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Abstract—Distributed computing tasks in small un-
manned aerial vehicle (UAV) networks require effective
data transmission schemes because of limited commu-
nication channels and transmission power. In this paper,
we use distributed consensus as a canonical distributed
computing task to study the effectiveness of the data
transmission in digitized (quantized) channels for UAV
networks. We show that layered structures are more
effective than equivalent egalitarian structures in terms of
the data transmission load required to reach consensus.
In particular, we establish explicit relationships between
simple structural characteristics and the performance of
quantized consensus (e.g., consensus condition, consen-
sus value, and transmission load to reach consensus)
for broad classes of layered structures. We also provide
analytical results on asymptotic and transient performance
when additional local memories are used to further reduce
the data transmission load to reach consensus.

Index Terms—Consensus, layered networks, quantiza-
tion, unmanned aerial vehicle (UAV) networks.

|. INTRODUCTION

ITH the advent of unmanned aerial vehicle (UAV) tech-
W nologies and recent release of new small UAV rules by
the Federal Aviation Administration [1], UAVs have increas-
ingly been used as a cost-effective and flexible sensing and
computational platform for a variety of civilian applications.
For instance, UAVs can collaboratively stitch real-time videos to
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increase the area of surveillance coverage [2]. Similarly, UAVs
can share loads to collaboratively monitor fires, measure air
quality, or trace chemical leakages with optimized performance
in terms of traveling time, data transmission latency, and cover-
age (see, e.g., [3]).

Effective communication and data transmission are critical
for distributed UAV computing applications. Different from
ground-based computing platforms, which are typically less
constrained by various resources, distributed UAV computation
faces several new challenges. First, there is the digitalized data
transmission. A realistic UAV communication network uses dig-
ital links of limited channel data rates. Data need to be quantized
and coded before transmission. This quantization procedure in-
troduces nonlinearity to the distributed computing tasks. Sec-
ond is the challenge of limited availability of communication
channels. We cannot expect a UAV network of dense communi-
cation links among agents, which are more likely to be affected
by channel inferences. Third is the limited transmission power
challenge. Small payloads and limited power supplies of UAVs
limit their wireless data transmission capabilities [4], [5]. Fourth
is the challenge of network management for moving UAVs. Hier-
archical structures are easier for network management tasks [6].

Existing works on distributed control typically focus on sta-
bility and time efficiency issues, but do not consider communica-
tion issues such as transmission load. Ideal communication links
are often assumed without considering inference, limited chan-
nel data rates, and transmission power constraints. In this paper,
we use distributed consensus, a canonical distributed computing
task, in a UAV network to study the effectiveness of data trans-
mission for cooperative UAV computation. From a structural
perspective, we quantitatively connect the network topology to
the performance of distributed computation, in terms of the
transmission load needed to reach consensus.

Distributed consensus is generally concerned with a group
of agents of different initial opinions converging to the same
opinion through local communication among neighbors. It is a
typical distributed computing task in sensor networks, and has
been widely studied in the control theory literature (see, e.g.,
[71-[9]). Most of these studies assume “egalitarian™ networks of
the following properties: 1) agents are of the same functionality
and no organization or hierarchy exists among these egalitarian
agents, 2) the data from neighbors are immediately transmitted
and available at any time instance.

2325-5870 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



WAN ef al.: ON THE STRUCTURAL PERSPECTIVE OF COMPUTATIONAL EFFECTIVENESS FOR QUANTIZED CONSENSUS 277

By noticing that such egalitarian structures are not efficient
with respect to transmission load, we study in this paper nonegal-
itarian structures where agents take different roles. In [10], we
analyzed layered networks of a multilayer multigroup (MLMG)
topology and communication scheme, and established the pre-
cise connection between such a layered structure and the con-
sensus performance, such as a consensus condition, the final
consensus value, and the consensus time. In this paper, we find
that such a structure can be significantly more effective in terms
of the transmission load to reach consensus, compared to equiva-
lent egalitarian networks. In addition, Wan ef al. [10] focused on
linear deterministic dynamics of perfect communication chan-
nels, and this paper extends the analysis to stochastic nonlinear
quantized consensus for digitized channels of limited data rates.
Furthermore, we find in this paper that additional local mem-
ories can further be employed to reduce the transmission load.
This property makes MLMG structures suitable for UAV net-
works, which require sparse data transmissions. Layered struc-
tures have been widely used in practical sensor networks, which
have demonstrated the advantages of both high energy efficiency
and network management simplicity [11], [12]. However, sparse
efforts have been made on the performance analysis and system-
atic design of these nonegalitarian networks from a control’s
perspective (see, e.g., [13]).

The main contributions of this paper are summarized as
follows.

1) Quantized consensus in MLMG networks of limited data
rates: Quantized consensus has been studied in symmet-
ric egalitarian networks, characterized by doubly stochas-
tic system matrices. Our characterizations of the asymp-
totic and transient performance of quantized consensus
contribute to the literature in that: a) the network’s equiv-
alent egalitarian structure is asymmetric and not doubly
stochastic, and b) we directly relate simple topological
characteristics of MLMG networks with the quantized
consensus performance.

2) Characterization of the efficiency of MLMG structures
for UAV networks: The MLMG communication struc-
ture lies between centralized and egalitarian distributed
structures. It maintains the features of distributed com-
munication globally, while reducing the number of trans-
missions to reach consensus compared to egalitarian dis-
tributed networks of the same dynamics. The reduction in
the transmission load is calculated, and is shown to grow
quadratically with the size of the network, suggesting the
high efficiency of the MLMG structures in large-scale
UAV networks and beyond.

3) Characterization of the structural impact on the consen-
sus performance: The MLMG structures are interesting
in that they capture hidden topological information that is
not observable in the egalitarian structures directly asso-
ciated with the consensus dynamics. They provide simple
topological characteristics that lead to explicit graphical
results on consensus performance, such as consensus con-
dition, consensus value, consensus rate, and transmission
load. These graphical results are very useful in large-scale

network applications as they permit scalable network
designs.

4) Memory-based quantization scheme design: We intro-
duce additional local memories to UAVs to further re-
duce the transmission load, and study the asymptotic and
transient properties of quantized consensus in MLMG
networks. This design is motivated by increasing correla-
tions among transmitted values along the consensus pro-
cess. We show that the employment of additional memo-
ries can significantly further reduce the transmission load
in terms of the number of bits transmitted to reach con-
Sensus.

