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Abstract 

Additive manufacturing (AM) has advantages over production cycle time, flexibility, and precision 

compared with traditional manufacturing. Spatial data, collected from optical cameras or in situ sensors, 

are widely used in various AM processes to quantify the product quality and reduce variability. However, 

it is challenging to extract useful information and features from spatial data for modeling because of the 

increasing spatial resolutions and feature complexities due to the highly diversified nature of AM processes. 

Motivated by the aerosol jet® printing process in printed electronics, we propose a smooth spatial variable 

selection (SSVS) procedure to extract meaningful predictors from spatial contrast information in high-

definition microscopic images to model the resistances of printed wires. The proposed method does not rely 

on extensive feature engineering, and has the generality to be applied to a variety of spatial data modeling 

problems. The performance of the proposed method in prediction and variable selection through simulations 

and a real case study has proven to be both accurate and easy to be interpreted. 

 

Keywords: Additive manufacturing modeling; fused Lasso; printed electronics; spatial variable selection; 

spatial modeling.   
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1. Introduction 

The challenges of additive manufacturing (AM) processes related to product quality quantification, 

monitoring and control impede its broader application. Extensive efforts have been made in recent years on 

quality modeling of AM using in situ process information (Rao et al., 2016). Among these efforts, spatial 

data are widely collected and analyzed in various AM processes (Huang et al., 2015). However, due to the 

increase of spatial resolution and feature complexity, it is still challenging on efficiently using spatial data 

in AM quality engineering (Schabenberger et al., 2017). More investigations thus are needed to improve 

the modeling and interpretations of spatial data in AM quality control. In this paper, we focus on quality 

modeling of additive-manufactured electronics with spatial data to reflect process conditions. 

Along with this direction, our research is motivated by an aerosol jet® printing (AJP) process, which is a 

direct write type of AM for flexible electronics printing. The basic procedures of the AJP process are as 

follows. (1) Nanoparticle silver ink is atomized into droplets (mists) by an atomizer first. (2) Then, the mists 

are delivered by carrier gas to the nozzle. (3) The mists are pushed out of the nozzle at a high velocity onto 

the surface of printing. More details of the process can be found in Sun et al. (2017). 

In the AJP process, high-resolution microscopic images are taken on the surfaces of the printed electronics, 

as shown in Figure 1(a), to measure their quality indirectly. Because the microscope takes the images in a 

non-contact way, it can prevent potential damages and human errors in measurements caused by traditional 

contact-based measuring tools, such as multi-meters (Mahajan et al., 2013). These microscopic images, 

reflecting the distribution of the silver inks on the printed electronics, have been proven to strongly correlate 

with the printed electronics’ resistance and other electronic properties (Sun et al., 2017).  

However, there is lack of efficient and systematical ways to identify interpretable features from the raw 

images to model electronic properties. Instead of performing the complex engineering-driven feature 

extractions requiring domain knowledge as shown on the right of Figure 1(b), we intend to use spatially 

correlated predictor generated from image pixel or mesh to directly predict the quality response, as shown 

on the left of Figure 1(b). Here, a mesh consists of multiple pixels from a certain area in an image with its 

intensity calculated by the mean intensity of all pixels in the mesh. Specifically, our objective focuses on 
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generation and variable selection methods of spatially correlated predictors (i.e., images in the AJP process) 

to help identify interpretable features for predicting conducting wires’ resistance. Note that the wires with 

missing segments and infinite resistances are treated as outliers and removed from the modeling. 

 

 

 

(a) 

 

(b) 

Figure 1. (a). Optomec aerosol jet® system (left), the printing process (middle), and the resistance 

measurement on printed electronics using a multi-meter and a microscopic image of printed electronics 

(right). (b). Two distinct ways of generating variables for resistance prediction: spatial predictor extraction 

with an example of contrast between a pixel and its 8-Connected neighborhoods (defined in Adams et al. 

