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Abstract— Random mobility models (RMMs) capture the
statistical movement characteristics of mobile agents, and have
been widely used for the evaluation and design of mobile wire-
less networks. In many RMMs, the movement characteristics
are captured as stochastic processes constructed using two types
of independent random variables. The first type describes the
movement characteristics for each maneuver, and the second
type describes how often the maneuvers are switched. In this
paper, we develop a generic method to estimate RMMs that are
composed of these two types of random variables. In particular,
we formulate the dynamics of movement characteristics gener-
ated by the two types of random variables as a special Jump
Markov system, and develop an estimation method based on
the Expectation-Maximization principle.

I. INTRODUCTION

Random mobility models (RMMs) capture the movement
characteristics of mobile agents, and have been widely used
to evaluate the performance of mobile wireless networks
[1]. Many RMMs have been developed, ranging from the
basic ones (e.g., Random Direction and Random Walk)
to more sophisticated ones designed for specific vehicle
types (e.g., ground vehicles and airborne vehicles [2]) and
vehicle movement patterns with specific constraints (e.g.,
[3]). Additional examples of RMMs can be found in several
survey papers [1], [4].

Despite the wide variability, many RMMs capture the
movement characteristics as stochastic processes constructed
using two types of independent random variables. Type 1
describes the movement characteristics for each maneuver.
Type 2 describes how often the maneuvers are switched.
For example, paper [2] developed the smooth-turn mobility
(ST) RMM to capture the smooth movement of fixed-
wing unmanned aerial vehicles (UAVs). The ST RMM is
composed of a sequence of switching turning maneuvers, in
which the turning radius in each maneuver is captured as a
type 1 random variable, and the duration of each maneuver
is captured as a type 2 random variable.

In order for the RMMs to generate realistic movement
characteristics, parameters in the two types of random vari-
ables need to be properly specified using real trajectory
data. Most of the existing estimation methods (see, e.g.,
[5], [6]) were developed only for specific RMMs and lack
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the flexibility to be applied to other RMMs. In most of
these studies, the movement characteristics are captured by
only one random variable and hence the parameters for
the random variable can be simply estimated through a
direct fitting of the associated distribution with the observed
trajectory data statistics. However, for the RMMs that we
consider, estimating the parameters in one type by simply
fitting the distribution with the trajectory data would result
in inaccurate estimates because the trajectory is determined
by the two types of random variables jointly.

To the best of our knowledge, only a few studies have
been devoted to estimating parameters in the two types of
random variables using trajectory data. Paper [7] developed a
heuristic method to estimate both types of random variables
in a 2-Dimensional (2D) ST RMM. Specifically, the turning
radius and switching points are first estimated from trajectory
data by heuristically balancing among multiple criteria (e.g.,
degree of correlation and estimation error statistics). Then,
the parameters in each type of random variables are estimated
using the corresponding statistics. Paper [8] adopted a similar
approach to estimate the random variable that determines
the travel pause time of cell phone users. One drawback of
this approach is that parameters are estimated based on one
possible (heuristic) separation of the trajectory into maneuver
sessions out of a large number of possibilities. Large errors
can arise when the noise level in the trajectory data is high.

This study is focused on estimating parameters in the two
types of random variables using trajectory data. In contrast to
[7], [8] which estimate the parameters in two types of random
variables separately for specific movement characteristics
of specific RMMs, the originality of our work is two-fold.
First, we estimate parameters simultaneously by considering
all possible separations of trajectory data into maneuver
sessions. In other words, our method avoids the drawback
of the methods in [7], [8], and provides more reliable
and accurate estimates. Second, our estimation method is
general in that it is not restricted to a specific movement
characteristics of a specific RMM.

We show that the parameter estimation problem falls into
the category of estimating a Jump Markov Linear System
(JMLS). The latter is NP-hard. We adopt the Expectation-
Maximization (EM) algorithm to estimate the parameters.
The algorithm is an iterative procedure, which generates
maximum likelihood parameter estimates. It has been widely
used in estimating JMLS (see, for example, [9], [10]). How-
ever, the existing work on the estimation of the JMLS (e.g.,
[11], [12]) focuses on the direct estimation of states, model
coefficients, or transition matrix of the modulating Markov
chain. In our study, the model coefficients and transition
matrix are functions of the parameters that describe the two
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types of random variables. We apply the EM algorithm to
estimate these parameters.

