect. 3.2.

3.5 The algorithm and its properties

InAlgorithm1,we present a basic trust-regionmethod that uses the proposed dense ini-
tialization. In this setting, we consider the computational cost of the proposed method,
and we prove global convergence of the overall trust-region method. Since P may
change every iteration, the corresponding norm ‖ · ‖P,∞ may change each iteration.
Note that initially there are no stored quasi-Newton pairs {s j , y j }. In this case, we
assume P⊥ = In and P‖ does not exist, i.e., B̂0 = γ ⊥

0 I .
The only difference between Algorithm 1 and the LMTR algorithm in [3] is the

initialization matrix. Computationally speaking, the use of a dense initialization in
lieu of a diagonal initialization plays out only in the computation of p∗ by (22).
However, there is no computational cost difference: The cost of computing the value
for β using (29) in Algorithm 1 instead of (21) in the LMTR algorithm is the same.
Thus, the dominant cost per iteration for both Algorithm 1 and the LMTR algorithm is
4mn operations (see [3] for details). Note that this is the same cost-per-iteration as the
line search L-BFGS algorithm [5].

In the next result, we provide a global convergence result for Algorithm 1. This
result is based on the convergence analysis presented in [3].

Theorem 3.2 Let f : Rn → R be twice-continuously differentiable and bounded
below on Rn. Suppose that there exists a scalar c1 > 0 such that

‖∇2 f (x)‖ ≤ c1, ∀ x ∈ Rn . (35)

Furthermore, suppose for B̂0 defined by (24), that there exists a positive scalar c2 such
that

γk, γ
⊥
k ∈ (0, c2], ∀ k ≥ 0, (36)

and there exists a scalar c3 ∈ (0, 1) such that the inequality

sTj y j > c3‖s j‖‖y j‖ (37)

123

A dense initialization for limited-memory quasi-Newton…

Algorithm 1 An L-BFGS trust-region method with dense initialization

Require: x0 ∈ Rn , Δ0 > 0, ε > 0, γ ⊥
0 > 0 , 0 ≤ τ1 < τ2 < 0.5 < τ3 < 1,

0 < η1 < η2 ≤ 0.5 < η3 < 1 < η4, 0 < c3 < 1
1: Compute g0
2: for k = 0, 1, 2, . . . do
3: if ‖gk‖ ≤ ε then
4: return
5: end if
6: Compute ‖p∗

u‖2 using (34)
7: if ‖p∗

u‖2 > Δk then
8: Compute p∗ for B̂k using (30), where β̂ is computed using (29) and v∗‖ as in (19)
9: else
10: Compute p∗

u using (31)–(32) and set p∗ ← p∗
u

11: end if
12: Compute the ratio ρk = f (xk+p∗)− f (xk)

Q(p∗)

13: if ρk≥ τ1 then
14: xk+1 = xk + p∗
15: Compute gk+1, sk , yk , γk+1 and γ ⊥

k+1
16: Choose at most m pairs {s j , y j } such that sTj y j > c3‖s j‖‖y j‖
17: Compute Ψk+1, R

−1, Mk+1,W , Λ̂ and Λ as described in Sect. 2
18: else
19: xk+1 = xk
20: end if
21: if ρk < τ2 then
22: Δk+1 = min

(

η1Δk , η2‖sk‖P,∞
)

23: else
24: if ρk ≥ τ3 and ‖sk‖P,∞ ≥ η3Δk then
25: Δk+1 = η4Δk
26: else
27: Δk+1 = Δk
28: end if
29: end if
30: end for

holds for each quasi-Newton pair {s j , y j }. Then, if the stopping criteria is suppressed,
the infinite sequence {xk} generated by Algorithm 1 satisfies

lim
k→∞ ‖∇ f (xk)‖ = 0. (38)

Proof From (36), we have ‖B̂0‖ ≤ c2, which holds for each k ≥ 0. Then, by [3,
Lemma 3], there exists c4 > 0 such that

‖B̂k‖ ≤ c4.

