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Abstract

We consider a family of dense initializations for limited-memory quasi-Newton meth-
ods. The proposed initialization exploits an eigendecomposition-based separation of
the full space into two complementary subspaces, assigning a different initialization
parameter to each subspace. This family of dense initializations is proposed in the con-
text of a limited-memory Broyden—Fletcher—Goldfarb—Shanno (L-BFGS) trust-region
method that makes use of a shape-changing norm to define each subproblem. As with
L-BFGS methods that traditionally use diagonal initialization, the dense initialization
and the sequence of generated quasi-Newton matrices are never explicitly formed.
Numerical experiments on the CUTEst test set suggest that this initialization together
with the shape-changing trust-region method outperforms other L-BFGS methods for
solving general nonconvex unconstrained optimization problems. While this dense
initialization is proposed in the context of a special trust-region method, it has broad
applications for more general quasi-Newton trust-region and line search methods. In
fact, this initialization is suitable for use with any quasi-Newton update that admits a
compact representation and, in particular, any member of the Broyden class of updates.
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1 Introduction

In this paper we propose a new dense initialization for quasi-Newton methods to solve
problems of the form

minimize f(x),
xenn

where f : M" — N is at least a continuously differentiable function, which is not
necessarily convex. The dense initialization matrix is designed to be updated each
time a new quasi-Newton pair is computed (i.e., as often as once an iteration); how-
ever, in order to retain the efficiency of limited-memory quasi-Newton methods, the
dense initialization matrix and the generated sequence of quasi-Newton matrices are
not explicitly formed. This proposed initialization makes use of a partial eigendecom-
position of these matrices for separating 0" into two orthogonal subspaces — one for
which there is approximate curvature information and the other for which there is
no reliable curvature information. This initialization has broad applications for gen-
eral quasi-Newton trust-region and line search methods. In fact, this work can be
applied to any quasi-Newton method that uses an update with a compact representa-
tion, which includes any member of the Broyden class of updates. For this paper, we
explore its use in one specific algorithm; in particular we consider a limited-memory
Broyden-Fletcher—Goldfarb—Shanno (L-BFGS) trust-region method where each sub-
problem is defined using a shape-changing norm [3]. The reason for this choice is
that the dense initialization is naturally well-suited for solving L-BFGS trust-region
subproblems defined by this norm. Numerical results on the CUTEst test set suggest
that the dense initialization outperforms other L-BFGS methods.

The BFGS update is the most widely-used quasi-Newton update for large-scale
optimization; it is defined by the recursion formula

1 1
Bi+1 = By — T—BkSkS{Bk + T—)’kykT’ (M
i By sk Si Yk
where
sk 2 xpp1 —x and  yp 2 V(g — V), (2)

and By € M"*" is a suitably-chosen initial matrix. This rank-two update to By pre-
serves positive definiteness when skT vk > 0.

L-BFGS is a limited-memory variant of BFGS that only stores a predetermined
number, m, of the most recently-computed pairs {s;, y;} where m < n. (Typically,
m € [3,7] (see, e.g., [S]).) Together with an initial matrix By that depends on k, these
pairs are used to compute By. For notational simplicity, we drop the dependence of
the initial matrix on k£ and simply denote it as Byp. This limitation on the number of
stored pairs allows for a practical implementation of the BFGS method for large-scale
optimization.

There are several desirable properties for picking the initial matrix By. First, in
order for the sequence { By} generated by (1) to be symmetric and positive definite, it
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is necessary that By is symmetric and positive definite. Second, it is desirable for By
to be easily invertible so that solving linear systems with any matrix in the sequence is
computable using the so-called “two-loop recursion” [5] or other recursive formulas
for B, ! (for an overview of other available methods see [9]). For these reasons, By is
often chosen to be a scalar multiple of the identity matrix, i.e.,

By =y I, with y > 0. 3)
For BFGS matrices, the conventional choice for the initialization parameter yy is

Vi Vi
Ve = S,
i Yk

“

which can be viewed as a spectral estimate for V2 £ (xx) [13]. (This choice was origi-
nally proposed in [14] using a derivation based on optimal conditioning.) It is worth
noting that this choice of y; can also be derived as the minimizer of the scalar mini-
mization problem

2

Yk = argmin H By 'k — sk H2 (5)
14

where B, g y‘ll . For numerical studies on this choice of initialization, see, e.g.,
the references listed within [4].

In this paper, we consider a specific dense initialization in lieu of the usual diagonal
initialization. The aforementioned separation of N" into two orthogonal subspaces
allows for different initialization parameters to be used to estimate the curvature of
the underlying function in these subspaces. In one space (the space spanned by the
most recent updates {s;, y;} with k —m < i < k — 1), estimates of the curvature of
the underlying function are available, and thus, one initialization parameter can be set
using this information. However, in its orthogonal complement, curvature information
is not available. Therefore, if the component of the trial step in the orthogonal subspace
is (relatively) too large, the predictive quality of the whole trial step is expected to dete-
riorate. As a result, the trust-region radius might be reduced, despite the fact that the
predictive quality of the component in the aforementioned small subspace may be suffi-
ciently good. Separating the whole space into these two subspaces allows users to treat
each subspace differently. An alternative view of this initialization is that it makes use
of two spectral estimates of V2 f (x). Finally, the proposed initialization also allows for
efficiently solving and computing products with the resulting quasi-Newton matrices.

