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Abstract—In recent years, unmanned aerial systems (UAS)
have attracted significant attentions because of their broad
civilian and commercial applications. Nevertheless, most exist-
ing UAS platforms only have limited computing capabilities to
perform various delay-sensitive operations. To tackle this issue,
in this paper, we develop a high-performance onboard UAS
computing platform with the virtualization technique. Specif-
ically, we first discuss the selection of microcomputers that
are suitable for UAS onboard computing. We then investigate
virtualization schemes that can effectively manage constrained
resources in UAS, flexibly support UAS applications, and
enable resource sharing among multiple UAS to achieve higher
computing power. In our study, we compare the performance
(such as computing, network, isolation, etc.) of two repre-
sentative virtualization techniques including virtual machine
(VM) and container, using KVM and Docker, respectively.
Extensive experimental results demonstrate the performance
trade-offs between VM and container, and validate the benefits
of virtualization in supporting real UAS applications.

Keywords—Unmanned Aerial Systems, Virtualization, On-
board Computing, Testbed Development, Performance Evalua-
tion.

I. INTRODUCTION

Over the past few years, unmanned aerial systems (UAS)
have increasingly gained their popularity in broad commer-
cial and civilian applications, such as forest-fire detection
[1], reconnaissance [2], search and rescue [3], and 3-D
mapping [4]. As existing UAS platforms have very limited
onboard computing resources, computation-intensive tasks
in these applications such as image processing are usually
conducted at ground stations. However, due to the lim-
ited bandwidth resources of UAS-to-ground communication
channels and the existence of unknown environmental distur-
bances that affect channel performance, deferring computing
tasks to ground stations can lead to considerable delays, data
losses or even transmission failures. With the growing com-
plexity of UAS applications, real-time computing becomes
increasingly critical for the success of many UAS tasks.
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UAS are limited by the computing resources that they
can carry. It is crucial to optimize the management of
constrained UAS computing resources, and offload less
time-critical tasks to other computing devices. This can be
achieved by virtualization, which is known for its powerful
resource management capabilities and live migration support
that handles dynamic workloads [5]. Virtualization has many
other attributes that can further enhance the capability of
UAS. For instance, it can isolate unreliable and untrustwor-
thy functionalities, and improve the resilience of UAS to
malicious attacks [6]. It can also facilitate the concurrent
execution of multiple applications with different operating
system (OS) requirements on the same UAS. Furthermore,
virtualization can also facilitate networked airborne comput-
ing operations on multiple connected UAS, with improved
computational power for advanced UAS applications. As
a step towards realizing this platform, our team has suc-
cessfully developed a robust broadband UAS-carried com-
munication platform that allows high-speed long-distance
communication between two UAS [7]-[9]. In this paper, we
investigate the capability of virtualization in enhancing the
onboard computing capacity of UAS.

In the literature, virtualization for server-based devices
has been widely studied over the past few decades [10].
Many works can be found that evaluate and compare the
performance of different virtualization techniques for these
devices. For instance, the performances of container- and
hypervisor-based virtualization techniques are analyzed in
[11], [12] and [13]. Paper [14] compares the two types of
virtualization techniques. The use of virtualization in high
performance computing and cloud environments has also
been studied in e.g., [15], [16].

More relevant to this study, mobile virtualization has
aroused increasing attentions with the wide-spreading use of
mobile devices and fast evolution of ARM processors [10].
A container-based virtualization technique on Raspberry Pi
2 was investigated in [17]. Several hypervisor-based virtual-
ization techniques on Cubieboard2 were compared in [18].



In [19], the performances of hypervisor- and container-based
virtualization techniques on the Insignal Arndale board were
compared. Since these studies were not directed to advanced
UAS computing applications, they adopted microcomputers
of very limited computing and storage resources, and their
performance analysis was limited to CPU, Memory and
Disk. The unique features of UAS, such as small payload,
power constraint, and real-time computing need were not
considered.