(1994)) (left) and engineering-driven feature extraction (Sun et al., 2017) (right). 
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In the literature, there are various works that use spatially correlated predictors for variable selection and 

modeling. Note that these methodologies are different from the spatial statistics, which typically emphasizes 

the modeling and analysis of spatially correlated responses (Ripley, 2005). Here our focus is on “spatial-

data-in-scalar-out” types of regression, which are also known as the “scalar-on-image” (Kang et al., 2016) 

regressions for image data. Two of the most commonly used methodologies are feature extraction based 

modeling, and direct modeling (e.g., treat the intensity of each pixel as a predictor). For feature extraction 

based modeling, wavelet analysis (Bukkapatnam et al., 1999), homologous features (Li et al., 2015), and 

Fourier transforms (Li et al., 2017a), etc., can be first used to extract features from raw spatial data. Then, 

regression models can either use the extracted features as input variables or employ feature reductions (Bai 

et al., 2018) before performing variable selection and prediction. Kernel-based models are also widely 

adopted, such as kernel-ridge regression (Vovk, 2013), relevance vector regression (Zheng et al., 2015), 

etc. The kernel-based model transforms the original datasets into dual forms of various kernel spaces in 

order to reduce the modeling complexity and change the model linearity for better performances. One 

potential drawback of methods mentioned above is that sufficient domain knowledge on the corresponding 

manufacturing processes and a large amount feature engineering are often needed to generate high-quality 

predictors. As a result, a strategy to directly select individual variables without complex feature extraction 

procedures or kernel function selection is more useful to directly identify important features, which is called 

direct modeling method in this paper. 

For the direct modeling method, popular approaches include tensor regressions (Li et al., 2013), matrix 

regression (Zhou et al., 2014), deep learning (Chen et al., 2014), Gaussian process (GP) models (Kang et 

al., 2016), which were re-engineered to handle “scalar-on-image” regression based on traditional GP 

models (Colosimo et al., 2015), etc. However, many tensor or matrix regressions are usually built upon the 

assumption of low-rank approximations (Zhou et al., 2014), which might not always be adequate to various 

spatial datasets collected in the AM processes (Sun et al., 2017). The models used in deep learning, such 

as CNN, are relatively complex and require large sample sizes of input data (Luo, 2017). But in a highly 

flexible AM process, the sample size can become very small (e.g., measured at most in tens or hundreds), 
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since AM often produces “one-of-a-kind” design of products to satisfy personalized needs. Furthermore, 

complex model structures produced by deep learning can be difficult to generate interpretable features for 

further diagnosis on product quality (Lou et al., 2012).  The use of Gaussian process models also has high 

computational costs and large sample size requirements, making it difficult for data modeling with a large 

number of variables and limited sample sizes in AM processes (Tripathy et al., 2016).  

In this paper, we focus on using spatial data to study the resistance variation of printed wires due to the 

missing ink spray defects (black pinholes/regions in the image of Figure 2(b)). It has been proven that 

increment of such defects significantly increases the resistance of a printed wire (Zhao et al., 2012). It is 

worth mentioning that: not only in AJP process, various other printing processes for flexible electronics, 

including flexographic printing (Krebs, 2009), inkjet printing (Haverinen et al., 2010), and gravure printing 

(Kang et al., 2012), are also suffering from quality issues due to missing ink spray defects, such as short 

circuit, high energy loss, etc. In this paper, we propose to generate and select spatial predictors directly for 

accurate quality prediction and good interpretability. The proposed approach is to encourage similar-but-

non-identical effects among neighborhood predictors, pursuing the smoothness among neighborhood 

parameters during variable selection. The underlying motivation is that predictors in the neighborhood are 

spatially correlated, which would take similar roles (e.g., either be all significant or insignificant) on 

affecting the response. Thus, the parameter value changes among spatially adjacent predictors are expected 

to be smooth. For example, in microscopic images of printed wires, the parameter values would gradually 

decay as the corresponding predictors are far away from the defect regions, which are strongly associated 

with the response. We refer to such a phenomenon as the neighborhood effect. Such an effect is inherent to 

many spatially adjacent predictors in spatial data modeling (Kang et al., 2016). In the AJP process, the 

spatial contrast information generated from the microscopic images can directly predict resistances of 

conducting wires through the proposed spatial modeling framework. 

For predictor generation, three different types of spatial contrast information (Adams et al., 1994) will be 

used to form spatial predictors: (a) contrast (difference) between each mesh’s intensity and the overall 

image’s mean intensity, (b) contrast (difference) between each mesh’s intensity and its 8-Connected 
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neighborhood meshes’ mean intensity, and (c) contrast (difference) between each mesh’s intensity and the 

largest row-wise mean intensity among the image. Comparing with the past AJP-related quality 

quantification work (Sun et al., 2017), an advantage of using spatial predictors is that it requires neither 

heavy feature engineering nor manually labeled quality indices (e.g., silver ink over-spray) for product 

quality quantification. An example of spatial predictors from the microscopic images is shown in Figure 2, 

which is motivated by the work of Adams et al. (1994) to reflect local intensity variation.  