The paper is organized in five sections. In Sect. 2, we review properties of L-
BFGS matrices arising from their special recursive structure as well as overview the
shape-changing trust-region method to be used in this paper. In Sect. 3, we present
the proposed trust-region method that uses a shape-changing norm together with a
dense initialization matrix. While this dense initialization is presented in one specific
context, it can be used in combination with any quasi-Newton update that admits a so-
called compact representation. Numerical experiments comparing this method with
other combinations of initializations and L-BFGS methods are reported in Sect. 4, and
concluding remarks are found in Sect. 5.
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2 Background

In this section, we overview the compact formulation for L-BFGS matrices and how
to efficiently compute a partial eigendecomposition. Finally, we review the shape-
changing trust-region method considered in this paper.

2.1 The compact representation

The special structure of the recursion formula for L-BFGS matrices admits a so-called
compact representation [5], which is overviewed in this section.

Using the m most recently computed pairs {s;} and {y;} given in (2), we define the
following matrices

S 2 [Sk—m Sk—l] and Y; £ [yk—m )’k—l]-

With L taken to be the strictly lower triangular part of the matrix of SkT Yk, and Dy
defined as the diagonal of § kT Yy, the compact representation of an L-BFGS matrix is

By = By + Wi My (©6)

where

N

T _
U, 2 [BoSk Yx] and My 2 — |:Sk BoSk Lk i|

LI —Dy

(see [5] for details). Note that ¥, € R"*?" and My € M>"*>" is invertible provided
siT yi > 0 for all i [5, Theorem 2.3]. An advantage of the compact representation is
that if By is chosen to be a multiple of the identity, then computing products with By
or solving linear systems with By can be done efficiently [9,12].

It should be noted that L-BFGS matrices are just one member of the Broyden class
of matrices (see, e.g., [13]), and in fact every member of the Broyden class of matrices
admits a compact representation [6,8,12].

2.2 Partial eigendecomposition of B

If By is taken to be a multiple of the identity matrix, then the partial eigendecomposition

of By can be computed efficiently from the compact representation (6) using either

a partial QR decomposition [3] or a partial singular value decomposition (SVD) [11].

Below, we review the approach that uses the QR decomposition, and we assume that

Y has rank » = 2m. (For the rank-deficient case, see the techniques found in [3].)
Let

¥, = OR,
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be the so-called “thin” QR factorization of ¥, where Q € R"*" and R € RN *".
Since the matrix RMR” is a small (+ x r) matrix with r < n (recall that r = 2m,
where m is typically between 3 and 7), it is computationally feasible to calculate its
eigendecomposition; thus, suppose W A AWT is the eigendecomposition of RM; R .
Then,

UMl = ORMRT QT = QWAWT QT = y RT'WAWT R-Ty T
Defining
P =WR'W, ®)
gives that
MW = PAP] . )
Thus, for By = yx 1, the eigendecomposition of By can be written as
By =wl + Ml = PAPT, (10)

where

P[P P, A2 [A“’k’r (1)

Viln—r :| ’

and P e R™ =7 i5 defined as the orthogonal complement of Pyie., PlT P =1,
and PHT P = 0,x(u—r). Hence, By has r eigenvalues given by the diagonal elements

of A+ vk I and the remaining eigenvalues are y; with multiplicity n — r.

2.2.1 Practical computations

Using the above method yields the eigenvalues of By as well as the ability to compute
products with P. Formula (8) indicates that Q is not required to be explicitly formed
in order to compute products with Py. For this reason, it is desirable to avoid forming
O by computing only R via the Cholesky factorization of lI/kT ¥, ie., lI/kT ¥, =RTR
(see [3]).

At an additional expense, the eigenvectors stored in the columns of P| may be
formed and stored. For the shape-changing trust-region method used in this paper, it is
not required to store Pj. In contrast, the matrix P, is prohibitively expensive to form.
It turns out that for this work it is only necessary to be able to compute projections
into the subspace P; PT, which can be done using the identity

P Pl =1-PP. (12)
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2.3 A shape-changing L-BFGS trust-region method

Generally speaking, at the kth step of a trust-region method, a search direction is
computed by approximately solving the trust-region subproblem

. 1
p* = argmin Q(p) £ gl p + EpTka, (13)
Ipll <Ak

where g 2 Vf(xr), By =~ sz(xk), and Ax > 0 is the trust-region radius. When
second derivatives are unavailable or computationally too expensive to compute,
approximations using gradient information may be preferred. Not only do quasi-
Newton matrices use only gradient and function information, but in the large-scale
case, these Hessian approximations are never stored; instead, a recursive formula or
methods that avoid explicitly forming By may be used to compute matrix-vector prod-
ucts with the approximate Hessians or their inverses [5,8,9,12].