This paper is organized as follows. In Section II, we describe
the MLMG structure and communication scheme, probabilistic
quantization, and consensus dynamics with/without the employ-
ment of additional local memories. In Section III, we study the
asymptotic and transient consensus properties when the prob-
abilistic quantization scheme is adopted for digital channels of
limited data rates. In Section IV, we explicitly relate the charac-
teristics of the network structure with the number of transmis-
sions to reach consensus for broad classes of MLMG structures.
In Section V, performance analysis is extended to the case when
additional local memory is introduced. Section VI describes the
simulation studies. Finally Section VII concludes this paper.

II. MODELING FRAMEWORK

A. Layered MLMG Topology

Consider a layered UAV network of n nodes: 1) m fusion
centers (FCs) at higher layers, serving as group leaders with the
full functionality of sensing, fusion, and communication, and
2) n — m sensor nodes at the bottom layer with the function-
ality of sensing, simple local computation, and communication
to FCs. Links between sensor nodes and FCs represent commu-
nication channels. MLMG networks can have multiple layers,
forming hierarchical networks as discussed in [10]. In this pa-
per, we focus on the two-layer multigroup (2LMG) structures,
with the understanding that many results can be generalized to
networks of more than two layers. Fig. 1(a) shows a two-layer
two-group (2L2G) structure where m = 2 and n = 6. Group 1
includes FC;, sensor nodes S» and S5, and group 2 includes
FCQ, 85, and Sﬁ.

To facilitate structural analysis, we separate the sensing and
fusion functionalities of each FC to a leader sensor node and
a virtual fusion center (VFC), which is deprived of the sensing
capability. With that, the 2LMG network topology is rearranged
to a network of n + m nodes (represented by bipartite graph G),
where sensor nodes are indexed by S;, 7 € {1,2,...,n}, and
VFCs are indexed by VFC;, j € {1,2,...,m}. As an example,
the VFC version of Fig. 1(a) is as shown in Fig. 1(b). VFC,
communicates with every sensor node in its group and also .54
in the other group. Similarly, VFC; communicates with every
sensor node in its group and also S in the other group. We
use a matrix H € R™*" to capture the network topology. In
particular, in the MLMG topology matrix H € R™*" each entry
(2,7) is “1” if sensor node j is connected to VFC i, and “0”
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Fig. 1. Example of the 2L2G structure. (a) Topology graph with FCs
at the top layer and sensor nodes at the bottom layer. (b) VFC version.
(c) Equivalent egalitarian network of the same consensus dynamics.

otherwise. For the 2L2G example shown in Fig. |, wehave H =
[1 11100

1:00111
(or sensor) is connected to is called the degree of the VFC (or
sensor). A 2LMG network is regular if all VFCs are of the same
degree, denoted as r. A path is a sequence of communication
links that connect the VFCs and the sensor nodes.

] . The number of communication links that a VFC

B. Forward and Backward Communication Scheme

The communication in MLMG networks is featured by the
forward and backward operationstypically observed in central-
ized networks. Specifically, the following steps are involved in
each iteration of consensus [see Fig. 1(b)]:

1) in the forward step, each sensor node sends its value to
the VFC, which it connects to;

2) each VFC updates with the average of connected sensor
values, and then in the backward step sends its value to
these sensor nodes; and

3) each sensor node updates with the average of connected
VEC values.

This forward and backward communication scheme is very
different from the purely distributed communication scheme for
a network of egalitarian agents, where at each iteration, every
node fuses sensor values immediately available from neighbor-
ing nodes.

The MLMG structures with the forward and backward com-
munication scheme demonstrate features of both centralized
and distributed communication structures. In particular, they
maintain distributed communication across groups, but use cen-
tralized forward and backward communication scheme within
each group. Centralized structures (with all sensor nodes com-
municating with a single leader using forward and backward
communications) are effective with the minimum number of
data transmissions, but are not practical in large-scale networks
due to a variety of issues such as the vulnerability to attacks, data
traffic bottlenecks at base stations, the lack of flexibility, and the
incapability to scale. In contrast, distributed structures, widely
studied in the control community, achieve better performance
in terms of security, throughput, flexibility and scalability, but

at the cost of a significantly larger number of transmissions
to reach consensus. In a related vein, Su and Gamal in [14]
compared the number of rounds and the network rate distortion
function between the centralized and the distributed structures
for gossip consensus algorithms. The MLLMG structures, which
reside between centralized and distributed structures, serve as
a means for us to understand the tradeoffs between these two
extreme structures to meet UAV networking needs.

C. MLMG Network Dynamics

The aforementioned forward and backward operations at each
iteration k can be described by the following dynamics:

x[k + 1] = Ax[k] = K, HT Ko Hx[K] (1)

where x[k] is sensor values at k, K| = [diag(H” 1,,.1)] ",
K, = [diag(H1,41)]"', A € R"*" is the system matrix, and
diag( ) places a vector’s entries in a diagonal form.

Matrix A defines a graph structure, G. of an egalitarian dis-
tributed network, which has the same dynamics as that of the
2LMG structure defined on H. The egalitarian distributed net-
work of Fig. 1(b) defined by matrix A is shown in Fig. 1(c),
where each entry A; ; # 0 if sensor node 7 receives data from
sensor node j through a VFC in each iteration. The MLMG
structures expose hidden structures that are not directly observ-
able in egalitarian distributed networks, and hence, provide a
new structural approach to obtaining tractable graph-theoretic
results on consensus properties.

D. Dynamics for MLMG Neiworks of Digitalized
Channels

To account for digital channels of limited data rates, quan-
tization of transmitted data needs to be conducted in forward
and backward transmissions. Several quantization methods have
been investigated in the literature, which may or may not pre-
serve the initial average [20]-[22].