There are very limited studies on the direction of
virtulization for UAS. The Kernel-based Virtual Machine
(KVM), a hypervisor-based virtualization technique, was
applied to enhance the resilience of UAS to malicious
attacks, where KVM was implemented in Raspberry Pi 2
[6]. The Nutanix Acropolis [20], a UAS cloud platform, is
another example that applies the virtualization technology.
This platform uses the Acropolis Hypervisor to hold multiple
virtual machines (VMs). However, a comprehensive investi-
gation of mobile virtualization to enable high-performance
onboard UAS computing is still lacking.

In this paper, we investigate two representative virtual-
ization techniques, VM using KVM [21] and container using
Docker [22], with the purpose of enhancing UAS’ onboard
computing capability for more advanced UAS applications.
The main contributions are summarized as follows:

1)  Recommendation of suitable microcomputers
for high-performance onboard UAS computing:
Through a comprehensive analysis of the desired
features of UAS onboard computing, we provide
recommendations of suitable microcomputers.
Implementation of KVM and Docker on Jetson
TX2: The newly released microcomputer, Jetson
TX2, has rarely been studied in supporting vir-
tualization functionalities. We provide instructions
to implement KVM and Docker on Jetson TX2
selected in this study.

Comprehensive performance evaluation of KVM
and Docker in supporting UAS applications: Ex-
tensive experiments are conducted to measure the
performances of KVM and Docker from the aspects
critical to UAS applications, including computing,
network, and isolation. The insights obtained from
the experimental results provide guidelines for the
selection of appropriate virtualization techniques
for UAS applications.

Application of virtualization to real UAS applica-
tions: Experiments are also conducted to illustrate
the benefits of KVM and Docker in facilitating
resource management and improving computing
performance for real UAS applications.

2)

3)

4)

The rest of this paper is organized as follows. Section
I reviews KVM and Docker. Section III discusses the
selection of appropriate onboard microcomputers for UAS,
and the implementation of KVM and Docker on Jetson
TX2. The performances of KVM and Docker are evaluated
comprehensively in Section IV. Section V investigates the
performances of KVM and Docker in supporting real UAS
applications. Section VI concludes the paper with a brief
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summary and future works.

II. REVIEW OF KVM AND DOCKER

Virtualization refers to the process of creating virtual
(software-based) representations of physical hardware re-
sources, which allows multiple OSs to coexist and share
resources on the same hardware platform. Virtualization
can significantly improve resource utilization and reduce
hardware costs. In addition, virtualization can also enhance
security and fault tolerance through the isolation technique.

Based on the abstraction level, virtualization can be
categorized into two types [23]: hypervisor-based virtual-
ization and container-based virtualization. The hypervisor-
based virtualization is performed directly on top of the
hardware, while the container-based virtualization abstracts
at the OS level. In this section, we briefly overview KVM
[21] and Docker [24], which are representative hypervisor-
and container-based virtualization techniques, respectively.

A. KVM

KVM (see Figure 1(a) for the system architecture) uses
the hypervisor to abstract hardware resources and create
VMs, which are simulated operating environments and ac-
cess physical hardware resources through the hypervisor
[25]. We call the hardware that runs the hypervisor as the
host and emulated machines on top of the host (i.e., VMs)
as the guest. Multiple applications (APPs) can run inside the
VMs.

Unlike many hypervisor-based virtualization techniques
that rely completely on the hypervisor to emulate and
manage hardware resources, the KVM hypervisor is in-
tegrated into the Linux mainline kernel, and thus can
leverage the functionalities of the Linux systems such as
scheduling, memory management and timer handling for
resource management. Moreover, in KVM, device emulation
is offloaded from the hypervisor to a user-space software,
usually quick emulator (QEMU) [26], which simplifies the
virtualization process. This feature also makes KVM an
efficient hypervisor-based virtualization technique that can
be quickly deployed. A more detailed description of the
hypervisor and QEMU, which are required to run VMs, is
provided as follows.

