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Abstract-Data aggregationisakeyprimitiveinwirelesssensor
networksandreferstotheprocessinwhichthesensed data are
processedandaggregateden-routeby intermediate sensornodes.
Sincesensornodesarecommonlyresource constrained, theymay
becompromisedby attackers and instructed tolaunchvarious
attacks. Despitetherich literature onsecuredataaggregation,
mostofthe prior workfocusesondetecting intermediate nodes
frommodifying partial aggregationresultswithtwosecurity
challengesremaining. First, acompromisedsensornodecan
report arbitrary readingof its own,whichis fundamentally
difficulttodetectbutwidelyconsideredtohavelimitedimpacton
thefinalaggregationresult.Second,acompromisedsensornode
canrepeatedly attack theaggregationprocesstopreventthebase
stationfromreceiving correct aggregationresults,leadingtoa
specialformofDenial-of-Serviceattack.VMAT[1](publishedin
ICDCS 2011) isa representative secure data aggregationscheme
withthecapabilityofpinpointingandrevokingcompromised
sensornodes,whichreliesonasecureMINaggregationscheme
andconvertsotheradditiveaggregationfunctionssuchasSUM
andCOUNTtoMINaggregations . In thispaper,we introduce a
novel enumeration attack againstVMATtohighlightthesecurity
vulnerability ofasensornode reporting an arbitrary readingof
itsown.The enumeration attack allowsasinglecompromised
sensornodetosignificantlyinflatethefinalaggregationresult
withoutbeingdetected.Asa countermeasure, wealso introduce
aneffectivedefenseagainstthe enumeration attack. Theoretical
analysisandsimulationstudiesconfirmthesevereimpactofthe
enumeration attack andtheeffectivenessofthe countermeasure.

I. INTRODUCTION
Wireless sensor networks playakeyroleinthe emerging

loT paradigm where millions of sensors are expected tobe
deployed throughout the physical space,which continuously
sense the surrounding environment and generate an unprece-
dented amount ofdata.Atypical wireless sensor network
isa multi-hop wireless network formedbymany resource-
constrained sensor nodesandaba se station, where sensed data
are forwarded tothebasestationwith Internet connectivity via
intermediate sensor nodes. Exemplary applications of wireless
sensor networks include manufacture plant monitoring, asset
tracking, traffic monitoring, environmental monitoring, public
safety, andsoon[2].

In-network data aggregation [3],[4]akey functionality in
wireless sensor networks andreferstotheproce ss inwhich
thesen sed dataareproce ssed and aggregated en-route by
intermediate sensor nodes . Since sensor nodesare commonly
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battery powered with limited communication and computation
resources, forwarding every sensor reading tothebasestation
would quickly deplete the energy of intermediate nodes . In-
network data aggregation allowsthebasestationtolearn
statistic aggregates of thesenseddatawhile greatly reducing
the energy consumption and prolonging the network 's lifetime.
Consider theSUM aggregation asan example. Sensor nodes
firstforman aggregation tree rooted attheba se station. During
the aggregation process, everynodesumsupthe readings
fromits children anditsown and forwards thepartialsum
toits parent. Thebasestationisableto obtain thesum of all
readings attheendofthe process. Other common aggregate
functions suchas MAXIMIN, COUNT, andAVERAGEcan
be realized ina similarfashion .

Asan important network primitive, in-network dataaggre-
gationfaces several critical security challenges. Since sensor
nodesare resource-constrained, theymaybe physically cap-
turedor compromised by attackers and instructed tolaunch
variousattack s. For example, a compromised sensor nodemay
modify itspartial aggregation result to significantly inflateor
deflatethefinal aggregation result atthebase station. Second,
evenifthebasestationisableto detect and reject thefalse
aggregation result, a compromised sensor nodecanlaunch
persistent attacks to prevent thebase stationfrom receiving
the correct aggregation result, leading toa specialformof
Denial-of-service attack.Lastbutnottheleast , a compromised
sensor nodemay report an arbitrary reading of its ownwhile
following the aggregation protocol.