 

                             

                                           (a)   (b)      (c) 

Figure 2. (a)-(b). The 8-Connected neighborhoods of the underlying mesh are its surrounding meshes. 

 

In total, we would remark that the proposed model, smooth spatial variable selection (SSVS), is easy to 

interpret since the spatial predictors are directly generated from the spatial data, such as the contrast 

information among pixels. Both 1-D and 2-D simulations show that SSVS better identifies inherent 

structures among model parameters, by encouraging their smoothness. The real case study shows that given 

the highly personalized nature of AM processes, SSVS under small training sample sizes offers smaller 

prediction errors on testing data and yields meaningful variable selection results. This gives SSVS the 

potential to be widely adopted for quality modeling in various AM processes and spatial data modeling 

problems. 

The remaining part of this paper is organized as follows. In Section 2, the proposed modeling framework, 

SSVS, and the estimation algorithm are introduced. In Section 3, the simulation studies for SSVS 

comparing with the benchmark models were introduced. The benchmark models in this research mainly 

include Lasso, fused Lasso, and matrix regression, where Lasso is known for its variable selection under 

sparse model parameter spaces, fused Lasso and matrix regression are known for their capability of 
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recovering certain types of model parameter structures. Details of these models and their comparisons with 

the proposed method will be discussed later. Section 4 shows a real case study of SSVS using the AJP 

process. Finally, Section 5 summarizes the proposed methodology and discusses the future work.  

 

2. Smooth Spatial Variable Selection for Models with Spatial Predictors 

2.1. Model Formulation 

Without loss of generality, we consider a linear regression between a single response variable 𝑦, such as 

the resistance of a wire, and 2-D spatial predictors 𝒳 = (

𝒳1,1 ⋯ 𝒳1,𝑚
⋮ ⋱ ⋮
𝒳𝑙,1 ⋯ 𝒳𝑙,𝑚

), a 𝑙 × 𝑚 matrix, where each 

predictor can correspond to a pixel or a mesh location for microscopic images of conducting wires. Given 

that each predictor in the matrix 𝒳, such as 𝒳𝑖,𝑗 , is spatially located by its index (𝑖, 𝑗) in a 2-D space, we 

can vectorizie 𝒳  and the corresponding 𝑙 × 𝑚  model parameter matrix 𝐵  without losing their spatial 

information. Specifically, 𝑡𝑟(𝒳𝑇𝐵)  defines the summation of the pair-wise multiplication of the 

corresponding elements in matrix 𝒳 and 𝐵. Therefore, if one vectorizie 𝒳 and 𝐵, both by appending the 

columns sequentially into 𝒙 = (𝑥1,1,⋯ , 𝑥𝑙,𝑚)
𝑇
 and 𝜷 = (𝛽1,1, ⋯ , 𝛽𝑙,𝑚)

𝑇
, into (𝑙𝑚) × 1 vectors, each pair 

of elements in 𝒳  and 𝐵  to be multiplied remain unchanged. As a result, the summation of pair-wise 

multiplication defined by 𝑡𝑟(𝒳𝑇𝐵)  remains equivalent to performing vector-wise multiplication 𝒙𝑇𝜷 . 

Thus, we can present the 2-D model formulation in 1-D format 

 𝑦 = 𝑡𝑟(𝒳𝑇𝐵) + 𝜀 = 𝒙𝑇𝜷 + 𝜀, (1) 

where 𝜀~𝑁(0, 𝜎2) is independently and identically distributed (i.i.d) error term. It is worth to pointing out 

that such an indexing of predictors can be easily generalized to data organized in a higher dimensional 

format, such as 3-D colored image data and even 4-D spatial-temporal video data (Yan et al., 2015), where 

the neighborhood effect can be enforced among spatially adjacent model parameters.  