In this paper, we adopt the probabilistic/dithered quantization
methods proposed in [23]-[26]. Denote the quantization opera-
tor as Q(d) for vector d. The ith entry of Q(d) is calculated as
follows [20], [26]:

Qi(d) = |d: + [0, A]] 2

where r[0, A] is a uniform random variable with the limits of
[0, A], A is the resolution of the quantized channel, and | | is the
floor operation. We can then write the dynamics of the network
with quantization at each time step k as

vy [k] = Q(v[k]) = Q(Ka Hs,[k]) (3)
sk + 1] = Q(s[k + 1]) = Q(K, H v, [k])
= Q(K H" Q(K,Hs,[K])) @)

where s[k] € R"*! and s,[k] € R"*! are the sensor values
prior to and after quantization, respectively, and v[k] € R™*!
and v, [k] are VFC values prior to and after quantization, re-
spectively. The initial quantized sensor values are s,[1] within
the quantization range [—U, U]. Define the maximum and min-
imum of quantized sensor values at time step k as max; sy, [k]



WAN ef al.: ON THE STRUCTURAL PERSPECTIVE OF COMPUTATIONAL EFFECTIVENESS FOR QUANTIZED CONSENSUS

279

and min, s, [k].

| min; (s, [1])].
As noted in [23], the above “dithered quantization™ is equiv-

alent to the following “probabilistic quantization” method:

ldi] ,
Q;(d) =
“ { [d;], with probability 1 — fdi‘]_\_—di

Here, U satisfies U > |max; (s, [1])] +

with probability 2%

(&)
where [ ] is the ceiling operator.

E. Network Dynamics With the Employment of
Additional Local Memories

Driven by the motivation to further reduce transmitted data,
we pursue the employment of additional memories at local sen-
sors. As sensor values are increasingly correlated across time,
less valuable information needs to be transmitted. We can, there-
fore, use additional memories at local sensors and VFCs to hold
data in common, and only transmit the informative value differ-
ence to reduce the volume of transmitted data. With that consid-
eration in mind, the consensus protocol with the employment of
additional local memories is summarized in the following two
steps:

Step 1 (Initiation, k = 1):

1) Sensor nodes send their quantized values of initial sensor
values s,, [1], denoted as s;[1], to their connected VFCs.

2) All VFCs compute the averages, store them in v, [1], and
send the quantized values v;[1] to the connected sensor
nodes.

3) All sensor nodes compute the averages of values sent
from VFCs, and store copies in their memories s,, [2].

Step 2 (Iteration, k > 1):

1) All sensor nodes compute the quantized difference of
local memory values stored in O(s;, [k]), denoted as
s¢[k] € R™*1, to be transmitted to the connected VFCs.

2) All VFCs calculate the averages received from the sensor
nodes and add them to the local VFC memories, denoted
as vy, [K].

3) All VFCs compute the quantized difference of memory
values stored in v, [k], and send the quantized averages
v;[k] € R™*! to the sensor nodes.

4) All sensor nodes calculate the averages, and add them to
their local memories to form sy, [k + 1].

Network dynamics using the above consensus protocol are
captured by the following mathematical equations:

(s¢[1] = Qs [1])
Vi [1] = KoHs:[1]
| veltl = Qv 1) i
sm[2] = K1 HT v;[1]
(s¢[k] = Q(sm [k]) — Q(sm[k —1]))
Vi [k] = Ko Hs; [K] + Vi [k — 1] @
vi[k] = Q(vm [k]) — Q(vim [k — 1])
\ Sm[k + 1] = K1 HY v [k] + S [K).

As shown in (7), the error terms Q(s, [k] — spm [k — 1]), in-
stead of original quantized sensor values, are transmitted. As the

information content of error is smaller than that of the original
sensor value, a smaller data volume needs to be transmitted, by
using fewer bits to code the data. We notice that other ways
of adding local memories may not always lead to convergence.
The local memories at VFCs are important to guarantee the
converging behavior.

lll. ASYMPTOTIC AND TRANSIENT PERFORMANCE OF
PROBABILISTIC QUANTIZED CONSENSUS IN
MLMG NETWORKS

In this section, we explore asymptotic and transient proper-
ties of quantized consensus in MLMG networks with limited
transmission rates. Quantization introduces nonlinearity to dis-
tributed consensus and adds to the complexity of analysis. We
here provide a brief review of the quantized consensus literature,
so as to motivate and delineate our work.

A. Literature Review

A burst of literature on quantized consensus in egalitarian
distributed networks has emerged in the past few years. In [15]
and [16], the quantization effect is coarsely modeled as an ad-
ditive noise. Using this quantization model, along with detailed
communication and coding models, the authors show that the
variance of quantization noise varnishes with time, leading to
the convergence of consensus in the mean squared sense. In
[17], both the state and the transmitted values are quantized.
Lyapunov-type analysis is carried out to prove convergence.
As the initial average is not preserved using this quantization
scheme, drifting of the converged consensus is expected. Carli
et al. studied this problem from a different angle [18]-[20].
They utilized the quantized information in a way to preserve
the initial average at each iteration [18]. However, the final con-
sensus values may show discrepancies among themselves. The
asymptotic discrepancy is either estimated using the additive
noise quantization model or bounded by using worse case sce-
narios [18], [19]. Additional coding schemes are studied in [20]
and [21] to speed up the consensus. Similarly, in [22], [27]-
[29], deterministic quantization rules are applied to the gossip
consensus algorithm to preserve the initial average at each itera-
tion and Layponov analysis is carried out to bound the expected
consensus time.

Probabilistic and dithered quantization as described in (2) and
(5) (see also [23]-[26]) were developed to remove the asymp-
totic discrepancies among agents as observed in [18]-[20]. Be-
sides the asymptotic convergence with probability 1, several
additional features of the method include.

1) The mean of the converged values is equal to the original
average.

2) The variance of the converged values can be made arbi-
trarily small.

3) Convergence rate characteristics have been characterized.

The use of probabilistic quantization in gossip consensus al-
gorithms for egalitarian networks can also be found in [30]
and [31]. All these existing works on probabilistic and dithered
quantization are concerned with pure average consensus in egal-
itarian distributed networks, which has a feature that plays an



280

|EEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 6, NO. 1, MARCH 2019

important role in the analysis: the system matrix is doubly
stochastic. Our system matrix for MLMG networks, A, is not
doubly stochastic. We here extend the analysis to MLMG struc-
tures, which violate the double stochasticity properties. Of rel-
evance, some efforts have been devoted to weighted averaging
in the absence of double stochasticity, for different quantization
mechanisms [32], [33].