Then, (38) follows from [3, Theorem 1]. ��
In the following section, we consider γ ⊥

k parameterized by two scalars, c and λ:

γ ⊥
k (c, λ) = λcγmax

k + (1 − λ)γk, (39)

123

J. Brust et al.

where c ≥ 1, λ ∈ [0, 1], and

γmax
k

�= max γi
1≤i≤k

,

where γk is taken to be the conventional initialization given by (4). (This choice for
γ ⊥
k will be further discussed in Sect. 4.) We now show that Algorithm 1 converges for

these choices of γ ⊥
k . Assuming that (35) and (37) hold, it remains to show that (36)

holds for these choices of γ ⊥
k . To see that (36) holds, notice that in this case,

γk = yTk yk

sTk yk
≤ yTk yk

c3‖sk‖‖yk‖ ≤ ‖yk‖
c3‖sk‖ .

Substituting in for the definitions of yk and sk yields that

γk ≤ ‖∇ f (xk+1) − ∇ f (xk)‖
c3‖xk+1 − xk‖ ,

implying that (36) holds. Thus, Algorithm 1 converges for these choices for γ ⊥
k .

4 Numerical experiments

We performed numerical experiments using a Dell Precision T1700 machine with an
Intel i5-4590 CPU at 3.30GHz X4 and 8GB RAM using MATLAB 2014a. The test set
consisted of 65 large-scale (1000 ≤ n ≤ 10000) CUTEst [10] test problems, made
up of all the test problems in [3] plus an additional three (FMINSURF, PENALTY2, and
TESTQUAD [10]) since at least one of the methods in the experiments detailed below
converged on one of these three problems. The same trust-region method and default
parameters as in [3, Algorithm 1] were used for the outer iteration. At most five
quasi-Newton pairs {sk, yk} were stored, i.e., m = 5. The relative stopping criterion
was

‖gk‖2 ≤ ε max (1, ‖xk‖2) ,

with ε = 10−10. The initial step, p0, was determined by a backtracking line-search
along the normalized steepest descent direction. To compute the partial eigendecom-
position of Bk , we used the QR factorization instead of the SVD because the QR version
outperformed the SVD version in numerical experiments not presented here. The rank
of Ψk was estimated by the number of positive diagonal elements in the diagonal
matrix of the LDLT decomposition (or eigendecomposition of Ψ T

k Ψk) that are larger
than the threshold εr = (10−7)2. (Note that the columns of Ψk are normalized.). We
used the value c3 = 10−8 in (37) for testing whether to accept a new quasi-Newton
pair.

We provide performance profiles (see [7]) for the number of iterations (iter)
where the trust-region step is accepted and the average time (time) for each solver

123

A dense initialization for limited-memory quasi-Newton…

on the test set of problems. The performance metric, ρ, for the 65 problems is defined
by

ρs(τ) = card
{

p : πp,s ≤ τ
}

65
and πp,s = tp,s

min tp,i
1≤i≤S

,

where tp,s is the “output” (i.e., time or iterations) of “solver” s on problem p. Here
S denotes the total number of solvers for a given comparison. This metric measures
the proportion of how close a given solver is to the best result. We observe as in [3]
that the first runs significantly differ in time from the remaining runs, and thus, we
ran each algorithm ten times on each problem, reporting the average of the final eight
runs.

In this section, we present the following six types of experiments involving LMTR:

1. A comparison of results for different values of γ ⊥
k (c, λ).

2. Two versions of computing the full quasi-Newton trial step are compared. One
version uses the dense initialization to compute p∗

u as described in Sect. 3.4 (see
(31)); the other uses the conventional initialization, i.e., p∗

u is computed as p∗
u =

B−1
k gk .When the full quasi-Newton trial step is not accepted in any of the versions,

the dense initialization is used for computing trial step by explicitly solving the
trust-region subproblem (Sect. 3.2).

3. A comparison of LMTR together with a dense initialization and the line search
L-BFGS method with the conventional initialization.

4. A comparison of LMTR with a dense initialization and L-BFGS-TR [3], which com-
putes a scaled quasi-Newton direction that lies inside a trust region. This method
can be viewed as a hybrid line search and trust-region algorithm.

5. A comparison of the dense and conventional initializations.

In the experiments below, the dense initial matrix B̂0 corresponding to γ ⊥
k (c, λ)

given in (39) will be denoted by

B̂0(c, λ)
�= γk P‖PT‖ + γ ⊥

k (c, λ)P⊥PT⊥ .

Using this notation, the conventional initialization B0(γk) can be written as B̂0(1, 0).