Secure data aggregation in wireless sensor networks has
been studied extensively inthepast.A common assumption
heldinthe literature isthata single compromised sensor node
forgingitsown reading is fundamentally difficult to detect but
has limited impact onthefinal aggregation result for robust
aggregation functions likeSUMand COUNT [5]. Most of the
research effortshavefocusedon detecting intermediate nodes
manipulating partial aggregation results. Existing solutionscan
be broadly classified intotwo categories. Thefirst category
suchas [6]-[9] can provide accurate aggregation results and
detect malicious sensor nodes manipulating partial aggregation
results via commitment verification. The second category
suchas [I] , [10]-[14] offerss tatistical estimations of the
aggregate results via probabilistic sampling. As mentioned



above , a single malicious sensor nodecankeep attacking
the aggregation process to prevent thebase station from
obtaining the correct aggregate. There areaveryfew attempts
addressing the identification and revocation of compromised
nodeswithVMAT [I] beinga representative. VMAT relies
on verifiable MIN aggregation and converts other additive
aggregation functions suchas SUM and COUNT into MIN
aggregation via verifiable sampling.

Inthispaper,we introduce anovel enumeration attack
against VMAT[1]to highlight the vulnerability of convert-
ing additive aggregation functions to MIN aggregation via
probabilistic sampling. We observe thata compromised sensor
nodecan exploit the vulnerability of probabilistic sampling by
enumerating all possible readings tofindtheonethatleads
toa significantly inflated aggregation result. In other words,
the long-held viewthata single compromised node falsifying
itslocalvaluehasa limited impact onfinal aggregation
results doesnot always hold. While VMAThas incorporated
a verifiable random number generation mechanism to prevent
compromised sensor nodesfrom generating arbitrary random
samples, weshowthatsuch mechanism is necessary butinad-
equate. Asa countermeasure, wealso introduce an effective
defense against the enumeration attack.Our contributions in
this paper canbe summarized asfollows.

•We introduce anovel enumeration attack against VMAT
to highlight the danger of converting additive aggrega-
tioninto MIN aggregation, whereby asmall number of
compromised sensors could severely manipulate thefinal
aggregation result.

•We theoretically analyze the impact of enumeration at-
tacksand validate our analysis using simulation studies.

•We introduce an effective countermeasure against enu-
meration attacks by requiring every sensor nodetocom-
mittoits reading prior to knowing the random seedfor
generating random synopsis. We confirm the efficacy and
efficiency of the countermeasure via simulation studies.

Therest of this paper is structured asfollows. Section II
discusses the related work. Section III presents the network
and adversary models. Section IV reviews theVMAT scheme.
Section V presents the enumeration attack andits evaluation.
Section VI presents a defense against the enumeration attack
and evaluates its performance. Section VIIfinally concludes
thispaper.

II. RELATED WORK

Secure data aggregation in wireless sensor networks and
related systems hasbeen studied extensively inthepast.

Existing solutions canbe generally classified intotwo
categories. Thefirst category suchas [6]-[9] provides accurate
aggregation result atthebase station. Most of these schemes
[6]-[8] ensure aggregation-result integrity by requiring inter-
mediate nodesto commit to partial aggregation-results through
cryptographic means.SIBS[9] explores homomorphic encryp-
tionto detect intermediate nodes modifying partial aggregation
results. The second category suchas [I], [10], [II], [13],
[14]aimsto provide a statistical estimation of the aggregate

result with probabilistic guarantee. SIA[10] considers a single-
aggregator modeland statistically detects false aggregation
results via random sampling and interactive proof, whichis
subsequently improved in [II] to realize secure approximate-
median aggregation. A secure aggregation scheme based on
verifiable set sampling was introduced in[13]. Synopsis dif-
fusion[12]isa robust aggregation framework against packet
lossthat explores multi-path routing and duplicate-insensitive
aggregation, whichis improved in[15]to enable detection of
false subaggregates and[14]to tolerate false subaggregates.