II. PROBLEM FORMULATION

In this section, we formulate the parameter estimation
problem as a special JMLS estimation problem. We consider
a general modeling framework:

xt=A(zt, rt)xt-1 + F (zt, rt)ut +H(zt, rt),

yt=C(zt, rt)xt +D(zt, rt)wt +G(zt, rt)ut,
(1)

where xt is the system state, yt is the measurement of xt,
and rt ∈ {s0, s1} is a discrete Markov chain of two states.

Zt=
{
Zt-1, if rt=s0,
Ẑt, if rt=s1.

(2)

where Ẑt is a random variable with the pdf f(Ẑt = ẑt)
denoted as f(ẑt; θ1) with parameter θ1. The transition matrix
is given as follows:

ps1,s1(t)=P (rt=s1|rt-1=s1)=g1(θ2), (3)
ps0,s1(t)=P (rt=s1|rt-1=s0)=g0(θ2), (4)

where θ2 is a parameter, and g0 and g1 are functions of
θ2. θ1 and θ2 both can be vectors. wt is zero-mean white
Gaussian noise with known variance Σw and we further
assume that D(zt, rt)ΣwD(zt, rt)

′ > 0. ut is a known
deterministic input. The matrices A,H,C,D, F,G are called
model coefficients in this study and are all known functions
of zt and rt. Furthermore, we assume that A(·, s1) is a zero
matrix to guarantee that the movement characteristics before
and after a switch are independent.

The focus of this study is to estimate the parameters
θ=[θ1, θ2]′. θ1 determines the type 1 random variable for
the movement characteristics of each maneuver, and θ2
determines the type 2 random variable for the maneuver
switching behavior.

Estimating parameters of the system described by (1)-(4)
is related to estimating a JMLS. In the literature, a significant
amount of work has been focused on estimating the latter.
The mostly used JMLS is of the following form:

xt=A(rt)xt-1 +B(rt)vt + F (rt)ut,

yt=C(rt)xt +D(rt)wt +G(rt)ut,
(5)

where vt is a zero-mean white Gaussian noise, rt ∈
{1, 2, . . . U} is the state of a discrete Markov chain with
the transition matrix Pr. One important difference between
the two systems is as follows. The model coefficients and
transition matrix (both of which are usually called model
parameters in the literature) in (5) are functions of rt and
their values are typically in finite sets. In contrast, the model
coefficients and transition matrix in (1) are functions of
rt and zt, which correspond to the two types of random
variables. Another difference is that we introduce a term
H(zt, rt) in (1) to create a switch to the movement charac-
teristic that is independent from previous ones (i.e., x1:t-1).

Estimating a JMLS can be NP-hard as the number of
possible realizations of rt grows exponentially with the size

of states. While most of the existing estimation studies focus
on estimating the states (i.e., xt, rt), model coefficients (i.e.,
matrices A(rt), B(rt), C(rt), D(rt), F (rt), G(rt)) and tran-
sition matrix (i.e., Prt ), this study focuses on estimating the
parameter θ, which determines the states, model coefficients,
and transition matrix in (1).

III. ESTIMATION METHODOLOGY

In this section, we present the methodology to generate a
maximum likelihood estimate of the parameter θ.

Let Y =[Y 1, Y 2, . . . , Y N ] be the set of N mutually inde-
pendent measurement experiments. For each s ∈ {1, ..., N},
Y s=[ys0, y

s
1 . . . , y

s
Ls
, ysLs

]′ is composed of Ls + 1 measure-
ments of yt, where t=0, ..., Ls. R=[R1, R2, . . . , RN ] is the
set of actual Markov chain states corresponding to Y ,
where Rs=[rs0, r

s
1 . . . , r

s
Ls
, rsLs

]′. In this study, we assume
that rs0=s1, s=1, ..., N .