Experiment 1 In this experiment, we consider various scalings of a proposed γ ⊥
k

using LMTR. As argued in Sect. 3.3, it is reasonable to choose γ ⊥
k to be large and

positive; in particular, γ ⊥
k ≥ γk . Thus, we consider the parametrized family of choices

γ ⊥
k

�= γ ⊥
k (c, λ) given in (39). These choices correspond to conservative strategies for

computing steps in the space spanned by P⊥ (see the discussion in Sect. 3.3).Moreover,
these can also be viewed as conservative strategies since the trial step computed using
B0 will always be larger in Euclidean norm than the trial step computed using B̂0 using
(39). To see this, note that in the parallel subspace the solutions will be identical using
both initializations since the solution v∗‖ does not depend on γ ⊥

k (see (19)); in contrast,

in the orthogonal subspace, ‖v∗⊥‖ inversely depends on γ ⊥
k (see (28) and (29)).

123

J. Brust et al.

Table 1 Values for γ ⊥
k used in

Experiment 1
Parameters

c λ γ ⊥
k

1 1 γmax
k

2 1 2γmax
k

1 1
2

1
2 γmax

k + 1
2 γk

1 1
4

1
4 γmax

k + 3
4 γk

Fig. 1 Performance profiles comparing iter (left) and time (right) for the different values of γ ⊥
k given

in Table 1. In the legend, B̂0(c, λ) denotes the results from using the dense initialization with the given
values for c and λ to define γ ⊥

k . In this experiment, the dense initialization was used for all aspects of the
algorithm

We report results using different values of c and λ for γ ⊥
k (c, λ) on two sets of

tests. On the first set of tests, the dense initialization was used for the entire LMTR

algoirthm. However, for the second set of tests, the dense initialization was not used
for the computation of the unconstrained minimizer p∗

u ; that is, LMTR was run using
Bk (initialized with B0 = γk I where γk is given in (4)) for the computation of the
unconstrained minimizer p∗

u = −B−1
k gk . However, if the unconstrained minimizer

was not taken to be the approximate solution of the subproblem, B̂k with the dense
initialization was used for computing the constrained minimizer with respect to the
shape-changing norm (see line 8 in Algorithm 1) with γ ⊥

k defined as in (39). The
values of c and λ chosen for Experiment 1 are found in Table 1. (See Sect. 3.4 for
details on the LMTR algorithm.)

Figure 1 displays the performance profiles using the chosen values of c and λ to
define γ ⊥

k in the casewhen the dense initializationwas used for both the computation of
the unconstrained minimizer p∗

u (line 10 of Algorithm 1) as well as for the constrained
minimizer with respect to the shape-changing norm (line 8 of Algorithm 1), which is
denoted in the legend of plots in Fig. 1 by the use of an asterisk (∗). The results of Fig. 1
suggest the choice of c = 1 and λ = 1

2 outperform the other chosen combinations
for c and λ. In experiments not reported here, larger values of c did not appear to
improve performance; for c < 1, performance deteriorated. Moreover, other choices
for λ, such as λ = 3

4 , did not improve results beyond the choice of λ = 1
2 .

123

A dense initialization for limited-memory quasi-Newton…

Fig. 2 Performance profiles comparing iter (left) and time (right) for the different values of γ ⊥
k given in

Table 1. In the legend, B̂0(c, λ) denotes the results from using the dense initialization with the given values
for c and λ to define γ ⊥

k . In this experiment, the dense initialization was only used for the computation of
the constrained minimizer (line 8 of Algorithm 1)

Figure 2 reports the performance profiles for using the chosen values of c and λ to
define γ ⊥

k in the case when the dense initialization was only used for the computation
of the constrained minimizer (line 8 of Algorithm 1) –denoted in the legend of plots
in Fig. 2 by the absence of an asterisk (∗). In this test, the combination of c = 1 and
λ = 1 as well as c = 1 and λ = 1

2 appear to slightly outperform the other two choices
for γ ⊥

k in terms of both then number of iterations and the total computational time.
Based on the results in Fig. 2, we do not see a reason to prefer either combination
c = 1 and λ = 1 or c = 1 and λ = 1

2 over the other.
Note that for the CUTEst problems, the full quasi-Newton trial step is accepted as

the solution to the subproblem on the overwhelming majority of problems. Thus, if
the scaling γ ⊥

k is used only when the full trial step is rejected, it has less of an affect
on the overall performance of the algorithm; i.e., the algorithm is less sensitive to the
choice of γ ⊥

k . For this reason, it is not surprising that the performance profiles in Fig. 2
for the different values of γ ⊥

k are more indistinguishable than those in Fig. 1.
Finally, similar to the results in the case when the dense initialization was used for

the entire algorithm (Fig. 1), other values of c and λ did not significantly improve the
performance provided by c = 1 and λ = 1

2 .