B. Preliminaries

Lemma 1 ([10] ): The necessary and sufficient condition for
an MLMG network with standard dynamics (1) to reach consen-
sus is that a path between any pair of sensor nodes exists in the
MLMG network. The final consensus value can be expressed in
terms of the MLMG topology matrix H, as a weighted sum of
the initials Tll T HX[ ]

These resuifs were obtained through analyzing dynamics of
the equivalent egalitarian distributed structures captured by the
system matrix A. We show that the largest eigenvalue of A is 1,
and all other eigenvalues are real, simple, and residing in [0, 1).
The second largest eigenvalue, related to consensus time, can
also be expressed in terms of H as indicated by the following
lemma.

Lemma 2 ([10] ): Consider a regular 2LMG. The second
largest eigenvalue, Ao, of the system matrix A can be repre-
sented as the maximum of } S (Hy)?, where r is the regular
degree of VFCs, and y is subject to the following constraints:
DY Kij'ys =0;and 2) 350, Kijly? =0.

Lemma 2 provides an algebraic approach to calculating the
second largest eigenvalue directly from the MLMG topology
matrix H.

C. Asymptotic Properties

Using the probabilistic quantization method (5), we show
in this section that probabilistic quantized consensus can be
reached in MLMG networks asymptotically with probability
1. We note that the final consensus value may be different in
deferent sample runs. In the next theorem, we calculate the
expectation of the final consensus value.

Theorem 1: Consider the probabilistic quantized consensus
dynamics shown in (3) and (4). If there exists a path between any
pair of sensor nodes, consensus in the presence of quantization
can be reached with probability 1. More specifically, there exists
a constant ¢ for each sample run such that

P(]_im S[k]:clnxl) =], (8)
k—oo

Proof: We construct a Markov chain to track the quan-
tized values of the sensor states, denoted as s, [k]. The states
of the finite-state Markov chain belong to the combinations
of all possible quantized values between the minimum and
maximum of the initials [-U, U]. The transition probability
P(sy[k + 1]|s,[k]) is determined by the dynamics shown in (3)
and (4). To prove that consensus at ¢1,; can be reached with
probability 1, we first show that ¢1,,,; are recurrent states, and
then show that all other states are transient states, which can

reach at least one of the recurrent states with a positive proba-
bility.

It is straightforward to show that c1,.; are recurrent states
for each particular constant c¢. As Ko H and K, HT are both
stochastic matrices with row sums being 1, when s, [k] reach
clp 1, we will have sy [k + 1] = s, [k].

Now let us show that all states that are not in the form of
cl, .1 are transient states, which can reach at least one of the
recurrent states with a positive probability. It suffices to show
that there exists a recurrent state such that the Markov chain
starting from any s,[0] # c1,,; can reach it with a positive
probablllty We choose | ¢| 1,1 to be this particular state, where
¢= Wllmesq[ ]. To show this, we first prove that
there exists a positive probability that

Clnxl“oo
= ||Q[K1HT Q(K2Hsy[k])] — é1lnx1]lo
< ||Sq[k] _élnxlnm ®)

|Isq[k + 1] — &

for every k until all elements of s[k] reach the neighboring quan-
tized values of ¢, | ¢, or [¢]. We then show that at the next time
instance, |¢| 1, .1 can be reached with some positive probabil-
ity. The second step is straightforward due to the property of
probabilistic quantization.

To prove (9), we define a specific path in the Markov chain
to reach the neighboring quantized values of ¢. In particular, in
the two probabilistic quantization operations “Q()” in (9), we
assign each entry with a quantized value nearest to ¢ if the entry
is above [¢] or below |¢] (which is possible as with a positive
probability). If an entry s,, [k] already reaches |¢| or [¢] and all
possible choices of s, [k + 1] are in the range of [| ¢, [¢]], we
do not update it.

If an entry s;[k] is outside the range of [|¢], [¢]], the op-
erations of left multiplying Ko H and K; HT (with row sums
equaling to 1) and the operation of choosing the quantized value
closest to ¢ will shorten the maximum distance of all entries to
¢, if ¢ can be reached without quantization. The infinity norm as
shown in (9) is, hence, reduced for each iteration. ey

The final quantized consensus value c can be different for each
sample run. We show in the next theorem that the expectation
of the final quantized consensus value ¢ for all sample runs is
a weighted sum of the initial values, and is equal to the final
consensus value without quantization, ¢.

Theorem 2: Consider the probabilistic quantized consensus
shown in (3) and (4). If there exists a path between any pair of
sensor nodes, the expectation of the final quantized consensus
value equals ¢ for the initial condition s, [1].

Proof: We rewrite the dithered quantized dynamics (3) and
(4) as

vglk] = Q(KoHsy[k]) = KoHsy[k] + u; [K] (10)

sqlk +1] = Q(K1 H" v, [K])
= I{IHTV,; [k] + llg[k]
= K\H" K>y Hsy[k] + Ky H  wy [k] +ug[k]  (11)
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where the vectors u; [k] € R™ and uy[k] € R" are additive
noises. Taking expectation of the above equation, we obtain

E(sy[k+1]) = K1 H KyHE(s,[k])

+ K HTE(w k) + E(w[k])).  (12)
We note that the theorem is proved if E(u;[k]) =0 and
E(ug[k]) = 0, as the recursion of E(s,[k]) is precisely the
same as that of x[k] without quantization for the initial condi-
tion x[1] = s[1] = s,[1]. In order to show that E(u [k]) =0
and E(us[k]) = 0, we only need to show that the expectation
of each entry in the additive noise vectors is 0. This can be done
in a straightforward way using u, [k] as an example. According
to the probabilistic quantization rules specified in (5)

_ z1i — |2a]
E(uiik]) = ([z14] — 211) A

+(214] —Zn)# =0 (13)

where zy; is the ith entry of Ky Hs,[k]. @

D. Transient Properties

In this section, we study the consensus time of the quantized
consensus algorithm in MLMG networks. In the first result, we
bound the difference between the expected transient dynamics
and the expected final consensus value using the second largest
eigenvalue. The second result is concerned with bonding the
expected range of quantized transient dynamics.