For conducting variable selection for the model in (1), various methods are proposed in the literature such 

as Lasso (Tibshirani, 1996), which is a commonly used method, but not designated for spatial variable 
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selections (Tibshirani et al., 2005). Tibshirani et al. (2005) introduced fused Lasso to penalize the difference 

between model parameters, such encouraged smoothness of variables. The applications of fused Lasso for 

2-D spatial datasets are discussed in the work of generalized Lasso (Tibshirani et al., 2010), which can 

enforce model parameter structures using designated penalty matrices. Both fused Lasso and generalized 

Lasso mainly focus on piece-wise constant variable selection, that is, the similarity of two adjacent model 

parameters is encouraged by penalizing their differences in the model. Furthermore, the generalized Lasso 

does not enforce the overall sparsity of model parameters, which is not suitable for high-dimensional 

modeling under the sparsity assumption of model parameters. In the spirit of both fused Lasso and 

generalized Lasso, we propose smooth spatial variable selection (SSVS) to encourage the similarity and 

smoothness of spatially adjacent model parameters. For elaboration, we denote the parameter of a predictor 

𝒳𝑖,𝑗  in 𝒳  as 𝛽𝑖,𝑗 , and define the 𝑟 -neighborhoods of 𝛽𝑖,𝑗  as the set of parameters 

{𝛽𝑜,𝑢: √(𝑖 − 𝑜)2 + (𝑗 − 𝑢)2 ≤ 𝑟}, where the distance of any two parameters is measured by Euclidean 

distance. The SSVS is to encourage that if the value of 𝛽𝑖,𝑗  is non-zero (i.e., the 𝑖, 𝑗 -th predictor is 

important), the parameters 𝛽𝑜,𝑢 in its 𝑟-neighborhoods also tend to have non-zero values. Furthermore, the 

magnitudes of 𝛽𝑜,𝑢 might gradually decay (less significant) as the locations of the corresponding predictors 

are further away from 𝑥𝑖,𝑗. The proposed SSVS does not only enforce the similarity among neighborhood 

model parameters, but also make the similarity enforced tunable through adjusting the value of 𝑟 in model 

estimation (see Section 2.2). The larger the value of 𝑟 considered for the variable selection, the smoother 

that the changes among neighborhood parameters will be enforced.  

 

2.2. The Smooth Variable Selection Estimator 

Suppose that 𝒚 = (𝑦1, … , 𝑦𝑛)
𝑇 is an 𝑛 × 1 response vector observed for the 𝑦 in (1), containing resistances 

of 𝑛 printed wires, and 𝑋 = (

𝑥1,(1,1) ⋯ 𝑥1,(𝑙,𝑚)
⋮ ⋱ ⋮

𝑥𝑛,(1,1) ⋯ 𝑥𝑛,(𝑙,𝑚)
) is a 𝑛 × 𝑙𝑚 predictor matrix observed for 𝒙 in (1), 
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containing the values of the spatial predictors from 𝑛 printed wires’ microscopic images. By incorporating 

SSVS, the model estimation in (1) can be solved by minimizing 

 𝑚𝑖𝑛 
1

2
‖𝒚 − 𝑋𝜷‖2

2 + 𝜆1‖𝜷‖1 + 𝜆2‖𝑆𝜷‖1, (2) 

where 𝑆 = (

𝑆(1,1),(1,1) ⋯ 𝑆(1,1),(𝑙,𝑚)
⋮ ⋱ ⋮

𝑆(𝑙,𝑚),(1,1) ⋯ 𝑆(𝑙,𝑚),(𝑙,𝑚)

) is an 𝑙𝑚 × 𝑙𝑚 weight matrix with its component as  

𝑆(𝑖,𝑗),(𝑜,𝑢) =

{
 

 −
𝑒𝑥𝑝(−√(𝑖−𝑜)2+(𝑗−𝑢)2)

∑ 𝑒𝑥𝑝(−𝑧)𝑟
𝑧=1

 

0
−∑ ∑ 𝑆(𝑖,𝑗),(𝑜,𝑢)𝑢≠𝑗𝑜≠𝑖

∀ (𝑜, 𝑢) ∈ {√(𝑖 − 𝑜)2 + (𝑗 − 𝑢)2 ≤ 𝑟, 𝑖 ≠ 𝑜, 𝑗 ≠ 𝑢}

∀ (𝑜, 𝑢) ∈ {√(𝑖 − 𝑜)2 + (𝑗 − 𝑢)2 > 𝑟, 𝑖 ≠ 𝑜, 𝑗 ≠ 𝑢}
𝑜 = 𝑖, 𝑢 = 𝑗

. 