Experiment 2 This experiment was designed to test whether it is advantageous to use
the dense initialization for all aspects of the LMTR algorithm or just for the computa-
tion of the constrained minimizer (line 8 of Algorithm 1). For any given trust-region
subproblem, using the dense initialization for computing the unconstrained minimizer
is computationally more expensive than using a diagonal initialization; however, it is
possible that extra computational time associated with using the dense initialization
for all aspects of the LMTR algorithm may yield a more overall efficient solver. For
these tests, we compare the top performer in the case when the dense initialization
is used for all aspects of LMTR, i.e., (γ ⊥

k (1, 1
2)), to one of the top performers in the

case when the dense initialization is used only for the computation of the constrained
minimizer (line 8 of Algorithm 1), i.e., (γ ⊥

k (1, 1)).

123

J. Brust et al.

Fig. 3 Performance profiles of iter (left) and time (right) for Experiment 2. In the legend, the asterisk
after B̂0(1,

1
2)∗ signifies that the dense initializationwas used for all aspects of theLMTRalgorithm;without

the asterisk, B̂0(1, 1) signifies the test where the dense initialization is used only for the computation of the
constrained minimizer (line 8 of Algorithm 1)

The performance profiles comparing the results of this experiment are presented
in Fig. 3. These results suggest that using the dense initialization with γ ⊥

k (1, 1
2) for

all aspects of the LMTR algorithm is more efficient than using dense initializations
only for the computation of the constrained minimizer (line 8 of Algorithm 1). In
other words, even though using dense initial matrices for the computation of the
unconstrained minimizer imposes an additional computational burden, it generates
steps that expedite the convergence of the overall trust-region method.

Experiment 3 In this experiment, we compare the performance of the dense initial-
ization γ ⊥

k (1, 0.5) to that of the line-search L-BFGS algorithm. For this comparison,
we used the publicly-available MATLAB wrapper [1] for the FORTRAN L-BFGS-B code
developed by Nocedal et al. [15]. The initialization for L-BFGS-B is B0 = γk I where
γk is given by (4). To make the stopping criterion equivalent to that of L-BFGS-B, we
modified the stopping criterion of our solver to [15]:

‖gk‖∞ ≤ ε.

The dense initialization was used for all aspects of LMTR.
The performance profiles for this experiment is given in Fig. 4. On this test set, the

dense initialization outperforms L-BFGS-B in terms of both the number of iterations
and the total computational time.

Experiment 4 In this experiment, we compare LMTR with a dense initialization to
L-BFGS-TR [3], which computes an L-BFGS trial step whose length is bounded by a
trust-region radius. This method can be viewed as a hybrid L-BFGS line search and
trust-region algorithm because it uses a standard trust-region framework (as LMTR)
but computes a trial point by minimizing the quadratic model in the trust region along
the L-BFGS direction. In [3], it was determined that this algorithm outperforms two
other versions of L-BFGS that use a Wolfe line search. (For further details, see [3].)

123

A dense initialization for limited-memory quasi-Newton…

Fig. 4 Performance profiles of iter (left) and time (right) for Experiment 3 comparing LMTR with the
dense initialization with γ ⊥

k (1, 1
2) to L-BFGS-B

Fig. 5 Performance profiles of iter (left) and time (right) for Experiment 4 comparing LMTR with the
dense initialization with γ ⊥

k (1, 1
2) to L-BFGS-TR

Figure 5 displays the performance profiles associated with this experiment on the
entire set of test problems. For this experiment, the dense initialization with γ ⊥

k (1, 1
2)

was used in all aspects of the LMTR algorithm. In terms of total number of itera-
tions, LMTR with the dense initialization outperformed L-BFGS-TR; however, L-BFGS-TR
appears to have outperformed LMTRwith the dense initialization in computational time.