Consider the trust-region subproblem defined by the shape-changing infinity norm:

L. 1
minimize Q(p) = g{ p + =p" Bkp, (14)
Pl p.oco<Ar 2
where
115,00 £ max (12 plioc, 1P pl2) 1)

and Pj and P, are givenin (11). Note that the ratio || p||2/[| p || p,o0 does not depend on
n and only moderately depends on r. (In particular, 1 < |pll2/lpllp.cc < ~/F +1.)
Because this norm depends on the eigenvectors of By, the shape of the trust region
changes each time the quasi-Newton matrix is updated, which is possibly every iter-
ation of a trust-region method. (See [3] for more details and other properties of this
norm.) The motivation for this choice of norm is that the the trust-region subproblem
(14) decouples into two separate problems for which closed-form solutions exist.
We now review the closed-form solution to (14), as detailed in [3]. Let

T
v:pr:[PnTp}
P p

1>

T
V| . _ | P& ]| al gl
] e[ E e [2] 0o

With this change of variables, the objective function of (14) becomes

1 .
0 (Pv) = gf P+ o' (A + Vk]n> v
1 ~
=gl v +¢vi + 3 (UHT (A + yklr) v+ Yk I|v¢||§>

1 - 1
= gl v+ 5of (A+nl) vy +glvs + S lowl3.
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The trust-region constraint || pllp o, < Ay implies Hv” ||oo < Ay and ||vy ||, < A,
which decouples (14) into the following two trust-region subproblems:

L 1 ;
minimize g (v) £ gﬁv” + Ev{ (A + J/klr) V) (17)
v oo =A%

. T 1 2
minimize g (v1) = g v + v llvills. (18)
il <Ak 2

Observe that the resulting minimization problems are considerably simpler than the
original problem since in both cases the Hessian of the new objective functions are
diagonal matrices. The solutions to these decoupled problems have closed-form ana-
lytical solutions [2,3]. Specifically, letting A; £ Ai + vk, the solution to (17) is given
coordinate-wise by

—[gxl—'l_]" if‘LgA'—L]"‘ﬁAkand)\i>O,
c if [g”]l. =0and A; =0,
vl = | —sen([gy])Ax if [g)], #0and 2; =0, . (19)
+ A if [g)], =0and2; <0,
- |[gA||k],| [g1], otherwise,

where ¢ is any real number in [—Ag, Ax] and ‘sgn’ denotes the signum function.
Meanwhile, the minimizer of (18) is given by

vl =BgL. 20)
where
—# if yp > 0and [|gLlly < Axlykl,
p= — A otherwi @D
Tei s wise.

Note that the solution to (14) is then
p* = Pv* = P + PLvl = Ppof + BPrg1 = Pjvj + BPLP gk, (22)

where the latter term is computed using (12). Additional simplifications yield the
following expression for p*:

p* = Bg+ P — Bgy. (23)

The overall cost of computing the solution to (14) is comparable to that of using the
Euclidean norm (see [3]). The main advantage of using the shape-changing norm (15)
is that the solution p* in (23) has a closed-form expression.
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3 The proposed method

In this section, we present a new dense initialization and demonstrate how it is naturally
well-suited for trust-region methods defined by the shape-changing infinity norm.
Finally, we present a full trust-region algorithm that uses the dense initialization,
consider its computational cost, and prove global convergence.

3.1 Dense initial matrixﬁo

In this section, we propose a new dense initialization for quasi-Newton methods.
Importantly, in order to retain the efficiency of quasi-Newton methods the dense ini-
tialization matrix and subsequently updated quasi-Newton matrices are never explicitly
formed. This initialization can be used with any quasi-Newton update for which there
is a compact representation; however, for simplicity, we continue to refer to the BFGS
update throughout this section. For notational purposes, we use the initial matrix By
to represent the usual initialization and By to denote the proposed dense initialization.
Similarly, {Bj} and {§k} will be used to denote the sequences of matrices obtained
using the initializations By and §0, respectively.

Our goal in choosing an alternative initialization is four-fold: (i) to be able to treat
subspaces differently depending on whether curvature information is available or not,
(i) to preserve properties of symmetry and positive-definiteness, (iii) to be able to
efficiently compute products with the resulting quasi-Newton matrices, and (iv) to be
able to efficiently solve linear systems involving the resulting quasi-Newton matrices.
The initialization proposed in this paper leans upon two different parameter choices
that can be viewed as an estimate of the curvature of V2 f (xx) in two subspaces: one
spanned by the columns of P and another spanned by the columns of P, .

The usual initialization for a BFGS matrix By is By = yx I, where y; > 0. Note that
this initialization is equivalent to

By =wPP" = VkPHP”T +wPLP].

In contrast, for a given yx, ykJ- € N, consider the following symmetric, and in general,
dense initialization matrix:

Bo=wP Pl +ytPLP], (24)

where P| and P are the matrices of eigenvectors defined in Sect. 2.2. We now derive
the eigendecomposition of By.

Theorem 3.1 Let Eo be defined as in (24). Then Ek generated using (1) has the eigen-
decomposition

§k = [PH PJ_] |:A ey I i| [P” PJ_]T s (25)

VkJ_
where P, P, and A are given in (8), (11), and (9), respectively.
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Proof First note that the columns of Sy are in Range(lllk) where lIIk is defined in (7).
From (8), Range(¥,) = Range(P)); thus, PHP Sy = S and P Sr = 0. This gives
that

BoSk = yi P P Sk + yi- PLP] Sk = vk = BoSk. (26)

Combining the compact representation of §k ((6) and (7)) together with (26) yields
o~ _1 -~
= = -~ SkTB()Sk Ly SkTB()
By = By — [BoSk Yi] [ L' -y 7

STBoS, Le 17 [STBy
Ll —D

=wP P/ +y; PPl + PAP]

= Py (A+ ) Pl + vt PPl

=%—%&n{

which is equivalent to (25). O

It can be easily verified that (25) holds also for P defined in [3] for possibly
rank-deficient ¥. (Note that (8) applies only to the special case when ¥ is full-rank.)