The maximum likelihood estimate of θ is given by

argθ maxP (θ|Y ). (6)

where

P (θ|Y )=
P (Y , θ)

P (Y )
=
P (Y |θ)P (θ)

P (Y )
. (7)

Directly calculating P (Y |θ) is difficult as the
computations of high-dimensional integrals are not always
tractable analytically. In the following, we apply the EM
to estimate θ. The main idea of the EM is to treat Y as
incomplete data and introduce a latent variable R (i.e.,
the Markov chain states) for which the joint likelihood
P (Y ,R|θ) is available and easier to evaluate. The EM
solves for θ that maximizes the expected log-likelihood
of the complete data. More specifically, the algorithm
estimates θ using two iterative steps: E-step and M-step. It
first calculates the expected value of the log-likelihood of
the latent variables for a given parameter estimate (E-step)
and then updates the parameter estimate by maximizing
the expected value from E-step (M-step). The process is
repeated until the convergence is reached.

EM formulation: By introducing the latent variable R
representing the Markov chain states, we solve the following
problem for θ.

argθ maxP (Y ,R, θ). (8)

Let

L(Y ,R, θ)= log(P (θ,R, Ȳ ))

= log(P (θ)) + log(P (Y ,R|θ)),
(9)

where P (θ) is the prior distribution of θ and assumed to be
uniform in this study.

The EM algorithm is summarized as follows:
E-Step:

φ(θ, θl)=ER(L(Y ,R, θ)|Y , θl), (10)
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where θl is the parameter estimated from previous step l.
M-Step:

θl+1= argθ max(φ(θ, θl))

s.t. θL ≤ θ ≤ θU ,
(11)

The two steps are repeated until the convergence is
achieved.

Different from the method in [7], [8], the EM method
estimates the parameter θ by considering all the possible
realizations of R for Y (via the expected value).

A. E-step

In the E-step, we calculate the function φ(θ, θl). Since
log(P (θ)) is a constant with respect to R, we have

φ(θ, θl)=ER(L(Y ,R, θ)|Y , θl)
= log(P (θ)) + ER(log(P (Y ,R|θ)|Y , θl))
= log(P (θ)) + ΣsΣip

s
i log(P (Y s, Rsi |θ)), (12)

where psi=P (Rsi |Y s, θl), Rsi is the ith possible realization of
the discrete Markov chain {rt}Ls

t=0, and (Rsi )t represents the
value of the Markov chain at t in Rsi . The second term in
(12) can be rewritten as

ΣsΣip
s
i log(P (Y s, Rsi |θ))=ΣsΣip

s
i log(P (Y s|Rsi , θ))

+ ΣsΣip
s
i log(P (Rsi |θ)). (13)

For the first term in (13), we have

ΣsΣip
s
i log(P (Y s|Rsi , θ))

=ΣsΣ
Ls
t=0Σip

s
i log(P (yst |ys0:t-1, Rsi , θ))

=ΣsΣ
Ls
t=0[Σ(i,rst =s1)p

s
i log(P (yst |rst=s1, θ))

+ Σt-1n=0Σ(i,rs
t-(n+1):t=Sn+2)p

s
i

× log(P (yst |ys0:t-1, rst-(n+1):t=Sn+2, θ))]

=Σs,t[log(P (yst |rst=s1, θ))(Σ(i,rst =s1)p
s
i )

+ Σt-1n=0 log(P (yst |ys0:t-1, rst-(n+1):t=Sn+2, θ))

× (Σ(i,rs
t-(n+1):t=Sn+2)p

s
i )]

=Σs,t[log(P (yst |rst=s1, θ))P (rst=s1|Y s, θ)
+ Σt-1n=0 log(P (yst |ys0:t-1, rst-(n+1):t=Sn+2, θ))

× P (rst-(n+1):t=Sn+2|Y s, θl)], (14)

where

rst-(n+1):t=[rt-(n+1), rt-n, . . . , rt]1×(n+2),

Sn+2=[s1, s0, . . . , s0]1×(n+2).