Figure 5 (left) indicates that the quality of the trial points produced by solving the
trust-region subproblem exactly using LMTR with the dense initialization is generally
better than in the case of the line search applied to the L-BFGS direction. However, Fig. 5
(right) shows that LMTR with the dense initialization requires more computational
effort than L-BFGS-TR. For the CUTEst set of test problems, L-BFGS-TR does not need to
perform a line search for the majority of iterations; that is, the full quasi-Newton trial
step is accepted in a majority of the iterations. Therefore, we also compared the two
algorithms on a subset of the most difficult test problems–namely, those for which an
active line search is needed to be performed by L-BFGS-TR. To this end, we select, as
in [3], those of the CUTEst problems in which the full L-BFGS (i.e., the step size of one)
was rejected in at least 30% of the iterations. The number of problems in this subset
is 14. The performance profiles associated with this reduced test set are in Fig. 6. On

123

J. Brust et al.

Fig. 6 Performance profiles of iter (left) and time (right) for Experiment 4 comparing LMTR with the
dense initialization with γ ⊥

k (1, 1
2) to L-BFGS-TR on the subset of 14 problems for which L-BFGS-TR

implements a line search more than 30% of the iterations

Fig. 7 Performance profiles of iter (left) and time (right) for Experiment 5 comparing LMTR with the
dense initialization with γ ⊥

k (1, 1
2) to LMTR with the conventional initialization

this smaller test set, LMTR outperforms L-BFGS-TR both in terms of total number of
iterations and computational time.

Finally, Figs. 5 and 6 suggest that when function and gradient evaluations are expen-
sive (e.g., simulation-based applications), LMTR together with the dense initialization
is expected to be more efficient than L-BFGS-TR since both on both test sets LMTR with
the dense initialization requires fewer overall iterations. Moreover, Fig. 6 suggests
that on problems where the L-BFGS search direction often does not provide sufficient
decrease of the objective function, LMTR with the dense initialization is expected to
perform better.

Experiment 5 In this experiment, we compare the results of LMTR using the dense
initialization to that of LMTR using the conventional diagonal initialization B0 = γk I
where γk is given by (3). The dense initialization selected was chosen to be the top
performer from Experiment 2 (i.e., γ ⊥

k (1, 1
2)).

From Fig. 7, the dense initialization with γ ⊥
k (1, 1

2) outperforms the conventional
initialization for LMTR in terms of iteration count; however, it is unclear whether the
algorithm benefits from the dense initialization in terms of computational time. The
reason for this is that the dense initialization is being used for all aspects of the LMTR

123

A dense initialization for limited-memory quasi-Newton…

Fig. 8 Performance profiles of iter (left) and time (right) for Experiment 5 comparing LMTR with
the dense initialization with γ ⊥

k (1, 1
2) to LMTR with the conventional initialization on the subset of 14

problems in which the unconstrained minimizer is rejected at 30% of the iterations

algorithm; in particular, it is being used to compute the full quasi-Newton step p∗
u

(see the discussion in Experiment 1), which is typically accepted most iterations on
the CUTEst test set. Therefore, as in Experiment 5, we compared LMTR with the dense
initialization and the conventional initialization on the subset of 14 problems in which
the unconstrainedminimizer is rejected at least 30% of the iterations. The performance
profiles associated with this reduced set of problems are found in Fig. 8. The results
from this experiment clearly indicate that on these more difficult problems the dense
initialization outperforms the conventional initialization in both iteration count and
computational time.

5 Conclusion

In this paper, we presented a dense initialization for quasi-Newton methods to solve
unconstrained optimization problems. This initialization makes use of two curvature
estimates for the underlying function in two complementary subspaces. Importantly,
this initialization neither introduces additional computational cost nor increases
storage requirements; moreover, it maintains theoretical convergence properties of
quasi-Newton methods. It should also be noted that this initialization still makes it
possible to efficiently compute products and perform solves with the sequence of
quasi-Newton matrices.