Theorem 3.1 shows that the matrix Ek that results from using the initialization
(24) shares the same eigenvectors as By, generated using By = yiI. Moreover, the
eigenvalues corresponding to the eigenvectors stored in the columns of P are the
same for Bk and By. The only difference in the eigendecompositions of By and By
is in the eigenvalues corresponding to the eigenvectors stored in the columns of P, .
This is summarized in the following corollary.

Corollary 3.1 Suppose By is a BFGS matrix initialized with Bo = y I and By is a BFGS
matrix initialized with (24). Then By and Bk have the same elgenvectors moreover,

these matrices have r eigenvalues in common given by \; 2+ Yk where A=
diag(Aq, ..., Ar).

Proof The corollary follows immediately by comparing (10) with (25). O

The results of Theorem 3.1 and Corollary 3.1 may seem surprising at first since
every term in the compact representation ((6) and (7)) depends on the initialization;
moreover, By is, generally speaking, a dense matrix while By is a diagonal matrix.
However, viewed from the perspective of (24), the parameter )/kL only plays a role in
scaling the subspace spanned by the columns of P, .

The initialization §0 allows for two separate curvature approximations for the BFGS
matrix: one in the space spanned by columns of P and another in the space spanned
by the columns of P, . In the next subsection, we show that this initialization is natu-
rally well-suited for solving trust-region subproblems defined by the shape-changing
infinity norm.
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3.2 The trust-region subproblem
Here we will show that the use of By provides the same subproblem separability as
By does in the case of the shape-changing infinity norm.

For §0 given by (24), consider the objective function of the trust-region subproblem
(14) resulting from the change of variables (16):

1 _
O(Pv) = gl Pv + szPTBka
1 . 1
=gy + EUHT (A + Vklr) v +glvs + Eykl oL ll3.

Thus, (14) decouples into two subproblems: The corresponding subproblem for g (v)
remains (17) and the subproblem for ¢ (v, ) becomes

L. 1
minimize g1 (v1) 2 gTvi + ~yF vl 27)
lvilla<Ag 2

The solution to (27) is now given by

vi = BguL. (28)
where
1 - L
~ |-- ify; > 0and gLl < Axlyi |,
p={ 7 ¢ ‘ (29)
otherwise.

Sk
llgLll2

Thus, the solution p* can be expressed as
p* =Bz + P (v} — Bg) (30)

which can computed as efficiently as the solution in (23) for conventional initial
matrices since they differ only by the scalar (8 in (30) versus g in (23)).

3.3 Determining the parameter yf(-

The values y; and )/kl can be updated at each iteration. Since we have little information
about the underlying function f in the subspace spanned by the columns of P, it is
reasonable to make conservative (i.e., large) choices for ykJ-. Note that in the case that
ykJ- > Oand |lg1|l, < AklykJ-I, the parameter y,} scales the solution v’} (see 29);
thus, large values of )/kL will reduce these step lengths in the space spanned by P, .
Since the space P; does not explicitly use information produced by past iterations,
it seems desirable to choose ykl to be large. However, the larger that )/kl is chosen,
the closer v} will be to the zero vector. Also note that if ykL < 0 then the solution to

the subproblem (27) will always lie on the boundary, and thus, the actual value of y,ﬁ-
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becomes irrelevant. Moreover, for values )/kL <0, §k is not guaranteed to be positive
definite. For these reasons, we suggest sufficiently large and positive values for ykj-

related to the curvature information gathered in yy, ..., k. Specific choices for y,}
are presented in the numerical results section.

3.4 Implementation details

In this section, we describe how we incorporate the dense initialization within the
existing LMTR algorithm [3]. At the beginning of each iteration, the LMTR algorithm
with dense initialization checks if the unconstrained minimizer (also known as the full
quasi-Newton trial step),

pi=—-B g 31)

lies inside the trust region defined by the two-norm. Because our proposed method uses
adense initialization, the so-called “two-loop recursion” [6] is not applicable for com-
puting the unconstrained minimizer p;; in (31). However, products with I§k_ ! can be
performed using the compact representation without involving a partial eigendecom-
position. Specifically, if Vi = [S Yx] with Cholesky factorization V! Vi = R} Ry,
then

~ 1 ~
B'= —1+ i/, (32)
Yk

where

My = |:Tk_T(Dk oy YYoT —y T

—1 p—T
LT +arR, R, 7,
W lTk 1 Om i| k k

e o vt

diagonal. Thus, the inequality

1 1
o = (— — —), Ty is the upper triangular part of the matrix SkT Yy, and Dy is its

lpsll2 < Ak (33)

is easily verified without explicitly forming p;’ using the identity
Ipi13 = &f B ek = vi PNl + 2y ' uf Mg + uf My(R] Re) Mg (34)

Here, as in the LMTR algorithm, the vector u; = VkT gk and | gx||* can be computed
efficiently at each iteration (see [3] for details). Thus, the computational cost of || p¥||2
is low because (34) involves linear algebra operations in a small 2m-dimensional space,
the most expensive of which are related to solving triangular systems with Ty and Ry.
These operations grow in proportion to m? while the number of operations in (31)—(32)
grows in proportion to mn. Thus, the computational complexity ratio between using
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(34) and (31)—(32) is m?/(nm) = m/n < 1 since we assume that m < n. The norm
equivalence for the shape-changing infinity norm studied in [3] guarantees that (33)
implies that the inequality ||p}|lp oo < A is satisfied; in this case, p; is the exact
solution of the trust-region subproblem defined by the shape-changing infinity norm.