While most of these solutions [I] , [6]-[11], [13],[14],[16]
focuson detecting intermediate nodes manipulating partial
aggregation results, thereareafew attempts aiming atidenti-
tying compromised nodes during data aggregation in addition
toVMAT [I]. Early proposals [17],[18]relyon expensive
public-key cryptography operations and group testing toiden-
tify malicious nodes.Xu etat. [19] proposed an improvement
for SDAP [7]to identify malicious nodesvia statistical ab-
normality detection and random node grouping. Their scheme
is ineffective ifthe attacker adopts its behavior according to
the statistical detection rules. In[20],a secure aggregation
scheme was introduced to pinpoint intermediate nodesthat
drop partial aggregation results. The approach, unfortunately,
incurs a communication overhead linear tothetotal number of
sensor nodes,whichlargelynullifiesthe benefit of in-network
aggregation. In[21],Li etal. introduced a secure SUM
aggregation protocol to misbehaving intermediate aggregators
by having every intermediate node's partial aggregation result
checked byits children and parent, whichis ineffective against
two colluding parent and child nodes.In addition, thereisa
general consensus [6],[7],[14],[15]thata compromised node
forgingitsown reading is fundamentally difficult to detect but
has limited impact on robust aggregation functions suchas
SUM and COUNT [5].

III. NETWORK AND ADVERSARY MODELS

Inthis section, we introduce our system and adversary
models.

A. Network Model
We consider a multi-hop wireless sensor network compris-

ingabase station and n sensor nodes.Each sensor node i has
a sensed reading di inthe range {I , .. . , k}. Thebase station
intends tolearn !(d1 , .. . ,dn ) , where !(., .. . ,.) issomeag-
gregation function suchas MAXIMIN, SUM, AVERAGE, and
COUNT. The aggregation is performed overan aggregation
tree,whichisthe directed tree rooted atthebase station formed
bythe unique pathfromevery sensor nodetothebase station.

B. Adversary Model
We assume thatthebase station has adequate computation

and energy resources andis safeguarded from possible attacks.
In contrast, sensor nodesare constrained in computation and
communication resources andmaybe compromised bythe
attacker,e.g., through physical capture. Once compromised, all
the information stored atthe sensor nodesuchas cryptographic



keysisrevealedtotheattacker.The attacker aimstohavethe
basestationaccepta significantly inflated aggregation result
withoutbeing detected. We consider thefollowingtwoattacks
inthispaper.

•A compromised nodemayfalsifyitsownsensed reading,
which mayor maynotbeinthevalidreadingrange.

•A compromised nodemaymodifyordropapartial
aggregation result.

Wefurtherassumethatthe attacker can compromise upto c
sensor nodesandthatallthe compromised nodescan collude
inan arbitrary fashionunderthe instruction oftheattacker.
Wefocusontheattackstargetingdata aggregation inthis
paperandrefertotherich literature (e.g., [22]-[27]) forother
possible attacksonwireless sensor networks.

IV. REVIEW OF VMAT

Inthissection,webrieflyreviewtheVMAT scheme and
howto convert additive aggregation functionsintoMAX
aggregation.

VMAT [I] isa representative secure aggregation scheme
builtuponefficient symmetric-key operations withthecapa-
bilities of pinpointing andrevoking malicious nodes. Under
VMAT,eachnodesharesoneor multiple secret keys,called
edgekeys,witheachofitsneighbor,anda distinct secret
keywiththebasestation.Thekey component ofVMATis
a secure MIN aggregation scheme. During the aggregation
phase,each sensor node creates a message consisting ofits
nodeID, sensor reading, andaMAC encrypted withanedge
keysharedwithitsparent.Each intermediate nodereceives
the messages fromits children andforwardsthe message
withthe smallest readingamongallthe messages fromits
children anditself.Attheendofthe aggregation phase , the
basestationobtainstheminimalreadingamongall sensor
nodesandverifies whether this minimal reading hasavalid
MAC.Duringthe confirmation phase , thebasestationuses
authenticated broadcast to announce the minimum valueit
received. If the minimum valueis higher thanthetrueminimal
value, thenthe sensor nodewiththetrueminimalvaluecan
detect itandissueaveto message tobefloodedbacktothe
base station.The basestationcanthenrevokeoneoftheedge
keysusedbythe reporter sensor throughfindingoutbetween
which neighboring sensorsthevalue contained intheveto
was dropped without aneven smaller valuebeing forwarded.
Werefer readers to [I] formoredetailsofthesecureMIN
aggregation protocol.