Theorem 3: Consider the probabilistic quantized consensus
[shown in (3) and (4)]. If there exists a path between any pair of
sensor nodes, the following bounds for the transient expectation
of the quantized sensor values hold for k& > 2

1K (E(sg[K]) — &1)]| < 1K ® (E(sy[1)) — év)l|
(14)

L . g
e )" A IB(Gy 1) - 1l (19

Smin

1B (sq[k]) — &1 < (

where the maximal and minimal degrees of sensor nodes are
d and d

Smax Smin *

Proof: Equation (12) leads to
E(sy[k]) = K1 HT Ky HE(s4[k — 1]). (16)
Multiplying K 3 to the left of both sides of (16), we obtain
K, *E(s,[k]) = K| " AKT K, B (sl — 1))
= K HT Ky HKF (K T E(s,[k — 1]). (17)

% 1 L
The new system matrix A = K HT Ko HK? is symmetric,
and shares a common set of eigenvalues with Ky HT K5 H [10].

Now let us calculate |I(K1_%(E{Sq [k]) — ¢1)|| as follows:

1K, * (B(s, [K]) — 1)
— |A(K; * E(sy [k — 1) - K *é1)|
— ||(A — A=)(K; * E(sylk— 1)) — K; Fé))|

A A N |
< JIA = A%|FH K T (B(sg[1]) —en)ll. (18
The matrix A — A® is symmetric, and as such ||121 = ;1”“0||
equals the largest eigenvalue of A — A* and A — A%, It also
equals Ay of K;iHT KyH using eigenvalue decomposition.
L
Clearly, (14) is satisfied. Note that K; * is a diagonal matrix
of the square roots of degrees for all sensors, we have

1K ¥ (B (sg[k]) — &1)]| < 2

fmae |[E(Sq[R]) —€1)|| - (19)

1K ® (B(sy[K]) — é1)]] > dB, |E(s,[K]) —é1)]l.  (20)

Equations (14)—(20) lead to (15) with simple algebra. |

Equation (15) naturally leads to the following corollary on the
expected consensus time (for the norm-2 difference between the
expected sensor values and the expected final consensus value to
fall within § of the initials). Of note, we do not limit ourselves to
a small 4 here, and as such the result holds for any quantization
resolution of interest.

Corollary 1: The expected consensus time for the proba-
bilistic quantized consensus [shown in (3) and (4)] is upper
bounded by log, , (3(7=)).

Define the range of quantized sensor values as §;[k]. Clearly,
max; S, [k] < max; sy, [k — 1], min; sq, [k] > min; sg, [k — 1],
and 5;[k] < §;[k — 1] by a convex hull type of argument [23].
The expected range of quantized sensor values, denoted as
E(53[k]), can be bounded as shown in the following theorem.

Theorem 4: Consider the probabilistic quantized consensus
[shown in (3) and (4)]. If there exists a path between any pair
of sensor nodes, the following bounds for the expected range of
quantized sensor values hold for k > 2

Bislk) <2 (2= ) o s ) - )

Smin

dsmnx é-]‘_kg_z T
ES (K HY [V + Vm)A. (21)

d 1—As

Smin

As k — oo, we have

limy o E (7 [K]) < (jsm )” (IIKlHTIH\_/F;; VmA

Smin

(22)
Proof:

E(57lK]) = E(maxs, [k - mins, [K).  (23)
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Now consider E(max; s,, [k]). According to the ordered statis-
tics for a sequence of random variables [23], [34], we have

B (macs K], [k — 1]) < max (B(sy, [Flsg, [k — 1))

+ E(max(sy, [k] — E(sy, [k]))[sg: [k —1])- (24)
According to (11), we have
max B (sq, [K]|sy, [k — 1)
= m?x(KlﬂT KoHsy [k — 1)) (25)

E(max(sq, [k] — E(sq, [K]))sq [k — 1])
= E(m?x(KlﬂrKgqu k—1]+ K H wlk—-1]
t+ug[k — 1] — Ky HT Kb HE (s [k — 1])) |84 [k — 1))

= E(max(K; H' w [k — 1]+ up [k — 1])|s, [k — 1]).
(26)

Combining 24-26, and taking exception with respect to
sq[k — 1], we obtain

E(maxs,, [k]) < E(max(As,[k —1])) (27)
+ E(max(Ky H wy [k — 1] + ua [k — 1))

Similarly, we have the following results for (min; s,, [k]):

E(mins,, [k]) > E(min(As,[k —1])) (28)
— B(max(K; H" wi [k — 1] + uy[k — 1])).
Equations (27) and (28) lead to
E(5[k]) < E(max(Asy[k — 1]) — min(As, [k —1]))

+ 2E(m?.x(K1HTu1 [k —1] 4+ us [k — 1])).

(29)

Recursively applying (29) through expressing s, [k — 1] in terms
of sg[k — 2], ..., s4[1], we obtain

E(S71K]) < max(4" s, [1]) - min(4* s, [1]

k-1
+2)  B(max(A" (K H wy [i] +upli])))

=1

B NF ’
<2(g=) a s - a1l

& min

k-1 ;—
+2 ; (j—:) ALB ()| K HE wy 1] + wali]|]).

(30)

Now consider to bound the second part of (30)

E(|| K H uy [i] + ueld]|])

< [[K HT || E(llw ) + E(l[dI). - 3D

According to Jensen’s inequality and (13), we have

1
T

E(lluz[d]l]) < | Y Eluz;[))?
J

= ZJ: ((fzzﬂ — 295)’ % + (l225] — 225)°
=2y _z”) g( N)E _VYPA

A & T2

4 2

where zy; is the jth entry of Ky H” v,[k]. The calculation of
E(||ay[d]||) is similar. In all, we can bound E(5;[k]) as

dsmu !l- k-1 A
oo ) 2411 1) - 1)

S min

E(s;lH)) < 2 (

do \ T 1—2E2 "
+ (e (1K HT [|Vn+ vm)A. (33)
dyz 1—2s
The rest of the results follow naturally. |
A similar argument leads to the following corollary. The proof
is omitted due to the limited space.
Corollary 2: Consider the probabilistic quantized consensus
[shown in (3) and (4)]. If there exists a path between any pair of
sensor nodes, the following bound for the expected norm hold:

s s X s
Blsy i~ etl) < (=) 3411 - 1)
F1_ ak-2
(o) A ORI A,
Y 2

[V. EXPLICIT STRUCTURAL INTERPRETATION ON THE
NUMBER OF TRANSMISSIONS TO REACH CONSENSUS

In this section, we take a structural approach to exploring
advantages of the MLMG structures over traditional egalitarian
distributed structures. For broad classes of MLMG structures,
we provide explicit mathematical expressions for the number of
transmissions needed to reach consensus based on simple char-
acteristics of MLMG structures (such as the regular degrees and
numbers of sensors and VFCs). We also calculate the reduced
number of transmissions compared to their equivalent egalitar-
ian distributed networks. Here we denote N () and #( ) as the
number of transmission per iteration and the expected consen-
sus time bound of for the structure in ( ). Clearly, (G) = t(G)
due to the equivalence of dynamics between this two structures,
which can be seen from (1) and (12).