If (33) holds, the algorithm computes p;' for generating the trial point x; + p;. It
can be easily seen that the cost of computing p is 4mn operations, i.e. it is the same
as for computing search direction in the line search L-BFGS algorithm [6].

On the other hand, if (33) does not hold, then for producing a trial point, the partial
eigendecomposition is computed, and the trust-region subproblem is decoupled and
solved exactly as described in Sect. 3.2.

3.5 The algorithm and its properties

In Algorithm 1, we present a basic trust-region method that uses the proposed dense ini-
tialization. In this setting, we consider the computational cost of the proposed method,
and we prove global convergence of the overall trust-region method. Since P may
change every iteration, the corresponding norm || - || p,oc may change each iteration.
Note that initially there are no stored quasi-Newton pairs {s;, y;}. In this case, we
assume P = I, and Pj does not exist, i.e., éo = yOJ-I.

The only difference between Algorithm 1 and the LMTR algorithm in [3] is the
initialization matrix. Computationally speaking, the use of a dense initialization in
lieu of a diagonal initialization plays out only in the computation of p* by (22).
However, there is no computational cost difference: The cost of computing the value
for B using (29) in Algorithm 1 instead of (21) in the LMTR algorithm is the same.
Thus, the dominant cost per iteration for both Algorithm 1 and the LMTR algorithm is
4mn operations (see [3] for details). Note that this is the same cost-per-iteration as the
line search L-BFGS algorithm [5].

In the next result, we provide a global convergence result for Algorithm 1. This
result is based on the convergence analysis presented in [3].

Theorem3.2 Let f : R" — R be twice-continuously differentiable and bounded
below on R". Suppose that there exists a scalar ¢c1 > 0 such that

IV2fx)l <c1, YxeR™ (35)

Furthermore, suppose for By defined by (24), that there exists a positive scalar c; such
that

Vi vi € (0,21, Vk=0, (36)
and there exists a scalar c3 € (0, 1) such that the inequality

sTyj > alisilly;ll 37)
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Algorithm 1 An L-BFGS trust-region method with dense initialization

Require: xg € R", Ag >0, € >0, yd->0, 0<11<1m<05<mr3<l,
O0<n<m=<05<m<l<m0<c3<l

1: Compute go

2:fork=0,1,2,...do

3: if ||gk|l < € then

4 return

5:  endif

6:  Compute || p;i||2 using (34)

7 if |Ip}lla > Ak then

8 Compute p* for ék using (30), where B\is computed using (29) and vﬁ‘ as in (19)

9:  else

10: Compute p; using (31)-(32) and set p* <« p;:

11:  endif

12:  Compute the ratio p = Lt —f )

Q(p*)
13:  if pi> 11 then
14: Xk+1 = x; + p*
15: Compute g1, Sk» Yk» Vk+1 and V,}H
16: Choose at most m pairs {s, y;} such that szyj > c3lls;llly;l
17: Compute ¥y 1, R My41, W, A and A as described in Sect. 2
18:  else
19: Xfepl = Xk
20:  endif
21:  if pp < 1) then
22: A1 = min (91 A, m2llsk | p,oo)
23:  else
24: if p > 73 and |Isgllp,co = 134 then
25: Apy1 = N4
26: else
27: Apy1 = Ak
28: end if
29:  endif
30: end for

holds for each quasi-Newton pair {s j, y;}. Then, if the stopping criteria is suppressed,
the infinite sequence {xy} generated by Algorithm 1 satisfies

Jim [V Gl = 0. (38)

Proof From (36), we have ||1§0|| < 2, which holds for each k > 0. Then, by [3,
Lemma 3], there exists ¢4 > 0 such that

I1Bill < ca.
Then, (38) follows from [3, Theorem 1]. O
In the following section, we consider )/kL parameterized by two scalars, ¢ and A:
Vi (e 1) = hey™ + (1= My, (39)
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where ¢ > 1, X € [0, 1], and

Y L max i,
1<i<k
where yj is taken to be the conventional initialization given by (4). (This choice for
ykJ- will be further discussed in Sect. 4.) We now show that Algorithm 1 converges for
these choices of ykL. Assuming that (35) and (37) hold, it remains to show that (36)
holds for these choices of ykJ-. To see that (36) holds, notice that in this case,

¥ vk v vk llye
Ve = 7 = = .
sp vk eallsellllyell = eallsell

Substituting in for the definitions of y; and sy yields that

_ IV G = VA
- c3llxk1 — xill

implying that (36) holds. Thus, Algorithm 1 converges for these choices for ykJ-.