The dense initialization is especially well-suited for use in the shape-changing
infinity-norm L-BFGS trust-region method. Numerical results on the outperforms both
the standard L-BFGS line searchmethod aswell as the same shape-changing trust-region
method with the conventional initialization. Use of this initialization is possible with
any quasi-Newton method for which the update has a compact representation. While
this initialization has broad applications for quasi-Newton line search and trust-region
methods, its use makes most sense from a computational point of view when the
quasi-Newton method already computes the compact formulation and partial eigen-
decomposition; if this is not the case, using the dense initialization will result in
additional computational expense that must be weighed against its benefits.

123

J. Brust et al.

References

1. Becker, S.: LBFGSB (L-BFGS-B) mex wrapper (2012–2015). https://www.mathworks.com/
matlabcentral/fileexchange/35104-lbfgsb-l-bfgs-b-mex-wrapper. Accessed Jan 2017

2. Brust, J., Burdakov, O., Erway, J.B., Marcia, R.F., Yuan, Y.X.: Shape-changing L-SR1 trust-region
methods. Technical Report 2016-2, Wake Forest University (2016)

3. Burdakov, O., Gong, L., Yuan, Y.X., Zikrin, S.: On efficiently combining limited memory and trust-
region techniques. Math. Program. Comput. 9, 101–134 (2016)

4. Burke, J.V., Wiegmann, A., Xu, L.: Limited memory BFGS updating in a trust-region framework.
Technical Report, University of Washington (1996)

5. Byrd, R.H., Nocedal, J., Schnabel, R.B.: Representations of quasi-Newton matrices and their use in
limited-memory methods. Math. Program. 63, 129–156 (1994)

6. DeGuchy, O., Erway, J.B., Marcia, R.F.: Compact representation of the full Broyden class of quasi-
Newton updates. Numer. Linear Algebra Appl. 25(5), e2186 (2018)

7. Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program.
91, 201–213 (2002)

8. Erway, J.B., Marcia, R.F.: On efficiently computing the eigenvalues of limited-memory quasi-Newton
matrices. SIAM J. Matrix Anal. Appl. 36(3), 1338–1359 (2015)

9. Erway, J.B., Marcia, R.F.: On solving large-scale limited-memory quasi-Newton equations. Linear
Algebra Appl. 515, 196–225 (2017)

10. Gould, N.I.M., Orban, D., Toint, P.L.: CUTEr and SifDec: a constrained and unconstrained testing
environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394 (2003)

11. Lu, X.: A study of the limited memory SR1 method in practice. Ph.D. thesis, University of Colorado
(1992)

12. Lukšan, L., Vlček, J.: Recursive form of general limited memory variable metric methods. Kybernetika
49, 224–235 (2013)

13. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)
14. Shanno, D.F., Phua, K.H.: Matrix conditioning and nonlinear optimization. Math. Program. 14(1),

149–160 (1978)
15. Zhu, C., Byrd, R., Nocedal, J.: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-

constrained optimization. ACM Trans. Math. Softw. 23, 550–560 (1997)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Johannes Brust1 ·Oleg Burdakov2 · Jennifer B. Erway3 · Roummel F. Marcia4

Johannes Brust
jbrust@ucmerced.edu

Oleg Burdakov
oleg.burdakov@liu.se

Roummel F. Marcia
rmarcia@ucmerced.edu

1 Department of Applied Mathematics, University of California Merced, Merced, CA, USA

2 Department of Mathematics, Linköping University, Linköping, Sweden

3 Department of Mathematics and Statistics, Wake Forest University, Winston-Salem, NC, USA

4 Department of Applied Mathematics, University of California Merced, Merced, CA, USA

123

https://www.mathworks.com/matlab central/fileexchange/35104-lbfgsb-l-bfgs-b-mex-wrapper
https://www.mathworks.com/matlab central/fileexchange/35104-lbfgsb-l-bfgs-b-mex-wrapper

	A dense initialization for limited-memory quasi-Newton methods
	Abstract
	1 Introduction
	2 Background
	2.1 The compact representation
	2.2 Partial eigendecomposition of Bk
	2.2.1 Practical computations

	2.3 A shape-changing L-BFGS trust-region method

	3 The proposed method
	3.1 Dense initial matrix B"0362B0
	3.2 The trust-region subproblem
	3.3 Determining the parameter γperpk
	3.4 Implementation details
	3.5 The algorithm and its properties

	4 Numerical experiments
	5 Conclusion
	References