WAN ef al.: ON THE STRUCTURAL PERSPECTIVE OF COMPUTATIONAL EFFECTIVENESS FOR QUANTIZED CONSENSUS

283

—Vary g, fxme3
=== Vary m, fix p=3

R EESEEES

Fig. 2.  MLMG structure with a complete graph among the group lead-
ers. (a) FC version. (b) VFC version. (c) Number of reduced transmis-
sions per iteration grows quadratically with the network size.

A. Complete Graph Among Group Leaders

We consider a broad class of MLMG structures with the com-
munications among group leaders forming a complete graph.
This structure can be useful when the VFCs are within a short
communication range, and hence, are naturally connected in a
complete graph fashion, or when the number of VFCs is small,
and hence, establishing a complete topology among the VFCs is
not transmission-expensive. In particular, the network is com-
posed of m groups, each with a group leader (FC or VFC).
In the FC version, each group has p sensor nodes, including
the leader sensor node, which can merge to the FC. Each FC
communicates with all other FCs in the network. In the equiva-
lent VFC version, each VFC communicates to all sensor nodes
within its group and all leader sensor nodes in the other groups.
Nonleader sensor nodes only communicate with the VFC within
their groups. No other communication exists. An example with
m =4 and p = 3 is shown in Fig. 2(a) and (c). We analyze
the number of transmissions that can be saved for this class of
MLMG structures. Before presenting the theorem, we first re-
call from [10] a lemma, which explicitly expresses A, in terms
of simple structural characteristics of H.

Lemma 3 ([10] ): Consider the MLMG structure G .omp
(m > 1 and p > 1) with a complete graph among the FCs de-
scribed above. The second largest eigenvalue Ay for G comp is
i .
p+m-1°

Lemma 3 relates simple structural characteristics ( m and
p) to Az, and, hence, the consensus time #(Geomp). For in-
stance, using the expected consensus time expression shown in

Theorem 3 and Corollary 1, t(Geomp) = logp_%(é(j—::‘:-)% ).
We note that a similar consensus time measure can be obtained
based on the transient bound expressed in Theorem 4. The fol-
lowing theorem expresses the number of transmissions to reach
consensus in terms of #(Geomp). Which is a function of simple
structural characteristics.

Theorem 5: Consider the probabilistic quantized consen-
sus [shown in (3) and (4)] defined on the MLMG structure
Geomp and its equivalent distributed egalitarian structure Geomp
of the same dynamics, defined on the system matrix A. The
number of transmissions to reach consensus per iteration in
the Geomp structure is N (Geomp) = 2(p + m — 1)m, and that
in the gcump structure is N(gCDTp) == [m(p‘m — 1) + ('p —
1)m(p+ m — 2)]. N(Geomp) < N(Geomp), Whenp > 2 orm >
2. In addition, the reduced number of transmissions per iteration
grows in an order of O(p?) with the increase of p, and in an
order of O(m?) with the increase of m.

Proof: We first calculate the number of transmissions per
iteration in each topology. In the Geomp Structure, as each VFC
connects to p sensor nodes within its group and one leader
node in each of the other m — 1 groups, p + m — 1 connections
per VFC are expected. Considering the forward and backward
transmissions and the consensus time according to Lemma 3, we
obtain N (Geomp) = 2(p + m — 1)mt(Geomp ). In the Geomp struc-
ture, as each of the m leader nodes through the VFCs connects
to all other prn — 1 sensor nodes, a total of p(pm — 1) transmis-
sions are needed for these leader nodes. In addition, as each of
the p — 1 sensor nodes in each of the m groups communicates
to p — 1 nodes in its group and all leader nodes in the other
m — 1 groups, a total of (p — 1)m(p + m — 2) transmissions
are needed for these sensor nodes. As the consensus time for
both structures are the same according to (1), Lemma 3 leads to
N (Geomp) = (m(pm — 1) + (p — 1)m(p +m — 2))t(Geomp)-

Now let us compare N (Geomp) and N (Geomp) per iteration.
Simple algebra leads to N (Geomp) — N (Geomp) = m(pm — p —
m—1)+ (p+m —2)(p — 2)m per iteration. Clearly, when
p>2andm > 2orp = 2 and m > 2, both terms in the above
expression are larger than 0. Furthermore, simple observation
suggests that the difference in N (G comp) and N (Geomp) grows
in the order of O(p?) and O(m?). [ ]

The above theorem suggests the advantage of the MLMG
structures in reducing the number of transmissions for large-
scale networks. For the example shown in Fig. 2(a), we
plot N (G comp) — N (Geomp) per iteration versus p and m [see
Fig. 2(b)]. The total number of iterations to remach consensus
is N(gccmp)t{gcomp) for structure gcnmp and N(g comp)t(g comp)
for structure (;’comp. As the consensus time also increases with
the network size, the transmission savings can be significant
for large-scale networks. One further note is that we include
the transmissions between the leader nodes and the VFCs in
our calculation, which, if ignored in a realistic setting, further
reduces the number of transmissions.

The theorem also suggests that the total transmission load can
be expressed in terms of simple MLMG structure characteristics
(such as the degrees and numbers of sensors and VFCs). Such
explicit structural results enable an optimal design of MLMG
structures (with a complexity of O(1)) to meet performance re-
quirements. No complicated numerical optimization is needed,
thus, making the network design procedures scalable to large-
scale networks. We note that here we characterize consensus
properties directly using the MLMG topology matrix H, in-
stead of the system matrix A on which traditional egalitarian
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Fig. 3. MLMG structure with a centralized graph among the leaders.
(a) FC version. (b) VFC version. (c) Number of reduced transmissions
per iteration grows quadratically with the network size.

network control has been focused. The MLMG topology matrix
H exposes hidden structures that are not observable in A, and
provides us with new insightful structural perspectives to the
analysis of consensus performance.