4 Numerical experiments

We performed numerical experiments using a Dell Precision T1700 machine with an
Intel 15-4590 cpu at 3.30GHz X4 and 8GB RAM using MATLAB 2014a. The test set
consisted of 65 large-scale (1000 < n < 10000) CUTEst [10] test problems, made
up of all the test problems in [3] plus an additional three (FMINSURF, PENALTY2, and
TESTQUAD [10]) since at least one of the methods in the experiments detailed below
converged on one of these three problems. The same trust-region method and default
parameters as in [3, Algorithm 1] were used for the outer iteration. At most five
quasi-Newton pairs {sk, yr} were stored, i.e., m = 5. The relative stopping criterion
was

lgklla < € max (1, [[lxkll2)

with € = 10719, The initial step, pg, was determined by a backtracking line-search
along the normalized steepest descent direction. To compute the partial eigendecom-
position of B, we used the QR factorization instead of the SVD because the QR version
outperformed the SVD version in numerical experiments not presented here. The rank
of ¥ was estimated by the number of positive diagonal elements in the diagonal
matrix of the LDLT decomposition (or eigendecomposition of lIJkT ¥ ) that are larger
than the threshold €, = (10_7)2. (Note that the columns of ¥, are normalized.). We
used the value c3 = 1073 in (37) for testing whether to accept a new quasi-Newton
pair.

We provide performance profiles (see [7]) for the number of iterations (iter)
where the trust-region step is accepted and the average time (t ime) for each solver
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on the test set of problems. The performance metric, p, for the 65 problems is defined
by

cardip :mp,s <7 t
ps(T) = { B } and m, 5 = .p—,s’
65 min t, ;
1<i<S

where 1, ¢ is the “output” (i.e., time or iterations) of “solver” s on problem p. Here
S denotes the total number of solvers for a given comparison. This metric measures
the proportion of how close a given solver is to the best result. We observe as in [3]
that the first runs significantly differ in time from the remaining runs, and thus, we
ran each algorithm ten times on each problem, reporting the average of the final eight
runs.

In this section, we present the following six types of experiments involving LMTR:

1. A comparison of results for different values of ykJ- (c, X).

2. Two versions of computing the full quasi-Newton trial step are compared. One
version uses the dense initialization to compute p; as described in Sect. 3.4 (see
(31)); the other uses the conventional initialization, i.e., p;; is computed as p’ =
B, ! gk- When the full quasi-Newton trial step is not accepted in any of the versions,
the dense initialization is used for computing trial step by explicitly solving the
trust-region subproblem (Sect. 3.2).

3. A comparison of LMTR together with a dense initialization and the line search
L-BFGS method with the conventional initialization.

4. A comparison of LMTR with a dense initialization and L-BFGS-TR [3], which com-
putes a scaled quasi-Newton direction that lies inside a trust region. This method
can be viewed as a hybrid line search and trust-region algorithm.

5. A comparison of the dense and conventional initializations.

In the experiments below, the dense initial matrix Bo corresponding to yki(c, A)
given in (39) will be denoted by

Bo(c.2) £ PP + v (c. ) PLP].
Using this notation, the conventional initialization By (y%) can be written as Eo(l, 0).

Experiment 1 In this experiment, we consider various scalings of a proposed ykJ-
using LMTR. As argued in Sect. 3.3, it is reasonable to choose )/kL to be large and

positive; in particular, )/kL > k. Thus, we consider the parametrized family of choices

ykJ- B kL (c, A) given in (39). These choices correspond to conservative strategies for

computing steps in the space spanned by P (see the discussion in Sect. 3.3). Moreover,
these can also be viewed as conservative strategies since the trial step computed using
By will always be larger in Euclidean norm than the trial step computed using By using
(39). To see this, note that in the parallel subspace the solutions will be identical using
both initializations since the solution U‘T does not depend on y,} (see (19)); in contrast,

in the orthogonal subspace, || vj | inversely depends on )/kL (see (28) and (29)).
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Table 1 Values for ykl used in

Experiment | Parameters
c A ykl
1 1 7
2 1 2ynax
! 3 2+ %
! 1 ™+ an

0.8
= T osf
) »
S8 QU
0.4 N
1
N2
0. ———=By(L, 1)
1 11 1.2 13 1.4 1.5
T T

Fig. 1 Performance profiles comparing iter (left) and t ime (right) for the different values of ykl given

in Table 1. In the legend, §0 (c, 1) denotes the results from using the dense initialization with the given
values for ¢ and A to define ykJ'. In this experiment, the dense initialization was used for all aspects of the
algorithm

We report results using different values of ¢ and A for ykL(c, A) on two sets of
tests. On the first set of tests, the dense initialization was used for the entire LMTR
algoirthm. However, for the second set of tests, the dense initialization was not used
for the computation of the unconstrained minimizer p}; that is, LMTR was run using
By (initialized with By = yx I where yx is given in (4)) for the computation of the
unconstrained minimizer p; = —B,  gx. However, if the unconstrained minimizer
was not taken to be the approximate solution of the subproblem, By with the dense
initialization was used for computing the constrained minimizer with respect to the
shape-changing norm (see line 8 in Algorithm 1) with ykJ- defined as in (39). The
values of ¢ and A chosen for Experiment 1 are found in Table 1. (See Sect. 3.4 for
details on the LMTR algorithm.)