1)  Hypervisor: Hypervisor [21], also called VM
monitor, is a software that acts as a control and
translation system between VMs and the host.
It requires the hardware virtualization support to
achieve core virtualization features such as CPU
and memory virtualization. In particular, the CPU
virtualization requires the hypervisor to run in a
privileged CPU mode higher than the guest OSs,
and the memory virtualization requires the second
level address translation [27] for VMs. The hy-
pervisor retains the control of hardware resources
and provides good isolation for the guest and host
systems through trap-and-emulate. In particular,
when a VM executes a sensitive instruction which
may conflict the host system or other VMs, it
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Fig. 1. System architectures of a) KVM and b) Docker.

traps to the hypervisor which then executes this
instruction or emulates the effect of this instruction
without execution.

QEMU: KVM mainly focuses on the CPU and
memory virtualization and cannot create VMs by
itself. It requires an emulator, usually QEMU, to
emulate peripheral devices such as disk, network,
and USB controller and thus achieve the 1/O virtu-
alization.

2)

B. Docker

Docker (see Figure 1(b) for the system architecture) is
a popular container-based virtualization technique. It has
attracted significant attentions because of its features in-
cluding rapid application deployment, portability across ma-
chines, simplicity, and faster configurations [24]. Different
from hypervisor-based solutions that require virtualization of
hardware resources which generates significant performance
overhead, Docker provides a lightweight virtual environment
called container by abstracting at the OS level. The container
shares the kernel with the host OS, and hence its creation
only requires a root file system (e.g., Ubuntu). A single
APP can also be packaged as a container with provided
libraries (libs) and bins. These features make containers
much smaller and more lightweight than VMs, consume
fewer resources and can be quickly deployed with lower
performance overhead. Due to the OS-level virtualization,
containers do not require hardware virtualization support.

Docker relies on the following Linux system utilities to
run containers:

1)  Linux namespaces which realize the isolation
among containers, by restricting processes in a
namespace and only using resources associated
with that namespace. Six namespaces, including
Process ID (PID), Networking (NET), InterPro-
cess Communication (IPC), Managing Filesystem
Mount Points (MNT), Unix Timesharing System
(UTS) and User [28], achieve the isolation for
different resources. For instance, PID namespaces
isolate process ID number space, thus allowing
processes with the same PID to run in different
PID namespaces. The NET namespaces isolate
resources related to networking, such as network
devices.
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2)  Control groups (cgroups) which realize the re-
source allocation and isolation for containers. They
allow Docker to assign available resources to con-
tainers with optional limits and constraints. Note
that the Linux namespaces determine what re-
sources a process can access, while the cgroups
determine how many resources a process can use.
Advanced Multi-Layered Unification Filesystem
(AuFS) which is used by Docker to manage files.
AUFS is a layered filesystem that can merge mul-
tiple directories into a single representation of the
directory. AuFS also allows different containers to
be built by simply adding new layers into the base
OS images. As only one copy of the base images
is required, storage saving and faster deployment
of containers can be achieved.

3)

III. MICROCOMPUTER SELECTION AND
VIRTUALIZATION IMPLEMENTATION

In this section, we first discuss the selection of micro-
computers for UAS applications that require high perfor-
mance onboard computing capability. The implementation
of KVM and Docker on the selected microcomputer is then
discussed.

A. Microcomputer Selection

The selection of the microcomputers for high-
performance computing onboard UAS should consider com-
puting, system control, communication, network, and vir-
tualization characteristics. For instance, the microcomputer
should have a powerful CPU (e.g., at least 2 cores), sufficient
memory (e.g., 8GB) and storage (e.g., at least 32GB) to
support most computing needs. Based on these criteria, an
initial search leads to four candidates: Jetson TX2 [29],
UDOO X86 ULTRA [30], UP Squared [31] and LattePanda
Alpha [32]. Next, we conduct a detailed comparison among
these microcomputers from various aspects including the
processing capability, connectivity, dimension, power con-
sumption, OS, weight, virtualization support, and storage.