Here the smoothness is achieved by penalizing the difference between weighted parameter 𝑆(𝑖,𝑗),(𝑖,𝑗)𝛽𝑖,𝑗, 

and the sum of its weighted neighborhood parameters ∑ ∑ 𝑆(𝑖,𝑗),(𝑜,𝑢)𝛽𝑜,𝑢𝑢≠𝑗𝑜≠𝑖 , which are no more than 𝑟 

distance away from 𝛽𝑖,𝑗 measured by Euclidean distance. The weights are determined by the normalized 

exponential distance weighting function 
𝑒𝑥𝑝(−√(𝑖−𝑜)2+(𝑗−𝑢)2)

∑ 𝑒𝑥𝑝(−𝑧)𝑟
𝑧=1

, which ensures that the weight on each 

neighborhood parameter is in [0,1] with the denominator/normalizing factor ∑ 𝑒𝑥𝑝(−𝑧)𝑟
𝑧=1 . The same 𝑟 is 

considered for all predictors when estimating the model parameters. It is important to point out that when 

there is only one neighborhood considered (𝑟 = 1) for the estimator, ‖𝑆𝜷‖1 only penalizes the differences 

of two consecutive model parameters, which are one distance away from each other. Hereafter, SSVS with 

only one neighborhood is the same as fused Lasso. Besides on spatial predictors from image data, the matrix 

𝑆 can further enforce the smoothness on predictors arranged in irregular grids. For example, we can use the 

adjacency information, such as a 0-1 binary indicator, instead of 2-D Euclidean distances among predictors 

to calculate 𝑆(𝑖,𝑗),(𝑜,𝑢). 

 

2.3. Parameter Tuning and Model Estimation 

In (2), we consider using extended Bayesian information criterion (EBIC) (Chen et al., 2012) to select 

tuning parameters 𝑟, 𝜆1, and 𝜆2. Here, EBIC is used because traditional model selection criterions such as 

Bayesian information criterion (Schwarz, 1978) and Akaike information criterion (Akaike, 1998) do not 
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have consistent and satisfying model selection when the number of variables is much larger than the sample 

size. EBIC leverages both the number of unknown parameters to estimate and the resulted model 

complexity for model selection. As a result, it has been shown that EBIC can yield more accurate and 

consistent modeling performance for high dimensional modeling under small sample sizes (Chen et al., 

2012).   

The objective function in (2) is a quadratic function, which can be solved by standard quadratic 

programming algorithms, such as Newton method and interior point method. However, for a modeling 

problem with a high dimension of predictors, taking the second derivation required by some optimization 

methods is computationally intensive. To address this issue, we adopted the split Bregman algorithm, which 

is a type of alternating direction method of multipliers (ADMM) algorithm, which will quickly converge 

under 𝑙1 norm (Ye et al., 2011). 

Ye et al. (2011) proposed a general framework for solving the constrained optimization problem as 

𝑚𝑖𝑛 𝑉(𝜷) + 𝜆1‖𝒂‖1 + 𝜆2‖𝒃‖1, 

                                                     𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:    𝒂 =  𝜷, 𝒃 = 𝑆𝜷, 

which has the augmented Lagrangian function as  

𝐿(𝜷, 𝒂, 𝒃, 𝒖, 𝒗) =  𝑉(𝜷) + 𝜆1‖𝒂‖1 + 𝜆2‖𝒃‖1 + 〈𝒖,𝜷 − 𝒂〉 + 〈𝒗, 𝑆𝜷 − 𝒃〉 +
𝜇1

2
‖𝜷 − 𝒂‖2

2 +

𝜇2

2
‖𝑆𝜷 − 𝒃‖2

2, 

where 𝑉(𝜷) is a convex function,  〈∙,∙〉 is the inner product of two vectors, 𝒖 and 𝒗 are dual variables 

corresponding to the two linear constraints, and 𝜇1 and 𝜇2 are positive augmented Lagrangian parameters 

controlling the speed of optimization. The convergence of the algorithm is guaranteed.  

 

3. Simulation Studies 

In the simulation studies, we consider two simulations with a 1-D format of predictors and a 2-D format of 

predictors to systematically evaluate the prediction and variable selection performance of the proposed 

SSVS estimator. The SSVS estimator will be compared with three benchmark models, including Lasso, 
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fused Lasso, and nuclear-norm based matrix regression (for the 2-D dataset). Other models, such as CNN 

and Gaussian process models, were not selected as benchmark models due to their large sample size 

requirements in model estimation (Tripathy et al., 2016). 