VMAT explores the distributed randomized algorithm pro-
posedin [28] toconvertadditive aggregation suchasSUMand
COUNT intoMIN aggregation. Consider SUM aggregation
asan example. To compute S = I: ~ =1 di , eachnode i
with reading di generates m mutually independent random
synopses S i ,l , S i,2 ," " S i ,m froman exponential distribution
Exp(d i ) withmean I ldi . All n sensor nodesthenpartici-
pateinmparallel instances ofsecureMIN aggregation to
allowthebasestationtoobtain sTin , s:rin, ... , s~in, where

sjin = min( Sl ,j, S2 ,j, ... , Sn ,j) forall1 ::; j ::; m. Thesum
ofall di canthenbe estimated as

A m
S = "m min '

L..Jj=l Sj

whichhasbeenshown [28] tobean unbiased estimator of S.
In addition, when m = 8(~ log -!-), S iswithin ((I -E)S, (1+
E)S) with probability atleast 1 - b. AVERAGEand COUNT
aggregates canbe realized ina similar fashion.

Topreventa compromised nodefrom generating arbitrarily
small synopsis, VMATusesa deterministic pseudorandom
number generator toensurethatanysynopsismust correspond
toavalid reading inrange.Inparticular,the deterministic
pseudorandom number generator takesthe sensor reading di ,

nodeID i , andanonce s asinputand outputs m synopsis
S i ,l , ... , S i ,m' On receiving sTin , s:rin, ... , s~in, thebasesta-
tioncanverifythateveryminimalsynopsisisindeed generated
fromavalidreading. Unfortunately, wewillshowinthenext
sectionthatthis mechanism aloneisnecessarybut inadequate.

V. ENUMERATION ATTACK

Inthis section, weuseSUM aggregation asan example to
introduce anoveldata enumeration attack.

A. Attack

In enumeration attack,a compromised sensor nodeaimsto
inflatethefinal aggregate atthebasestation.In comparison
tothenaiveattackinwhicha compromised nodesimply
reports the maximum reading inrange , enumeration attackis
moreeffectiveby causing the aggregation result significantly
deviating fromthetrue aggregation result.

Enumeration attack exploits the vulnerability thatacom-
promised sensor nodecan report arbitrary reading ofitsown.
RecallthatinVMAT,everynode i withreading d; generates
m independent synopsis froman exponential distribution with
mean I ldi , andthe aggregation result is computed fromthe
mminimal synopsis acrossallthe sensor nodes.Recallthata
validsensedreadingisintherange {I , ... , k } . Ifthe sensor
nodesimplyreportsthe maximum reading k, eachofitsm
synopsis isan exponential randomvariablewithmean 11k.
In enumeration attack,a compromised sensor nodeattacks
one synopsis ofitschoice. Consider asan example thata
compromised sensor node i attackssynopsis S i ,l. Node i can
compute one synopsis foreach possible reading1,. .. ,k using
theverifiablerandom number generator DRNG(s, d,ID) to
findthereading d* thatleadstothe smallest synopsis Sd as

d* = argminDRNG(s,d,ID).

Itthenfaithfully participates inthesecureMIN aggregation
with sa-

Wesaythe enumeration attack succeeds if Sd happens
tobe smaller thanallthe synopsis Sjt generated bynon-
compromised sensor nodes. It iseasytoseethatunder enumer-
ationattack,the synopsis S i ,l istheminimalof k independent
exponential random variableswithmeans 1,1/2, .. ., 11k,
respectively, whichis smaller thantheone generated from



the maximum reading k withhigh probability. In other words ,
enumeration attack allowsa sensor nodeto generate a much
smaller synopsis withhigh probability.

Multiple compromised sensor nodescan collude tomaxi-
mize the impact of the enumeration attack. In particular, if
the attacker has C > 1 sensor nodes, the attacker can instruct
each compromised sensor nodeto attack one distinct synopsis
orevenly allocate the compromised sensor nodesacrossm
synopsis if c > m. Intheworstcase,if enumeration attack
succeeds forevery synopsis, thenthefinal aggregation result
computed bythebase station is independent fromany of the
non-compromised sensor nodes' reading.

B. Theoretical Analysis

Wefirst analyze the probability thata single compromised
sensor nodecan succeed in launching enumeration attack.
Without loss of generality, we consider one compromised
sensor node i and 9 non-compromised sensor nodesand
assume thatnode i intends to attack synopsis sinin. Wehave
the following theorem regarding the success probability of a
single node attacking one synopsis.