Table I summarizes the comparison results. In particular,
Jetson TX2 has the highest computing power, which contains
a hex-core CPU complex (combining a dual-core Denver 2
and a quad-core ARM AS57). The more number of cores
allows Jetson TX2 to create more well-isolated VMs or
containers that each occupies a core exclusively. In addition,
Jetson TX2 has a very powerful GPU, which permits real-
time image or video processing and deep learning capa-
bilities. It also provides an out-of-the-box high-throughput
wireless local area network (WLAN) interface. From the
dimension aspect, Jetson TX2 is smaller than the other three
microcomputers, but it needs to run on a carrier-board [29].
The original carrier-board for Jetson TX2 has a large size
(17cm x 17cm), which limits its use for UAS applications.
UDOO X86 ULTRA outperforms the other two in power
consumption and OS support. UP Squared has a largest
storage. All four microcomputers support virtualization.

The above analysis provides us with guidelines to select
proper microcomputers for UAS. A trade-off should be



TABLE 1.

COMPARISON OF DIFFERENT MICROCOMPUTERS

Jetson TX2

UDOO X86 ULTRA

UP Squared

LattePanda Alpha

Denver 2 (2 cores)
2MB Cache, 2GHz

Intel® Pentium N3710 (4 cores)

Intel® 7th Gen M3-7Y30

® i

CrPU + ARM® A57 (4 cores) 2MB Cache, 2.56GHz Intel™ Apollo Lake (2-4 cores) | 5 .o\ 4 MB Cache, 2.60GHz

2MB Cache, 2GHz
®
GPU NVIDIA Pascal” ™ Tntel® HD Graphics el 2%11253 Tntel® HD Graphics 615
256 CUDA cores, 1.12GHz 16 units, 405-700MHz ! n o 300-900MHz
or 18 (Pentium) Execution Units

Memory 8GB LPDDR4 8GB DDR3L up to 8GB LPDDR4 8GB LPDDR3

Connectivity

1 Gigabit Ethernet
802.11ac WLAN, Bluetooth

1 Gigabit Ethernet
M.2 Key E slot for optional
Wireless modules

2 Gigabit Ethernet

1 Gigabit Ethernet
802.11ac WLAN, Bluetooth

Dimension 50 x 87 mm 120 x 85 mm 85.6 x 90 mm 113 x 80 x 13.5 mm
P"“;f:n;‘;‘r‘sl‘(‘)';‘gi““ 7.5 watt 6 watt Not available Not available
oS Linux Windows 10, 8.1, 7, Linux, Android Windows 10, Linux, Android ‘Windows, Linux
Weight 85¢g 117g Not available 104¢g
Virtualization support Yes Yes Yes Yes
Storage 32GB eMMC 32GB eMMC up to 128GB eMMC 64GB eMMC

achieved among multiple performance aspects based on the
needs of specific UAS applications. For instance, if flight
time is more critical than real-time processing, UDOO X86
ULTRA that consumes less power may be selected. In this
study, we explore Jetson TX2 of high computing capacity
to enable high-performance onboard UAS computing. To
resolve the dimension issue caused by the carrier-board,
we have developed a small, lightweight and battery-powered
carrier-board for Jetson TX2.

B. Implementation of KVM and Docker on Jetson TX2

In this section, we provide instructions on the imple-
mentation of KVM and Docker in Jetson TX2 to achieve
isolation of CPU, memory, and I/O. The GPU virtualization
for Jetson TX2, which is more complicated, is left for furture
research.

1) Implementation of KVM: As Jetson TX2 supports
virtualization, we implement KVM on this platform. In
particular, to achieve CPU virtualization, KVM hypervisor
needs to run in a mode with a privilege higher than the guest
OSs. This can be achieved by the Hyp mode in Jetson TX2
[33], which is also the default CPU mode.