Figure 1 displays the performance profiles using the chosen values of ¢ and A to
define ykL in the case when the dense initialization was used for both the computation of
the unconstrained minimizer p;; (line 10 of Algorithm 1) as well as for the constrained
minimizer with respect to the shape-changing norm (line 8 of Algorithm 1), which is
denoted in the legend of plots in Fig. 1 by the use of an asterisk (x). The results of Fig. 1
suggest the choice of c = 1 and A = % outperform the other chosen combinations
for ¢ and A. In experiments not reported here, larger values of ¢ did not appear to
improve performance; for ¢ < 1, performance deteriorated. Moreover, other choices
for A, such as A = %, did not improve results beyond the choice of A = %
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1 1.2 1.4 1.6 1.8
T

Fig.2 Performance profiles comparing iter (left) and t ime (right) for the different values of ykJ' givenin
Table 1. In the legend, Eo(c, A) denotes the results from using the dense initialization with the given values
for ¢ and X to define ykJ-. In this experiment, the dense initialization was only used for the computation of
the constrained minimizer (line 8 of Algorithm 1)

Figure 2 reports the performance profiles for using the chosen values of ¢ and A to
define ykJ- in the case when the dense initialization was only used for the computation
of the constrained minimizer (line 8 of Algorithm 1) —denoted in the legend of plots
in Fig. 2 by the absence of an asterisk (x). In this test, the combination of ¢ = 1 and
A=1laswellasc=1land A = % appear to slightly outperform the other two choices
for )/kL in terms of both then number of iterations and the total computational time.
Based on the results in Fig. 2, we do not see a reason to prefer either combination
c=landA=1lorc=1land A = % over the other.

Note that for the CUTEst problems, the full quasi-Newton trial step is accepted as
the solution to the subproblem on the overwhelming majority of problems. Thus, if
the scaling )/kL is used only when the full trial step is rejected, it has less of an affect
on the overall performance of the algorithm; i.e., the algorithm is less sensitive to the
choice of ykJ-. For this reason, it is not surprising that the performance profiles in Fig. 2
for the different values of )/kl are more indistinguishable than those in Fig. 1.

Finally, similar to the results in the case when the dense initialization was used for
the entire algorithm (Fig. 1), other values of ¢ and A did not significantly improve the
performance provided by ¢ = 1 and A = %

Experiment 2 This experiment was designed to test whether it is advantageous to use
the dense initialization for all aspects of the LMTR algorithm or just for the computa-
tion of the constrained minimizer (line 8 of Algorithm 1). For any given trust-region
subproblem, using the dense initialization for computing the unconstrained minimizer
is computationally more expensive than using a diagonal initialization; however, it is
possible that extra computational time associated with using the dense initialization
for all aspects of the LMTR algorithm may yield a more overall efficient solver. For
these tests, we compare the top performer in the case when the dense initialization
is used for all aspects of LMTR, i.e., (ykL(l, %)), to one of the top performers in the
case when the dense initialization is used only for the computation of the constrained
minimizer (line 8 of Algorithm 1), i.e., (y,j‘(l, 1)).
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1 11 1.2 1.3 1.4
T T

Fig.3 Performance profiles of iter (left) and time (right) for Experiment 2. In the legend, the asterisk
after EO (1, %)* signifies that the dense initialization was used for all aspects of the LM TR algorithm; without
the asterisk, §0(1, 1) signifies the test where the dense initialization is used only for the computation of the
constrained minimizer (line 8 of Algorithm 1)

The performance profiles comparing the results of this experiment are presented
in Fig. 3. These results suggest that using the dense initialization with ykL(l, %) for
all aspects of the LMTR algorithm is more efficient than using dense initializations
only for the computation of the constrained minimizer (line 8 of Algorithm 1). In
other words, even though using dense initial matrices for the computation of the
unconstrained minimizer imposes an additional computational burden, it generates
steps that expedite the convergence of the overall trust-region method.

Experiment 3 In this experiment, we compare the performance of the dense initial-
ization ykJ-(l, 0.5) to that of the line-search L-BFGS algorithm. For this comparison,
we used the publicly-available MATLAB wrapper [1] for the FORTRAN L-BFGS-B code
developed by Nocedal et al. [15]. The initialization for L-BFGS-B is By = yx{ where
¥k 1s given by (4). To make the stopping criterion equivalent to that of L-BFGS-B, we
modified the stopping criterion of our solver to [15]:

lgklloo < €.

The dense initialization was used for all aspects of LMTR.

The performance profiles for this experiment is given in Fig. 4. On this test set, the
dense initialization outperforms L-BFGS-B in terms of both the number of iterations
and the total computational time.