Theorem 1. Assume thatthereare 9 non-compromised sensor
nodes.Furtherassumethatthereadings of non-compromised
sensornodesarei .i.d. randomvariableswithprobability
distribution Pr(dj = x ) = Px where 1 < x < k. The
probabilitythatasingle compromised nodecansuccessfully
launchenumerationattackagainstasinglesynopsis is given
by

(I)

Proof" Without loss of generality, assume thatacom-
promised sensor node i aimsto attack synopsis Slin. The
enumeration attack succeeds ifnode i canfinda reading
di E {I , .. . , k} that results inits synopsis S i ,l, being the
minimum among all SI ,I, ... , Sn ,I' Let Sern bethe synopsis
generated bynode i under enumeration attack.Wecansee
that

Sern = min(s [I], s[2 ] ... ,s[k]) ,

wheres [I]' s[2] ... ,s[k] are mutually independent exponen-
tial distributed random variables with means 1,1 /2 , . .. , I /k,
respectively. It follows that Sern isan exponential random
variable withp.d.f.

f(sern = t) = )..,e-
At

for t ~ 0,where X = k(k + 1) /2.
Assume thatthereare 9 non-compromised sensor nodes.Let

Sj ,1 bethe synopsis generated bya non-compromised sensor

node j. It follows that
k

Pr(Sj,1 ::; t) = ~ Pr(Sj,1 ::; t ldj = x) . Pr(dj = x)
x =1

k

= ~(I - e -xt) px

x= 1
k

= 1 - ~p x e- xt.
x= 1

Let s;;'in bethe minimal synopsis among 9 non-compromised
sensor nodes.Wehave

Pr(s:;'in ::; t) = 1 - Pr(s:;'in > t)
9

= 1 - II Pr(Sj,1 > t)
j =1

k

= 1 - (~py e- Xy)g .
y =1

Wefinallyhave

•
Wealsohavethe following theorems regarding the expected

number of synopsis successfully attacked andthe optimal
strategy of allocating compromised nodesto synopsis.

Theorem 2. Assume thatthereare c compromised sensor
nodesand9 non-compromised sensornodes.Supposethat
the attacker allocate Cj nodestoattackthe jth synopsis for
1 ::; j ::; m, where 'L'J:=1 Cj = c. Theexpe cted number of
synopsissuc cessfully attacked is givenby

m

E(m) = m - ~(I - P.5lIcc) Cj,

j =1

where P.I'lI CC is giveninEq . (1).

Theorem 3. Assume thatthereare C compromisedsensor
nodes.Theoptimalattackstrategy is toassignthecompro-
misednodestosynopsisinaroundrobinfashion,i.e.,theith
compromised nodetoatta ck the jth synopsis,where

j = i mod m .

The proofs of thetwo theorems are straightforward and
omitted heredueto space constraints.

C. SimulationResults
We conduct simulation studies to validate our theoretical

analysis. Specifically, we consider n = 1000 sensor nodes
andm = 50 synopsis asthe default setting and evaluate
the impact of several parameters. Wealso consider four



probability distributions of non-compromised nodes' readings.
Every point istheaverageof500runs , eachwitha distinct
random seed.

Figs.I(a)toI(c) illustrate theimpactofvalidread-
ingrangeandthe number of non-compromised nodes
on ]J,ucc , whereweassumethatthe readings fromnon-
compromised sensor nodesfollowfouruniformdistribu-
tionsU(5,15),U(25 ,35) , U(45,55) andU(65 , 75)withmean
10,30,50 and70,respectively.Firstofall,wecanseethat
the theoretical resultsmatchthe simulation resultsverywell ,
whichvalidateour theoretical analysis.Wecanseefrom
Fig. I(a)thatthesuccess probability increases asthe reading
range increases. Thisis expected, asthelargerthe reading
range , themore readings the compromised sensor nodecan
trytofindtheminimal possible synopsis, the higher the
probability thatits synopsis is smaller thanallthe synopsis
generated bythe non-compromised sensor nodes,andvice
versa . In addition, thelargerthe expectation ofthenon-
compromised node's reading, thelowerthesuccess probability.
Thisis because itismorelikelyfor non-compromised nodes
to generate smaller synopsiswithlarger readings. Wecan
seefromFig.I(b)thatthesuccess probability decreases as
the number of non-compromised nodes increases. Thisisalso
anticipated, asthemore non-compromised nodes , the smaller
theminimal synopsis amongallthe synopsis generated bythe
non-compromised nodes.Finally , wecanseefromFig.I(c)
thatthe number of synopsis successfully attacked increases
asthe number of compromised sensor nodes increases. We
canalso observe thatthepaceof increasing slowsdownafter
the number of compromised nodes exceeds the number of
synopsis.