The second term in (13) can be expressed as

ΣsΣip
s
i log(P (Rsi |θ))

=ΣsΣip
s
i log[P (rs0=s1|θ)ΠLs

t=1P (rst |rst-1, θ)]
=ΣsΣ

Ls
t=1Σip

s
i log(P (rst |rst-1, θ))

+ΣsΣip
s
i log(P (rs0=s1|θ)). (15)

The second term in (15) is zero as the initial rs0=s1 is
independent of θ. Then, we have

ΣsΣip
s
i log(P (Rsi |θ))

=ΣsΣ
Ls
t=1[Σrst-1:t

log(P (rst |rst-1, θ))
×(Σip

s
i1{(Rs

i )t-1:t=rst-1:t})]

=ΣsΣ
Ls
t=1Σrst-1:t

log(P (rst |rst-1, θ))
×P (rst-1:t|Y s, θl), (16)

where

1{(Rs
i )t-1:t=rst-1:t}=

{
1, if (Rsi )t-1:t=r

s
t-1:t,

0, otherwise. (17)

The probabilities P (rst |Y s, θl) and P (rst-(n+1):t=Sn+2|Y s, θl)
in (14) and P (rst-1, r

s
t |Y s, θl) in (16) can be calculated

using the backward-forward algorithm. All the following
probabilities in this section are conditioned on θl. or no-
tation simplicity we dropped the notation for the conditional
probability on θl as long as it does not cause confusion. To
facilitate the backward-forward operation, we define

ast (r
s
t )=P (ys0:t, r

s
t ), (18)

bst (r
s
t )=P (yst+1:Ls

|ys0:t, rst ). (19)

We first calculate ast (r
s
t ) and bst (r

s
t ) before we calculate the

probabilities in (14) and (16).

Recursive calculation of ast : ast , t ≥ 1 is expressed using
the following recursive relationship:

ast=P (yst |ys0:t-1, rst )P (ys0:t-1, r
s
t )

=P (yst |ys0:t-1, rst )[Σrst-1
P (rst |ys0:t-1, rst-1)P (ys0:t-1, r

s
t-1))]

=P (yst |ys0:t-1, rst )[Σrst-1
P (rst |rst-1)ast-1], (20)

Based on (3) and (4) and the fact that the state of the Markov
chain at t does not depend on previous measurements, in
(20), we have P (rst |ys0:t-1, rst-1)=P (rst |rst-1). P (rst |rst-1) in
(20) is given by (3) and (4).

To calculate P (yst |ys0:t-1, rst ) in (20), we consider the
following two cases based on the value of rst :

Case 1: rst=s1. Since a new ẑt will be generated by (2)
independently from previous states and parameters at time t,
it is straightforward that

P (yst |ys0:t-1, rst=s1)=P (yst |rst=s1). (21)

The probability is calculated using the following general
result with n=-1.

P (yst-(n+1):t|r
s
t-(n+1):t=Sn+2)

=
∫
P (yst-(n+1):t|ẑt-(n+1), r

s
t-(n+1):t=Sn+2)

× f(ẑt-(n+1); θ
l
1)dẑt-(n+1)

=
∫

Πt
j=t-(n+1)P (ysj |ẑt-(n+1), r

s
t-(n+1):t=Sn+2)

× f(ẑt-(n+1); θ
l
1)dẑt-(n+1), (22)
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where

ysj |(ẑt-(n+1), r
s
t-(n+1):t=Sn+2)

∼ N(µsj , D(ẑt-(n+1), rj)ΣwD
′(ẑt-(n+1), rj)), (23)

and

µsj=G(ẑt-(n+1), s0)usj+C(ẑt-(n+1), s0)

× [Σ
j-(t-n)
l=0 Al(ẑt-(n+1), s0)F (ẑt-(n+1), s0)usj-l

+Aj-(t-n-1)(ẑt-(n+1), s0)

× [H(ẑt-(n+1), s1)+F (ẑt-(n+1), s1)ust-(n+1)]]. (24)

This completes the calculations for Case 1.
Case 2: rst=s0.

P (yst |ys0:t-1, rst=s0)

=Σt-1n=0P (yst , r
s
t-(n+1):t-1=Sn+1|ys0:t-1, rst=s0)

=[Σt-1n=0P (yst |ys0:t-1, rst-(n+1):t-1=Sn+1, r
s
t=s0)

× P (rst-(n+1):t-1=Sn+1|ys0:t-1, rst=s0)]. (25)

In the following, we calculate and
P (rst-(n+1):t-1=Sn+1|ys0:t-1, rst=s0) in (25).