To run KVM hypervisor, we need to enable KVM con-
figurations available in the Linux kernel of Jetson TX2 when
we compile the kernel, which are disabled by default. Note
that the KVM functionality has been merged to the Linux
kernel for ARM devices since version 3.9 [21]. Another
modification to make is to enable the virtual generic interrupt
controller (vGIC), which is required by KVM to manage
virtual interrupts generated by VMs [21]. This is achieved
by modifying the device tree of Jetson TX2.

With the KVM hypervisor built successfully, the next
step is to create VMs, which requires the installation of
several software, including QEMU for I/O virtualization,
AAVMF [34] for guest OS installation, and libvirt [35]
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for VM management. To improve the usability of VMs,
additional software can be installed, such as brctl [36] that
helps the management of VM networks and virt-manager
[37] that provides a graphical user interface to facilitate VM
management.

2) Implementation of Docker: As Docker performs at
the OS level, it relies on the functionalities of the Linux
system to achieve virtualization. Usually, to run Docker
containers in a Linux system, kernel configurations such as
cgroups and namespaces need to be enabled. Recently, a new
kernel for Jetson TX2, i.e., L4T 28.2 RC [38], was released,
which officially supports Docker and does not require any
additional configurations.

IV. COMPARATIVE PERFORMANCE EVALUATION

Virtualization significantly extends the functionality of
UAS, but also introduces performance overhead due to
resource partition, isolation and emulation. In this section,
we investigate the performance of KVM and Docker on
Jetson TX2 in supporting UAS applications.

A. Computing Performance

Computing performance of the onboard microcomputer
is critical for the success of real-time UAS tasks. Perfor-
mance degradation caused by virtualization needs to be
minimized. In this section, we evaluate the impact of KVM
and Docker on the computing performance of Jetson TX2.

1) Experimental Setup and Benchmark: The experimen-
tal setup consists of three Jetson TX2, where KVM and
Docker are implemented separately on two microcomputers,
and no virtualization is applied on the third one. A single
VM (or container) is then created by KVM (or Docker).
The same OS, i.e., Ubuntu 16.04 LTS for ARM with Linux
kernel version 4.4, is implemented on both host and guest
systems.
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Fig. 2. Execution time of the LU application running in Jetson TX2
of different virtualization setups and with increasing number of threads
introduced. The cubic sizes in the LU application are set to a) 64 X 64 x 64
and b) 102 x 102 x 102.

To evaluate the computing performance of the three
microcomputers, we adopt the NAS Parallel Benchmark
[39], which contains a set of computation-intensive applica-
tions. The execution times of these applications are used to
estimate the computing performance. This benchmark also
supports multi-threading, and thus allows the applications
to be executed by multiple cores in parallel to test the
parallel computing performance. In this experiment, we run
one of the applications called Lower-Upper Gauss-Seidel
solver (LU), which performs a synthetic computational fluid
dynamics calculation for a cubic region of configurable size
[39]. A larger cubic results in more computational costs.
We implement this benchmark in the VM (or container) if
available, or otherwise directly in the host system.

2) Experimental Results: In this study, we run the LU
application of different problem sizes on the three micro-
computers. Each experiment is repeated for 10 times and
the average results are presented to reduce the experimental
uncertainty. Note that this procedure is also applied for each
experiment conducted in the following studies. The average
execution time required by the three microcomputers to run
the LU application with increasing number of threads is
shown in Figure 2. As expected, the Jetson TX2 without
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Fig. 3. Computing performance overhead generated by KVM and Docker
with increasing number of threads introduced. The cubic sizes in the LU
application are set to a) 64 X 64 X 64 and b) 102 x 102 x 102 .

virtualization has the best performance. Docker outperforms
KVM, and has a very minor impact on the computing
performance. The superiority of Docker is more evident
when running the LU application of larger problem size
that requires more memory resources, as shown in Figure
2(b). This can be explained by the complexity of KVM in
allocating memory resources. In particular, KVM requires
second level address translation to allocate virtual memory
for VMs, while Docker directly utilizes the Linux system
utility, i.e., cgroups, to allocate memory for containers
without additional translation.