B. Centralized Graph Among the Leaders

Now consider a broad class of MLMG structures with a cen-
tralized communication graph among the group leaders. In par-
ticular, the network is composed of m groups, each with an
FC. Each group has p sensor nodes, including the leader sen-
sor node. The leader sensor node in one and only one group
communicates with all VFCs in the network. All other sensor
nodes in each group only communicate with the VFC within
the group. No other communication exists. An example with
m = 4 and p = 3 is shown in Fig. 3(a) and (c). FC; of group 1
communicates with all other group leaders.

Lemma4 ([10]): Consider the MLMG structure G, (m > 2
and p > 1) with a centralized graph among the FCs described
above. The second largest eigenvalue As for Geep is ;%.

According to Lemma 4, we can express consensus time,
t(Geen) in terms of a simple structural characteristic p.
For instance, using the expected consensus time expression
shown in Theorem 3 and Corollary 1, we have #(Geen) =
IOg,,f—. (6(:;::3)%). A similar result can be obtained based on
the consensus time measure expressed in Theorem 4.

Theorem 6: Consider the probabilistic quantized consen-
sus [shown in (3) and (4)] defined on the MLMG structure
Geen and its equivalent distributed egalitarian structure Geen- The
number of transmissions to reach consensus per iteration in
the Geeq structure is N (Geen) = 2(pm + m — 1), and that in the
Geen structure is N(Geen) =pm — 1+ (p— 1)? + p*(m —1).
N(Geen) < N(Geen)» when p > 2 and m > 2. In addition, the
reduced number of transmissions per iteration grows in an order
of O(p?) with the increase of p, and in an order of O(m) with
the increase of m.

The proof is very similar to the proof of Theorem 5, and
thus, the details are omitted. The total number of iterations
to reach consensus is N (Geen)t(Geen) for structure Gee, and
N(g cen)t(gcen) for structure gcerl-

V. Uske oF ADDITIONAL LocAL MEMORIES TO FURTHER
REDUCE TRANSMISSION LOAD

In this section, we show asymptotic and transient properties
of consensus in MLMG networks of digitized channels, with the
employment of additional memories at both sensor nodes and
VECs. With growing correlations among sensor values, we can
reduce the transmission load by only transmitting differences
of sensor values instead of true values. The transmission load
that can be further reduced by employing additional memories
is also analyzed.

A. Asymptotic and Transient Properties

Theorem 7: Consider the probabilistic quantized consensus
dynamics in MLMG networks equipped with memory (6) and
(7). If there exists a path between any pair of sensor nodes,
consensus can be reached with probability 1. The expectation of
the final consensus value equals ¢ for initial condition s, [1] =
sq[1]. The following bounds for the transient expectation of the
quantized sensor values hold

1K F (B(Qsn[K]) — 1)

<K EQE ) el 69
1B(Qsm ) ~ 1)
< (=) BiEQE. ) -al. Go

Proof: The comparison between Theorem 7 and
Theorems 1 and 2 suggests that it is sufficient to prove that

Sm [k] = s[k] 37
Vi [k] = V(K] (38)
for every k. We use induction for the proof.
When k = 1, we have
Vi [1] = Ko HQ(si [1]) = Ko Hsy[1] = v[1] (39)
sm (2] = K1 H" Qv [1]) = K1 HT Q(v[1]) =s[2].  (40)

Suppose for a k, we have v, [k] = v[k] and s, [k+ 1] =
s[k + 1]. Now let us show that the relationship also holds for
k + 1. To do that, we notice
Vm [k + 1] = KoHs [k + 1] + Vi [R]
= KQH(Q(Sm [k + 1]) - Q(Sm [k])) + Vi [k]

= KyHO(Sm [k + 1]) = Ks HO(s[k +1]) = v[k + 1]
(41)
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and similarly
smlk+2] =K H vi[k+ 1] + s [k +1]
= K1 H" (Q(vm [k +1]) — Q(Viu [k]) + Sm [k +1]

= K \HT Q(vin [k 4+ 1]) = K1 HT Q(v[k 4+ 1]) = s[k + 2].
(42)

]
Theorem 7 naturally leads to the following corollary on the
transient performance of s [k].

Corollary 3: Consider the probabilistic quantized consensus
dynamics in MLMG networks equipped with memory (6) and
(7). If there exists a path between any pair of sensor nodes,
consensus can be reached with probability 1. The expectation of
the final consensus value equals ¢ for initial condition s, [1] =
sq[1]. The following bounds for the quantized sensor values sent
from sensor nodes hold, where k > 2.

IK BRI <MK EGRDI @3)
1B < (G2 s 2iEsiDl @

Bt <2 (3= ) a4 2Bzl
+(32=) KBTIV v e

E(lsdil) < (3= 42 B (sl

T

(o) LTI VS
where  5,[2] = (2] — swlll,  [E(s ) = |I(I - A)
(sy01] 1), _and  E(||sc2II) < |14~ Lilisy[1] - 1] +

(s HT ||y /) A
> :
Proof: According to (7) and (37), we have

si[k] = Q(sm [K]) — Q(sm [k —1])) = sq[k] — s4[k — 1]
= (K HT Ko H — Isi[k —1].

The rest of the proof is similar to the proofs of Theorems 3 and
4 and, hence, is omitted here. &

B. Transmission Load Reduction

The layered structure reduces the number of transmissions
to reach consensus, and hence, reduces the transmission load
to reach consensus. The use of extra memory introduced in
Section V-A can further reduce the transmission load, by reduc-
ing the number of bits transmitted at each iteration. Different
coding schemes, captured by B(x), can be used. B(x) is a map-
ping from a vector with each entry in [—U, U] to the number of
bits needed to code entries in the vector. Without loss of gener-
ality, we here use B(x) = [log, (ImexCxaltiminxi)| 4 1y7,

With the knowledge that max(v,[k]) < max(s,[k]) and
min(v,[k]) > min(s,[k]), the expected total number of bits

transmitted for an MLMG network G without memory,
E(TB(G)), and the egalitarian network G, E(7B(G)), can be
bounded as follows using the convexity augment as ¢(G) = t(G)

t(G)
E(TB(G)) =N(G)E | > _ B(sq[k])
k=1
> N(G) {mgg ('maxf(sq‘- 1)1+ i 1) lﬂ
+N(G)(t(G) - 1) [1% (% % 1)] -
) (19
E(TB(G)) =N(G)E | > _ B(sq[K])
k=1
> N(G) {mgg ('mﬂf(sqi 1)1+ Imin o 1) 1)]
+ N(G)(#(G) — 1) [logz ('Aﬂ + 1)] ; (48)