To calculate the first probability
P (yst |ys0:t-1, rst-(n+1):t-1=Sn+1, r

s
t=s0), we have

P (yst |ys0:t-1, rst-(n+1):t-1=Sn+1, r
s
t=s0)

=P (yst |ys0:t-1, rst-(n+1):t=Sn+2)

=
P (yst-(n+1):t|r

s
t-(n+1):t=Sn+2)

P (yst-(n+1):t-1|r
s
t-(n+1):t=Sn+2)

=
P (yst-(n+1):t|r

s
t-(n+1):t=Sn+2)

P (yst-(n+1):t-1|r
s
t-(n+1):t-1=Sn+1)

. (26)

The second equation in (26) holds because rst is indepen-
dent of ys0:t-1. The probabilities in (26) are calculated using
(22).

For the second probability, we have

P (rst-(n+1):t-1=Sn+1|ys0:t-1, rst=s0)

=
P (ys0:t-1|rst-(n+1):t=Sn+2)

P (ys0:t-1|rst=s0)

×P (rst-(n+1):t-1=Sn+1|rst=s0). (27)

where

P (ys0:t-1|rst=s0)=Σt-1n=0P (ys0:t-1|rst-(n+1):t=Sn+2)

×P (rst-(n+1):t-1=Sn+1|rst=s0) (28)

Now we calculate the probability
P (ys0:t-1|rst-(n+1):t=Sn+2). As rst is independent of ys0:t-1, we
have

P (ys0:t-1|rst-(n+1):t=Sn+2)

=P (ys0:t-1|rst-(n+1):t-1=Sn+1),

=P (ys0:t-(n+2)|r
s
t-(n+1)=s1)

×P (yst-(n+1):t-1|r
s
t-(n+1):t-1=Sn+1). (29)

For the first term in (29), we have

P (ys0:t-(n+2)|r
s
t-(n+1)=s1)

=Σrs
t-(n+2)

P (ys0:t-(n+2)|r
s
t-(n+2), r

s
t-(n+1)=s1)

×P (rst-(n+2)|r
s
t-(n+1)=s1)

=Σrs
t-(n+2)

P (ys0:t-(n+2)|r
s
t-(n+2))P (rst-(n+2)|r

s
t-(n+1)=s1)

=Σrs
t-(n+2)

P (ys0:t-(n+2), r
s
t-(n+2))

P (rst-(n+1)=s1|r
s
t-(n+2))

P (rst-(n+1)=s1)

=Σrs
t-(n+2)

ast-(n+2)

P (rst-(n+1)=s1|r
s
t-(n+2))

P (rst-(n+1)=s1)
. (30)

Therefore, (27) becomes

P (rst-(n+1):t-1=Sn+1|ys0:t-1, rst=s0)

=

(
Σrs

t-(n+2)
ast-(n+2)

P (rst-(n+1)=s1|r
s
t-n-2)

P (rst-(n+1)=s1)

)
×P (yst-(n+1):t-1|r

s
t-(n+1):t-1=Sn+1)

×
P (rst-(n+1):t-1=Sn+1|rst=s0)

P (ys0:t-1|rst=s0)
. (31)

P (yst-(n+1):t-1|r
s
t-(n+1):t-1=Sn+1) in (31) is calculated using

(22). The probability P (rst-n-1=s1) is calculated using the
following recursive relationship.

P (rst )=Σrst-1
P (rst , r

s
t-1)=Σrst-1

P (rst |rst-1)P (rst-1), (32)

where P (rst |rst-1) is given by (3) and (4). P (rs0=s1)=1
and P (rs0=s0)=0 as we assume rs0=s1. The probability
P (rst-(n+1):t-1=Sn+1|rst=s0) is calculated as follows:

P (rst-(n+1):t-1|r
s
t )=P (rst |rst-(n+1):t-1)

P (rst-(n+1):t-1)

P (rst )

=P (rst |rst-1)
P (rst-(n+1))

P (rst )

(
n∏
l=1

P (rst-l|rst-l-1)

)
. (33)

This completes the calculations for Case 2.
If t=0, we have rs0=s1 and

as0=P (ys0, r
s
0=s1)=P (ys0|rs0=s1), (34)

which is calculated by (22). This completes the calculation
of ast .