Figs.2(a)to2(c) compares therelative estimation errors
under enumeration attackandnaiveattackwhereeverycom-
promised sensor nodesimply reports the maximum reading in
range.Therelative estimation errorisdefinedas ISatt - SI/S,
where Satt and S arethesums estimated bythebasestation
underattackandundernoattack,respectively.Weassume
thattheaverage readings of non-compromised sensor nodes
are50 , 100,and150, respectively. WecanseefromFig.2(a)
thattherelative estimation error increases asthe number of
compromised nodes increases underbothnaiveand enumer-
ationattacks , whichis anticipated. In addition , therelative
estimation error underthenaiveattackisverylimited , which
isinlinewiththe long-held viewand conclusions in[5].How-
ever, therelative estimation errorunder enumeration attackis
always significantly higher thanthatunderthenaiveattack.For
example, enumeration attackcaninflatethesum aggregation
resultby40 % and100 % with25and50 compromised sensor
nodes,respectively.Suchlarge aggregation errors highlight
thesevereimpactofthe enumeration attack.Moreover,the
largertheaverage reading of non-compromised nodes,the
smaller theimpactofbothnaiveattackand enumeration attack.
WecanalsoseefromFig.2(b)thattherelative estimation
error decreases asthe number of synopsis increases. Thisis
expected, asifthe number of compromised nodes remains
thesame , the proportion ofthe synopsis successfully attacked

decreases asthenumberof synopsis increases.Whenthe
number of synopsis exceeds115 , therelative estimation error
under enumeration attackisaboutthesameasthatunderthe
naiveattack.Finally,Fig.2(c)showsthatthe aggregation error
decreases asthe number of non-compromised nodesincreases.
Thisis because themore non-compromised nodesresults , the
lowerthesuccess probability, thefewer synopsis successfully
attacked,andviceversa.

VI. COUNTERMEASURE

In thissection,we introduce aneffective countermeasure
againstthe enumeration attack.

A. Countermeasure
We observe thatthe enumeration attackis possible because

compromised nodesknowthenonceusedfor generating syn-
opsisbefore choosing itsreading.Aneffectivewaytodefend
against enumeration attackisto require every sensor nodeto
commit toitsreadingbeforeknowingthenonce , sothatthere
isno opportunity for compromised sensor nodesto enumerate
all possible readings. Our countermeasure requires eachnode
to commit toits reading andforwardthe commitment to
selected witnesses inits neighborhood, whichallowsthebase
stationtoverify whether thesynopsisis generated beforethe
sensor nodeknowingthe random seed. In whatfollows , we
detailthe operations.

During network initialization, everynode i learnstheIDs
ofallthenodesinits h-hop neighborhood, denoted by Nh(i),
andthebasestationlearnsthe complete topologyofthe
network.Toinitiateadata aggregation process , thebasestation
broadcasts a command witha random nonce Sl. On receiving
the command, each sensor node i with reading d; computes a
commitment as

where M AC(.) denotes message authentication codecom-
putedusingthe secret keysharedbetweennode i andthebase
station , and II denotes concatenation. It selects A nodesfrom
Nh(i) toserveasits witnesses usinga deterministic random
number generator seededbythenonce Sl anditsnode ID,
where A :::: 1isasystemparameter.Node i thenforwards
Commit, toeachofthe A witnesses.

EverynodethenfollowsVMATto generate m synopsis
and participates in m instances ofsecureMIN aggregation.
In particular, thebasestation broadcasts another nonce S2.