In order to find the lower bound on the saving of transmission
load using the equipment of memory, let us find an upper bound
on the total transmission load for an MLMG network equipped
with memory. The transmission load at each time k is considered
the largest number of bits to the information transmitted at
k. The expected total number of bits transmitted for network
G equipped with memory, denoted as E(7 BM(G)), can be
bounded as

t(G)

E(TBM(G)) = N(Q)E | ) _ max (B(s:[k]), B(v:[k]))
k=1

< N(G) [10g2 (|ma.x,;(5z,- [1])|;— | min; (s¢, [1])] . 1)1

() 2 max(||s; [K]|], ||v: [K]|])
+N(G)E B , y
é { 82 ( A )]

(49)

The lower bound on the saving of transmission load using the
equipment of memory compared to the MLMG and the original
egalitarian structures can be calculated through subtracting the
lower bounds in (48) and (47) with the upper bounds (49),
respectively.

VI]. SIMULATION STUDIES

In this section, we illustrate results in this paper through
simulation studies. Consider the MLMG structure shown in
Fig. 2 with four VFCs and three sensor nodes in each group,
thatis, m = 4, p = 3. The FCs form a complete graph [as shown
in Fig. 2(a)]. The MLMG topology matrix is described by

00 0 0 0 0

I
I R S
e
—

1
1
1
1

== = R = R
o o o =

1 1 0 0 0
0 0 1 I 0
0 0 0 0 1

= o 9
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Fig. 4. (a) Comparison of consensus dynamics for one sample run 5 _—ﬁt‘ﬂ?lklgm m £ 3("1':]1]10 s
between the cases with and without memories. The dashed lines repre- =l P % “l PE
sent sensor values without memory, and the solid lines represent sensor § - ‘\ g .
values with memory. (b) Trajectories of sensor values with quantization E \ é = ‘.
for node 5 are denoted with thin lines of different colors representing Bl 2 : \
different sample runs. The expected trajectory of sensor node 5 (dashed 5 “ 8. \\
blue line) matches the trajectory without quantization (red solid line). 3 - g o
W oy S e W ogl == = == =7 = = o
* e & TS FLT
5 g ; (O] (d)
Let the initial value be randomly generated according to a
Gaussian random distribution with mean 100 and variance 10. Fig. 5. (a) Transient performance of the case without additional mem-

The final consensus value is ¢ = 101.7439 according to the
simulation, which matches the value calculated according to

lllTlllmeX[l] of Lemma 1. Furthermore, structural

results such as that in Lemma 3 directly leads to Ay = %
and the upper bound of expected consensus time (Geomp) =
log1 (). By Theorem 5, N(Geomp) = 2(p +m — 1)m = 48,
and N (Geomp) = [m(pm — 1) + (p — 1)m(p +m — 2)] = 84.

Using the probabilistic quantization algorithm (3) and (4), the
solid lines in Fig. 4(a) shows the trajectory of all sensor nodes in
one sample run, s[k]. A 10-b quantizer is used to code data for the
channel transmissions. Cearly, consensus is reached according
to Theorem 1. Note that each sample run may not have the same
dynamics, and the final consensus value may be different from
¢. This is also clear from Fig. 4(b), which shows 1000 sample
runs for one sensor node (node 5 in particular). Clearly, in spite
of the variability of each sample run, the expected trajectory
matches precisely the trajectory without quantization (shown in
dashed blue line). The expected final consensus value for each
of the sensor nodes is also ¢ according to Theorem 2.

The employment of memory (6) and (7) does not change sen-
sor values, as s, [k] = s[k] according to Theorem 7. This equiv-
alence can be seen clearly from the dashed lines in Fig. 4(a),
which overlap with the solid lines for the dynamics without
memories.

Now we study the transient bounds. We show the bounds of
E(sq[k]) — §1 in Fig. 5(a), which verifies Theorems 3 and 7.
The plot for E(Q(s, [k])) is the same and, hence, is omitted.
Fig. 5(b) shows the expected transient bounds of the transmit-
ted sensor values, E(s;[k]), according to Corollary 3. Fig. 5(c)
and (d) show the bounds for the expected ranges of quantized
sensor values without memory E(S;[k]) (see Theorem 4) and
the quantized sensor values to send in the presence of memory
E(s¢[k]) (see Corollary 3).

Here, we compare the total transmission load needed to
reach consensus for three schemes. Purely distributed egali-
tarian structure G, MLMG structure G without memory, and
MLMG structure G with memory. Assume that § = 0.001 and,
hence, ¢(G) = 10. The transmission loads and their bounds are

ories: upper bound of the scaled norm difference between expected
sensor values and the final consensus value. (b) Transient performance
of the case with additional memories: Upper bound of scaled expected
sensor values to be transmitted. (c) Upper bound of the expected range of
sensor values without memory (d) Upper bound of the expected range
of sensor values to be transmitted with the employment of additional
memories.

[ Fgalitarian strocture
# Lower bound using egalitarian structure
(—MLMG
— Lower bound using MLMG
==MLMG with momery
|-~ Upper bound uelng MLMG with momery
w

[—Compared to MLMG
— Lower bound compared to MLMG

g

——Compared to egalitarian
|-+~ Lower bound d e

Reduced Transmission Load
F B E8EE

Total Transmission Load
IEEEERERE

Fig. 6. (a) Total transmission loads and their bounds for three schemes.
(b) Reduced total transmission loads and their lower bounds through
using MLMG and the employment of memories.

shown in Fig. 6(a). Through employing local memories, the total
transmission load converges with growing correlations among
sensor values. Fig. 6(b) shows the lower bounds on the transmis-
sion loads that can be saved by using the use of local memories,
compared to the MLMG and the equivalent egalitarian struc-
tures.

VIl. CoNcLUDING REMARKS AND FUTURE WORK

Using a structural approach, we showed that layered struc-
tures with the installation of additional memories can signif-
icantly reduce data transmission load, making this structure
promising for UAV networks. We proved the asymptotic and
transient properties of the memory-based quantized consensus,
and linked these properties to simple graphical characteristics of
the MLMG structures. In the future work, we will introduce mo-
bility to the framework and study distributed computing tasks
for UAV networks under random topology variations.
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