Calculation of bst : We assign 1 to bsLs.
When t ≤ Ls-1, bst in (19) is calculated as follows:

bst=Σt-1n=0P (yst+1:Ls
, rt-(n+1):t-1=Sn+1|ys0:t, rst )

=Σt-1n=0P (yst+1:Ls
|ys0:t, rst-(n+1):t-1=Sn+1, r

s
t )

× P (rst-(n+1):t-1=Sn+1|ys0:t, rst )
=Σt-1n=0b

s
t,nP (rst-(n+1):t-1=Sn+1|ys0:t, rst ), (35)

where bst,n(rst )=P (yst+1:Ls
|ys0:t, rst-(n+1):t-1=Sn+1, r

s
t ).

In the following, we describe the calculation of
P (rst-(n+1):t-1=Sn+1|ys0:t, rst ) and bst,n(rst ).
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The first probability P (rst-(n+1):t-1=Sn+1|ys0:t, rst ) is calcu-
lated as follows,

P (rst-(n+1):t-1=Sn+1|ys0:t, rst )

=
P (rst-(n+1):t-1=Sn+1|rst )

P (ys0:t|rst )
P (ys0:t|rst-(n+1):t-1=Sn+1, r

s
t ). (36)

Similar to the calculation of (27), the probability
P (rst-(n+1):t-1=Sn+1|ys0:t, rst ) is calculated based on
the two probabilities P (rst-(n+1):t-1=Sn+1|rst ) and
P (ys0:t|rst-(n+1):t-1=Sn+1, r

s
t ). P (rst-(n+1):t-1=Sn+1|rst )

is calculated using (33). Now we calculate
P (ys0:t|rst-(n+1):t-1=Sn+1, r

s
t ). We consider two cases. If

rst=s0, the probability P (ys0:t|rst-(n+1):t-1=Sn+1, r
s
t ) is

calculated using (22) by setting n=t-1. If rst=s1, we have

P (ys0:t|rst-(n+1):t-1=Sn+1, r
s
t )

=P (ys0:t-1|yst , rst-(n+1):t-1=Sn+1, r
s
t=s1)

×P (yst |rst-(n+1):t-1=Sn+1, r
s
t=s1)

=P (ys0:t-1|rst-(n+1):t-1=Sn+1)P (yst |rst=s1) (37)

P (ys0:t-1|rst-(n+1):t-1=Sn+1) is calculated by (29) and
P (yst |rst=s1) is calculated using (22).

The second probability bst,n(rst ) can be expressed as:

bst,n(rst )=Σrst+1
P (yst+1:Ls

, rst+1|ys0:t, rst-(n+1):t-1=Sn+1, r
s
t ). (38)

If t ≤ Ls-2, (38) is calculated using the following recursion:

bst,n(rst )=Σrst+1
P (yst+2:Ls

|ys0:t+1, rst-(n+1):t-1=Sn+1, r
s
t:t+1)

× P (rst+1|rst )P (yst+1|ys0:t, rst-(n+1):t-1=Sn+1, r
s
t:t+1)

=


Σrst+1

P (yst+1|yst , rst=s1, rst+1)
×bst+1,0P (rst+1|rst ), if rst=s1.
Σrst+1

P (yst+1|ys0:t, rst-(n+1):t=Sn+2, r
s
t+1)

×bst+1,n+1P (rst+1|rst ), if rst=s0.

(39)

If rst+1=s1, P (yst+1|yst , rst=s1, rst+1) and
P (yst+1|ys0:t, rst-(n+1):t=Sn+2, r

s
t+1) is calculated using

(22). If rst+1=s0, both probabilities are calculated using
(26). If t=Ls-1, (38) is expressed as:

bst,n(rst )=Σrst+1
P (yst+1|ys0:t, rst-(n+1):t-1=Sn+1, r

s
t:t+1)

×P (rst+1|rst )

=


Σrst+1

P (yst+1|yst , rst=s1, rst+1)
×P (rst+1|rst ), if rst=s1.
Σrst+1

P (yst+1|ys0:t, rst-(n+1):t=Sn+2, r
s
t+1)

×P (rst+1|rst ), if rst=s0.