For better illustration, we further evaluate the overhead
introduced by KVM (or Docker) using the following equa-
tion: T _T

Overhead = —*——"

Ty

where T, and T}, respectively represent the execution time
of running the LU application in the VM created by KVM
(or container created by Docker) and directly in the mi-
crocomputer without virtualization. As we can see from
Figure 3, KVM creates more overhead than Docker, and
the overhead grows with the increase of problem size. This
observation matches the results shown in Figure 2. Another
interesting observation we can obtain from Figure 3 is that

(D



the overhead created by KVM tends to increase with more
threads introduced, while the performance of Docker is
relatively stable. This is because KVM needs to virtualize
physical CPU cores for VMs to execute multi-threading
tasks, while Docker does not require CPU virtualization to
achieve this.

B. Network Performance

Information sharing among UAS as well as between UAS
and ground stations requires the onboard UAS computing
platforms to have a good network performance. In this
section, we evaluate the network performance of KVM and
Docker on Jetson TX2.

1) Experimental Setup and Benchmark: In multi-UAS
applications, two types of communication links exist,
ground-to-UAS and UAS-to-UAS. We here design two ex-
periments to test both scenarios. Specifically, in the first
experiment, we link a Jetson TX2 and a ThinkPad E540
laptop to simulate the communication between a UAS and
a ground station. KVM or Docker is implemented on Jetson
TX2. In the second experiment, we link two Jetson TX2
to simulate the communication between two UAS, and
the same virtualization technique is implemented in both
platforms. In both experiments, the communication link is
established through a Technicolor TC8715D Wi-Fi router
with a bandwidth of 40 Mbps.

To measure the network performance, we adopt the Iperf
benchmark [40], which is implemented on both Jetson TX?2
and the ThinkPad laptop. This benchmark works by sending
data streams from the client side to the server side and then
measuring the throughput. In this study, Jetson TX2 can
either be a client or server, and both cases are tested. Packets
are transferred based on TCP/IP with the size set to 128KB.

2) Experimental Results: The network performances of
Jetson TX2 virtualized by KVM or Docker under both net-
work settings (i.e., client and server) in the two experiments
are shown in Figure 4. The performance of Jetson TX2
without virtualization is also evaluated for the comparison
purpose. As shown in the figure, Docker achieves better
network performance than KVM in both experiments. This
is because Docker adopts a simpler network virtualization
mechanism. In particular, containers directly use the Linux
system utilities, such as network namespace and veth pair
[41], to communicate with the outside world without emulat-
ing hardware devices. However, KVM introduces additional
software, e.g., QEMU, to emulate network devices for VMs,
which results in additional network overhead.

Now let us analyze the results from each experiment. In
the first experiment that simulates the ground-to-UAS com-
munication (see Figure 4(a)), higher bandwidth is achieved
when Jetson TX2 acts as a client. This may be caused by
the different network devices used by Jetson TX2 and the
ThinkPad laptop. Of interest, in the second experiment (see
Figure 4(b)), when two identical Jetson TX2 with virtualiza-
tion communicate with each other, the bandwidth measured
at the server side is slightly smaller than that measured at the
client side. This is because messages from the outside world
cannot directly access VMs (or containers) due to security
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Fig. 4. Bandwidth of the communication link a) between Jetson TX2 and
ThinkPad laptop, and b) between two Jetson TX2. The bandwidth is tested
at Jetson TX2 when it acts as a client or server.

issues. To receive packets, port forwarding is required [42],
[43], which may introduce additional overhead.