 

3.1 2-D Simulation Study of SSVS 

We created a simulation study with 2-D spatial predictors to illustrate the benefits of SSVS on 2-D datasets.  

To ensure the generality of the simulation results and showcase the importance of having a smoothness-

tunable variable selection process, we assumed that model parameters, and predictors’ mean values and 

covariance all had varying spatial correlations across different replications respectively. Furthermore, we 

intentionally designed the generation of the parameter smoothness to make the decay pattern of model 

parameters different from the weights assigned in the smoothing matrix 𝑆 of Equation (2). As a result, a 

random decay pattern on model parameters will be chosen for each replication of the simulation. 

To generate the spatially correlated covariance of the spatial predictors, we defined the covariance between 

variable  𝑥𝑖,𝑗  and 𝑥𝑜,𝑢  on a 2-D space with an exponential decay function 𝜎𝑖,𝑗;𝑜,𝑢 = 𝑐𝑜𝑣(𝑥𝑖,𝑗, 𝑥𝑜,𝑢) =

1

𝜏
√(𝑖−𝑜)2+(𝑗−𝑢)2

, where the covariance shrinkage parameter (𝜏) had the value of 5. Using this way, the 

covariance of variables, which were spatially close to each other, had larger correlations. Similarly, to 

generate the means of variables, we first randomly selected five predictors as the centers of the defects, 

which were bounded by radius 𝜑 following a discrete uniform distribution of {3, 4, 5} to simulate defects 

with different sizes. Then the spatially correlated mean of each predictor within the defect area having the 

center at predictor 𝑥𝑖,𝑗  was defined as 𝜇𝑜,𝑢 = 255 (1 −
1

𝜔
√(𝑖−𝑜)2+(𝑗−𝑢)2

) ∀ (𝑜, 𝑢) ∈

{√(𝑖 − 𝑜)2 + (𝑗 − 𝑢)2 ≤ 𝜑, 𝑜 ≠ 𝑖, 𝑢 ≠ 𝑗}, where the shrinkage parameter (𝜔) followed a discrete uniform 

distribution of {1.1, 1.2, 1.3, 1.4, 1.5}. Here, we define defect areas, which have significantly lower 

intensities in microscopic images (Figure 1), as the regions that were not uniformly sprayed with silver ink 

in the printing process. Different values of 𝜔 could simulate defect areas with different intensity shrinkage 
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rates from the centers of the defects. For predictors outside of the defect area, the means were simply defined 

as 𝜇𝑜,𝑢 = 255 ∀ (𝑜, 𝑢) ∈ {√(𝑖 − 𝑜)2 + (𝑗 − 𝑢)2 > 𝜑, 𝑜 ≠ 𝑖, 𝑢 ≠ 𝑗} . Such a mean value generation 

approach ensured that the means of predictors within defect areas, which were darker than non-defect areas, 

were assigned with values smaller than 255. For the means of predictors not within the defect areas, they 

were assigned with 255 (the largest value/brightest color in a grey-scale image). As result, each predictor 

𝑥𝑜,𝑢 within each image sample followed i.i.d. 𝑁(𝜇𝑜,𝑢, 𝜎𝑖,𝑗;𝑜,𝑢), with one defect area existing. We repeatedly 

used such methods to generated image samples containing five defect areas selected previously.  

To generate spatially correlated model parameter, we assumed that only predictors within the defect areas 

having non-zero values. Here, we used the same five predictors select previously as the centers of five 

defect areas and the following equation to generate the parameters of variables within the defect areas 

𝛽𝑜,𝑢 =
𝛾

𝜔
√(𝑖−𝑜)2+(𝑗−𝑢)2

 ∀ (𝑜, 𝑢) ∈ {√(𝑖 − 𝑜)2 + (𝑗 − 𝑢)2 ≤ 𝜑, 𝑜 ≠ 𝑖, 𝑢 ≠ 𝑗} , where the defect center’s 

parameter value (𝛾) followed a discrete uniform distribution of {1, 2, 3, 4, 5}. As the variable within the 

defect area was further away from the defect center, it had a smaller parameter value. For parameters outside 

of the defect areas, they were assigned with zeros (𝛽𝑜,𝑢 = 0 ∀ (𝑜, 𝑢) ∈ {√(𝑖 − 𝑜)
2 + (𝑗 − 𝑢)2 > 𝜑, 𝑜 ≠

𝑖, 𝑢 ≠ 𝑗}). Eventually, the response was generated based on (1) with the values generated above and 𝜀 

following i.i.d. 𝑁(0, 1). 