(40)

The probabilities in (40) are calculated in the same way as
those in (39). This completes the calculation of bst .

Calculation of P (rst |Y s) in (14):

P (rst |Y s)=
P (yst+1:Ls

|ys0:t, rst )P (ys0:t, r
s
t )

P (Y s)
=
ast (r

s
t )b

s
t (r

s
t )

P (Y s)
, (41)

where

P (Y s)=Σrst a
s
t (r

s
t )b

s
t (r

s
t ).

Similar to the calculation of (27), the probability P (rst |Y s)
is calculated using ast , b

s
t .

Calculation of P (rst-1, r
s
t |Y s) in (16):

P (rst-1, r
s
t |Y s)

=
P (yst , r

s
t , y

s
t+1:Ls

|ys0:t-1, rst-1)P (ys0:t-1, r
s
t-1)

P (Y s)

=
P (yst+1:Ls

|ys0:t, rst-1, rst )P (yst |ys0:t-1, rst-1, rst )
P (Y s)

×P (rst |rst-1)ast-1. (42)

Similar to the calculation of probability in
(41), we only need to caculate the probabilities
P (yst+1:Ls

|ys0:t, rst-1, rst ), P (yst |ys0:t-1, rst-1, rst ), P (rst |rst-1)
and ast-1.

In the following, we calculate P (yst+1:Ls
|ys0:t, rst-1, rst )

and P (yst |ys0:t-1, rst-1, rst ) in (42). To calculate
P (yst+1:Ls

|ys0:t, rst-1, rst ), we consider the following two
cases:

Case 1: rst-1=s1,

P (yst+1:Ls
|ys0:t, rst-1=s1, rst )=bst,0. (43)

Case 2: rst-1=s0,

P (yst+1:Ls
|ys0:t, rst-1=s0, rst )

=Σt-1n=1P (yst+1:Ls
, rst-(n+1):t-2=Sn|ys0:t, rst-1=s0, rst )

=Σt-1n=1P (yst+1:Ls
|ys0:t, rst-(n+1):t-1=Sn+1, r

s
t )

×P (rst-(n+1):t-2=Sn|ys0:t, rst-1=s0, rst )

=Σt-1n=1b
s
t,nP (rst-(n+1):t-2=Sn|ys0:t, rst-1=s0, rst ), (44)

where

P (rst-(n+1):t-2=Sn|ys0:t, rst-1=s0, rst )

=
P (ys0:t|rst-(n+1):t-1=Sn+1, r

s
t )

P (ys0:t|rst-1=s0, rst )
×P (rst-(n+1):t-2=Sn|rst-1=s0). (45)

Similar to the calculation of (27), the probability
P (rst-(n+1):t-2=Sn|ys0:t, rst-1=s0, rst ) is calculated by cal-
culating the probabilities P (rst-(n+1):t-2=Sn|rst-1=s0) and
P (ys0:t|rst-(n+1):t-1=Sn+1, r

s
t ). P (rst-(n+1):t-2=Sn|rst-1=s0) is

calculated using (33). Based on the value of rst , we have

P (ys0:t|rst-(n+1):t-1=Sn+1, r
s
t )

=


P (ys0:t-1|rst-(n+1):t-1=Sn+1)

×P (yst |rst=s1), if rst=s1.
P (ys0:t|rst-(n+1):t=Sn+2), if rst=s0.