C. Isolation Performance

In UAS applications, different programs need to be
isolated for security purposes. There are also cases when
multiple programs with varying system requirements need to
be implemented in the same microcomputer. These scenarios
can be realized by running these programs in different
VMs (or containers), where the isolation performance is of
importance.

1) Experimental Setup and Benchmark: To test the isola-
tion performance of KVM and Docker, we conduct a set of
experiments similar to those described in [15]. In particular,
two Jetson TX2 are used in these experiments, where each
runs two guests (VMs or containers). Each guest is assigned
with half of the total CPU resources. The resource partition
and allocation are achieved by the hypervisor in KVM, and
cgroups in Docker.

The Isolation Benchmark Suite (IBS) [44] is used to
measure the isolation performance. The key idea is to run
stress tests that consume intensive resources in one guest,
and measure the impact of these tests in the well-behaved



guest. The two guests are well-isolated if the performance
degradation of the well-behaved guest is small. IBS con-
sists of six stress tests, including CPU intensive, memory
intensive, disk I/O intensive, fork bomb, network transmit
intensive, and network receive intensive. In this study, we
run each of these stress tests in one guest, and run the LU
application with cubic size of 64 x 64 x 64 in the other
guest. We then measure and compare the execution time of
the LU application under stress tests, denoted as T, with its
execution time evaluated when no stress tests are performed,
denoted as T),. The performance degradation, which reflects
the isolation performance, is then measured by the following
equation:

T, —T,
—F X 100%

n

@

Performance Degradation =

2) Experimental Results: As shown in Table II, both
Docker and KVM perform well in the CPU intensive test,
as different CPU cores are assigned to different VMs (or
containers). However, the impact of other stress tests on
the performance of the well-behaved guest is noticeable,
indicating the relative weakness of KVM and Docker in
isolating memory, Disk I/O and network resources. Overall,
Docker outperforms KVM in most of these tests due to
the use of Linux namespaces, which provide good isolation
properties. However, KVM relies on the hypervisor’s trap-
and-emulate mechanism to achieve isolation, which hangs
the rest of the VMs when one traps to the hypervisor.

An exception is the poor performance of Docker in the
fork bomb test, which quickly creates a large number of
processes that overwhelm the OS until the process table is
full. This can be caused by the sharing of the process table
among containers.

TABLE II. PERFORMANCE DEGRADATION OF THE WELL-BEHAVED
GUEST IN DIFFERENT STRESS TESTS
Docker KVM
CPU 0.36% 0.41%
Memory 5.03% 6.0%
Disk I/O 2.56% 2.9%
Fork bomb 6.24% 1.28%
Network receiver 2.25% 4.68%
Network sender 1.73% 2.53%

D. Discussion

The above comparative studies show the promising per-
formance of Docker compared with KVM in computing,
network and isolation of most hardware resources. However,
Docker is less resilient to malicious attacks as the containers
share the same OS kernel. Both KVM and Docker support
live migration on server-based devices, but the realization of
live migration for microcomputers is still in its infancy.
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V. VIRTUALIZATION FOR REAL UAS APPLICATIONS

In this section, we further investigate the capability of
KVM and Docker in facilitating real UAS applications.
In particular, the computing performance of KVM and
Docker in running UAS image processing applications is
first evaluated. The benefits of KVM and Docker in im-
proving resource utilization is then demonstrated through
experiments.

A. Computing Performance

Image processing is a typical application performed
onboard of UAS. In this study, we use the OpenDroneMap
[45], an open-source software for UAS imagery processing,
to measure the computing performance of KVM and Docker
in supporting real UAS applications. Two OpenDroneMap
functions of different complexity are selected. The ex-
perimental setting is similar as that described in Section
IV-Al. In particular, KVM and Docker are implemented
separately on two Jetson TX2 and another Jetson TX2
without virtualization for the comparison purpose. Open-
DroneMap functions are then implemented in the guest (VM
or container) or the host if no virtualization is applied. To
evaluate the computing performance of KVM and Docker,
41 UAS images downloaded from the website [46] are used.
The size of each image is 3.9MB.