Attheendofthe aggregation phase , thebasestationob-
tains Slllill , s2'ill , .. . , S~ill, i.e., m minimalsynopsisacross
all n sensor nodes.Forevery sTill (1 ::; j ::; m) , thebase
station determines the ID ofthenodethat generated this
synopsis andverifiesthat sTill isindeed generated froma
valid reading asinVMAT. Consider STill asan example.
Assume thatnode i with reading d i generated sTill. During
the confirmation phase , thebasestationuses authenticated
broadcast to announce (IDi, di,sT i ll

) toallthenodes.Ev-
erywitnessofnode i, saynode w, thensendsa message
(IDw,Commiti ,MAC(IDwIICommiti)) tothebasestation.
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On receivingth e message , the bases tationfir stver ifies
whethern ode w isava lid witnessf or node i . If so, the base
station verifiest heM ACs inth e messagea nd Cornrnit.. If
thever ification succeeds, theb asesta tion knows thatnodei 's
rea ding di wasco mmittedb efore knowing the nonce 8 2.

B. SimulationR esults
Wea lsou ses imulation studies toeva luateth epe rformance

of ourc ountermeasure. Weco nsider a35 x 35g rid sensor
network with n = 1225 sensorn odes,w here theb ases tation
is locateda t one of the corners. Every sensor node (except
theo nesn eart heb oundary) has4o ne-hopn eighbors , 12
two-hop neighbors , 24 three-hop neighbors , and 40 four-hop
neig hbors.W emeas ure the communication overheadin curred
byo ur co unter measure as the average number of extram essage
transmissions per nodea ndp ersy nopsis.

Fig. 3(a) showsth e imp acto fth e number of compromised
nodeso n P witness, the probabilityo fall witnesses beingco m-
promisedunde r theass umption thatco mpromisedn odesare
distributed uniformlya tr andom.Aswecansee, the largert he
A, thes maller P witness, and vice versa.Th isisex pected, as
Pwitness isa pproximately (:;;: /'. Forexa mple , when 10% of the
nodesareco mpromised,th epro babilitythat all witnesses are
compromisedis0.0 1 if A = 2.A compromisedse nsor node
can successfullyl aunche numeration attack on one selected
synopsis ifi t can find a reading that leadsto themi nimal
synopsis and all A witnesses are alsoco mpromised.

Thea ttackerma yc hoose toco mpromise one selected sensor
nodea ndth en thenodesw ithinit sh- hopn eighborhood .
Fig. 3(b)s hows Pwitness varyi ng withth e numberofcom -
promised nodes underd ifferent h. Aswecansee,t he more
compromised nodes , thes maller h, the higher P witness, and
vice versa. Thi sisex pected , as the A witnesses arec hosen
uniformlya tr andomfro m allth e nodesw ithinth eh- hop
neighborhood.W henth e numberofco mpromisedn odesex -
ceeds the numb erofno des int he h hop neighborhood, P witness

becomeso ne.I nt his case , the success probabilityisred uced
to the probability that thecom promisedn odecans uccessfully
find are adingth at leads to the minimalsy nopsis amongall
sensor nodes.

Fig. 3(c)s howsth e impact of A, the number of witnesses
thats tore the commitment, on theex tra communication over-
headi ncurred by the proposedco unter measure.Iti s not
surprisi ng tosee that the larger the A, them ore message
transmissions incurred by thepro posed co unter measure.In
addition, then umber of message transmissionsa lso increases
as h increasesfor thesa me A. The reasoni s that the larger
h, the larger the average distance betweena node and its
witnesses. Overall, our counter measure incurs as mall number
of extra message transmissions.Forexa mple , when h = 3a nd
A = 3, the proposedco unter measure incurs approximately 8
extram essage transmissionsoverV MAT.
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Fig.3 .P erformance ofthe countermeasure , where n = 1225.

VII. CONCLU SION

In this paper, we have introduced a novel enumeration
attack against VMAT to highlight the security vulnerability
of a sensor node reporting arbitrary readings. In comparison
with the naive attack, the enumeration attack allows a sin-
g le compromised sensor node to cause si gnificantly hi gher
e stimation error at the base station without being detected .
We have al so introduced an effective countermeasure against
the enumeration attack. Theoretical analysis and simulation
studies have confirmed the severe impact of the enumeration
attack and the effectiveness of the proposed countermeasure.
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