Experiment 4 In this experiment, we compare LMTR with a dense initialization to
L-BFGS-TR [3], which computes an L-BFGS trial step whose length is bounded by a
trust-region radius. This method can be viewed as a hybrid L-BFGS line search and
trust-region algorithm because it uses a standard trust-region framework (as LMTR)
but computes a trial point by minimizing the quadratic model in the trust region along
the L-BFGS direction. In [3], it was determined that this algorithm outperforms two
other versions of L-BFGS that use a Wolfe line search. (For further details, see [3].)
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........ By(1, Iy

L-BFGS-B L-BFGS-B
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Fig.4 Performance profiles of iter (left) and time (right) for Experiment 3 comparing LMTR with the
dense initialization with ykl(l, %) to L-BFGS-B
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Fig.5 Performance profiles of iter (left) and time (right) for Experiment 4 comparing LMTR with the
dense initialization with ykl(l, %) to L-BFGS-TR

Figure 5 displays the performance profiles associated with this experiment on the
entire set of test problems. For this experiment, the dense initialization with ykJ-(l, %)
was used in all aspects of the LMTR algorithm. In terms of total number of itera-
tions, LMTR with the dense initialization outperformed L-BFGS-TR; however, L-BFGS-TR
appears to have outperformed LMTR with the dense initialization in computational time.

Figure 5 (left) indicates that the quality of the trial points produced by solving the
trust-region subproblem exactly using LMTR with the dense initialization is generally
better than in the case of the line search applied to the L-BFGS direction. However, Fig. 5
(right) shows that LMTR with the dense initialization requires more computational
effort than L-BFGS-TR. For the CUTESt set of test problems, L-BFGS-TR does not need to
perform a line search for the majority of iterations; that is, the full quasi-Newton trial
step is accepted in a majority of the iterations. Therefore, we also compared the two
algorithms on a subset of the most difficult test problems—namely, those for which an
active line search is needed to be performed by L-BFGS-TR. To this end, we select, as
in [3], those of the CUTEst problems in which the full L-BFGS (i.e., the step size of one)
was rejected in at least 30% of the iterations. The number of problems in this subset
is 14. The performance profiles associated with this reduced test set are in Fig. 6. On
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Fig.6 Performance profiles of iter (left) and time (right) for Experiment 4 comparing LMTR with the
dense initialization with ykl-(l, %) to L-BFGS-TR on the subset of 14 problems for which L-BFGS-TR
implements a line search more than 30% of the iterations
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Fig.7 Performance profiles of iter (left) and time (right) for Experiment 5 comparing LMTR with the
dense initialization with ykJ' (1, %) to LMTR with the conventional initialization

this smaller test set, LMTR outperforms L-BFGS-TR both in terms of total number of
iterations and computational time.

Finally, Figs. 5 and 6 suggest that when function and gradient evaluations are expen-
sive (e.g., simulation-based applications), LMTR together with the dense initialization
is expected to be more efficient than L-BFGS-TR since both on both test sets LMTR with
the dense initialization requires fewer overall iterations. Moreover, Fig. 6 suggests
that on problems where the L-BFGS search direction often does not provide sufficient
decrease of the objective function, LMTR with the dense initialization is expected to
perform better.

Experiment 5 In this experiment, we compare the results of LMTR using the dense
initialization to that of LMTR using the conventional diagonal initialization By = yx 1
where yy is given by (3). The dense initialization selected was chosen to be the top
performer from Experiment 2 (i.e., ykJ‘( 1, %)).

From Fig. 7, the dense initialization with ykJ-(l, %) outperforms the conventional
initialization for LMTR in terms of iteration count; however, it is unclear whether the
algorithm benefits from the dense initialization in terms of computational time. The
reason for this is that the dense initialization is being used for all aspects of the LMTR
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Fig. 8 Performance profiles of iter (left) and time (right) for Experiment 5 comparing LMTR with
the dense initialization with ykL(l, %) to LMTR with the conventional initialization on the subset of 14
problems in which the unconstrained minimizer is rejected at 30% of the iterations

algorithm; in particular, it is being used to compute the full quasi-Newton step p
(see the discussion in Experiment 1), which is typically accepted most iterations on
the CUTEst test set. Therefore, as in Experiment 5, we compared LMTR with the dense
initialization and the conventional initialization on the subset of 14 problems in which
the unconstrained minimizer is rejected at least 30% of the iterations. The performance
profiles associated with this reduced set of problems are found in Fig. 8. The results
from this experiment clearly indicate that on these more difficult problems the dense
initialization outperforms the conventional initialization in both iteration count and
computational time.

5 Conclusion

In this paper, we presented a dense initialization for quasi-Newton methods to solve
unconstrained optimization problems. This initialization makes use of two curvature
estimates for the underlying function in two complementary subspaces. Importantly,
this initialization neither introduces additional computational cost nor increases
storage requirements; moreover, it maintains theoretical convergence properties of
quasi-Newton methods. It should also be noted that this initialization still makes it
possible to efficiently compute products and perform solves with the sequence of
quasi-Newton matrices.

The dense initialization is especially well-suited for use in the shape-changing
infinity-norm L-BFGS trust-region method. Numerical results on the outperforms both
the standard L-BFGS line search method as well as the same shape-changing trust-region
method with the conventional initialization. Use of this initialization is possible with
any quasi-Newton method for which the update has a compact representation. While
this initialization has broad applications for quasi-Newton line search and trust-region
methods, its use makes most sense from a computational point of view when the
quasi-Newton method already computes the compact formulation and partial eigen-
decomposition; if this is not the case, using the dense initialization will result in
additional computational expense that must be weighed against its benefits.
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