In the first experiment, we evaluate the computing per-
formance of KVM and Docker in performing image resizing,
which requires small amount of computing resources. The
average execution time required by each Jetson TX2 to resize
a UAS image with compression ratio of 48.7% is shown in
Figure 5(a). The results match the ones obtained in Section
IV-Al.

To test the performance of KVM and Docker in support-
ing computationally intensive UAS tasks, we choose the 3-D
model reconstruction function in OpenDroneMap. This func-
tion involves a series of complicated operations including
image resizing, extracting point clouds and reconstructing
3-D geographical models. The average execution time of
the three microcomputers to process a UAS image is shown
in Figure 5(b). The comparison of Figures 5(a) and 5(b)
indicates the distinct advantage of Docker over KVM in
computing complicated UAS tasks. The 3-D geographical
model reconstructed from the 41 UAS images is shown in
Figure 6. In the future, we will build a UAS testbed to
measure the performance of KVM and Docker in facilitating
UAS operations that require real-time operations such as
navigation and object tracking.

B. Resource Management

Virtualization is well known for its capability in resource
management. In this study, we investigate the benefits of
KVM and Docker in improving resource utilization and
computing performance for UAS.

Generally, in a computing platform without virtualiza-
tion, applications running simultaneously can influence each
other, due to resource sharing and context switches among
the processes of these applications. To illustrate this fact,
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Fig. 5. Execution time of processing a UAS image using the a) image
resizing and b) 3-D model reconstruction functions in OpenDroneMap,
which are evaluated on three Jetson TX2 of different virtualization setups.
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Fig. 6. The 3-D geographical model generated from the 41 UAS images
using the 3-D model reconstruction function in OpenDroneMap.

we conduct a simple experiment that compares the execution
times of two applications when running separately and when
running simultaneously in Jetson TX2. The two applications
used in this experiment are the LU application with cubic
size set to 36 x 36 x 36 and the image resizing function in
OpenDroneMap that processes 41 UAS images. As shown in
Figure 7(a), when we run two applications simultaneously,
the execution time increases significantly by around 367%
for the LU application and 61% for OpenDroneMap, and
the LU application consumes even more time than the
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Fig. 7. a) Execution time of two applications when running separately
and when running simultaneously in Jetson TX2 without virtualization. b)
Execution time of two applications running simultaneously in three Jetson
TX2 of different virtualization setups.

OpenDroneMap.

To reduce the performance degradation observed in the
previous experiment, we apply the virtualization technology
to achieve resource allocation and isolation. For instance, in
this experiment, we create two guests (VMSs or containers)
in Jetson TX2, each of which runs a different application.
To achieve a better overall performance, we further assign
the guest that runs OpenDroneMap, which consumes more
computing resources with three CPU cores. The other guest
is assigned one CPU core. As shown in Figure 7(b), running
applications in different guests assigned with properly allo-
cated resources significantly improves the overall computing
performance. In addition, Docker also demonstrates better
performance than KVM.

VI

In this paper, we studied the virtualization on UAS
platforms to enable high-performance onboard computing.
We first developed guidelines to select the microcomputers
that are suitable to perform UAS onboard computing tasks.
Two representative virtualization techniques, i.e., VM using
KVM and container using Docker, in supporting UAS ap-
plications were then investigated comprehensively through

CONCLUSION



experiments. The results show that Docker outperforms
KVM in most performance aspects, including computing,
network, and isolation of most hardware resources. However,
Docker containers are less secure than VMs. The benefits
of KVM and Docker in supporting real UAS applications
were also demonstrated. In the future, we will build a Jetson
TX2-based UAS testbed to measure the performance of
virtualization in supporting real-time UAS operations. We
will also investigate live migration using KVM and Docker
to enable networked UAS computing.
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