(46)

If rst=s1,

P (ys0:t|rst-(n+1):t-1=Sn+1, r
s
t )

=P (yst |rst=s1)P (ys0:t-1|rst-(n+1):t-1=Sn+1), (47)

where P (yst |rst=s1) is calculated using (21), and
P (ys0:t-1|rst-(n+1):t-1=Sn+1) is calculated using (29). If
rst=s0, the probability is calculated using (29). This
completes the calculation of P (yst+1:Ls

|ys0:t, rst-1, rst ).
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The probability P (yst |ys0:t-1, rst-1, rst ) in (42) is calculated
using (21) if rst=s1. The probability is calculated using (26)
if rst-1=s1 and rst=s0. When rst-1=s0 and rst=s0, we have

P (yst |ys0:t-1, rst-1=s0, rst=s0)

=Σt-1n=1P (rst-(n+1):t-2=Sn|ys0:t-1, rst-1=s0, rst=s0)

×P (yst |ys0:t-1, rst-(n+1):t=Sn+2), (48)

where

P (rst-(n+1):t-2=Sn|ys0:t-1, rst-1=s0, rst=s0)

=
P (ys0:t-1|rst-(n+1):t=Sn+2)

P (ys0:t-1|rst-1=s0, rst=s0)

×P (rst-(n+1):t-2=Sn|rst-1=s0). (49)

Similar to the calculation of (27), the probability
P (rst-(n+1):t-2=Sn|ys0:t-1, rst-1=s0, rst=s0) is calculated by
calculating the probabilities P (ys0:t-1|rst-(n+1):t=Sn+2)
and P (rst-(n+1):t-2=Sn|rst-1=s0). The probability
P (yst |ys0:t-1, rst-(n+1):t=Sn+2) in (48) and (49) is calculated
using (26). P (rst-(n+1):t-2=Sn|rst-1=s0) is calculated with (33).

Calculation of P (rst-(n+1):t=Sn+2|Y s) in (14):

P (rst=s0|Y s)=Σt-1n=0P (rst-(n+1):t=Sn+2|Y s)

=Σt-1n=0

P (rst-(n+1):t=Sn+2, Y
s)

P (Y s)
. (50)

That is,

P (Y s)=Σt-1n=0

P (rst-(n+1):t=Sn+2, Y
s)

P (rst=s0|Y s)
. (51)

Similar to the calculation of the probability in (27), the
probability P (rst-(n+1):t=Sn+2|Y s) is calculated as

P (rst-(n+1):t=Sn+2, Y
s)

P (rst=s0|Y s)
, (52)

where P (rst=s0|Y s) is given by (41), and

P (rst-(n+1):t=Sn+2, Y
s)

=P (rst-(n+1):t=Sn+2, y
s
0:t-(n+2), y

s
t-(n+1):t, y

s
t+1:Ls

)

=P (yst+1:Ls
|rst-(n+1):t=Sn+2, y

s
0:t)

×P (rst-(n+1):t=St-(n+1):t, y
s
0:t-(n+2), y

s
t-(n+1):t)

=bst,n(s0)P (ys0:t-(n+2)|r
s
t-(n+1)=s1)P (rst-(n+1):t=Sn+2)

×P (yst-(n+1):t|r
s
t-(n+1):t=Sn+2). (53)

P (ys0:t-n-2|rst-n-1=s1) is calculated using (30).
P (yst-n-1:t|rst-(n+1):t=Sn+2) is calculated using (22).
P (rst-(n+1):t=Sn+2) is calculated with (32).

The probability P (rst |rst-1, θ) in (16) can be expressed
as a function of θ using (3) and (4). The probabilities
P (yst |rst=s1, θ) and P (yst |ys0:t-1, rst-(n+1):t=Sn+2, θ) in (14)
can be expressed as a function of θ using (22). The closed-
form functions for the two probabilities based on the inte-
gration of f(z; θ1) are needed for the M-step.

B. M-step
In this step, the estimate of model coefficients θ is updated

by solving the optimization problem in (11). If a solution
can be expressed in a closed-form, the update of θl can be
easily obtained. If a closed-form solution cannot be obtained,
numerical methods for nonlinear optimization problems (e.g.,
generalized reduced gradient method, sequential quadratic
method, and interior point method) can be used to find an
optimal solution. For example, a natural gradient iterative
method is utilized in [13], [14] to solve the optimization
problem in M-step with linear constraints for the estimates
of transition matrix. In addition, since the objective function
of the optimization model is not necessarily convex, local
optimal solutions may exist. Multiple initial solutions and
different algorithms can be applied to avoid local optimal
solutions [9].
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