Similar to the simulation settings in Zhou et al. (2014), we used the above methods to generate 500 64 ×

64 image samples with an example shown in Figure 3(a) and a set of 64 × 64 2-D model parameters shown 

in Figure 3(b). To evaluate the consistency of the results, we simulated 100 replications for each simulation 

scenario. Within each replication, we randomly used 90% of simulated samples as the training dataset and 

the rest 10% as the testing dataset (Zeng et al., 2016). The tuning parameters were selected based on EBIC 

for Lasso and SSVS, and BIC for matrix regression (Zhou et al., 2014). The simulation results including 

the testing data prediction accuracy in root mean squared errors (RMSEs) and the corresponding standard 

errors (SEs) are presented in Table 1. The value shown in bold is the best result (smallest error) obtained 

from different models and SSVS achieved the lowest error with 𝑟 = 2. The variable selection results are 
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presented in Table 2 based on variable selection accuracies (ACCs= 
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠
) and Figure 

3. The modeling assumptions were validated by residual plots in supplementary materials. 

 

Table 1. Testing RMSEs over 100 replications for the 2-D simulation dataset (standard errors in 

parenthesis). 

 

Benchmark Models  Proposed Model 

Matrix 

Regression 
SSVS (𝑟 = 0) / 

Lasso 

SSVS (𝑟 = 1) / 

Fused Lasso 

SSVS 

 (𝒓 = 2) 

RMSEs 
23.56 

(<0.00) 

33.32 

(0.34) 

11.07 

(0.18) 

 10.03 

(0.12) 

 

Table 2. Average variable selection accuracies (ACCs) over 100 replications for the 2-D simulation 

dataset (standard errors in parenthesis). 

 

Benchmark Models  Proposed Model 

Matrix 
Regression 

SSVS (𝑟 = 0) / 
Lasso 

SSVS (𝑟 = 1) / 
Fused Lasso 

SSVS 

 (𝒓 = 2) 

RMSEs 
0.48 

(<0.01) 

0.89 

(<0.01) 

0.96 

(<0.01) 

 0.97 

(<0.01) 

 

From Table 1, Table 2, and Figure 3, it is clear that Lasso, which did not consider the neighborhood effect, 

performed the worst in prediction. It also had a large number of misdetections on significant model 

parameters (insignificant parameters misidentified as significant) during variable selection (Figure 3(d)). 

Furthermore, we can see that the matrix regression method, which relied on low-rank approximation, did 

not recover the parameter structures as good as SSVS did in this simulation (Figure 3(c)), and had a 

significantly lower prediction accuracy. For results of using SSVS, using one neighborhood (fused Lasso) 

had a larger prediction errors and more misdetections on significant model parameters in variable selection 

(Figure 3(e)). However, increasing the size of neighborhoods enforced in SSVS may significantly improve 

the modeling results. When there were more than two neighborhoods considered in variable selection, the 

prediction error and misdetections in variable selection gradually increased. This simulation did not only 
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show the values of SSVS in spatial variable selection problems, but also emphasize the importance of 

varying the size of neighborhoods considered for SSVS in order to achieve the best modeling performance. 

 

 

       (a)                     (b) (c) 

 

     (d)                     (e)        (f) 

 

     (g)                      (h) (i) 

Figure 3. (a). An example of 2-D predictors simulated. (b). The 2-D model parameters simulated 

(underlying true parameters). (c). Variable selection result using matrix regression. (d). Variable selection 
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result using Lasso. (e)-(i). Variable selection result using SSVS considering 1-5 neighborhoods (2 being 

the optimal).  

 

3.2 1-D Simulation Study of SSVS 

Additionally, we created a 1-D data simulation to test the performance of SSVS by varying the sample size 

of input data (𝑛), the number of model parameters (𝑝), and the covariance of predictors controlled by 

covariance shrinkage parameter (𝜏) defined later in this simulation. The sample size had the values of 𝑛 =

40 and 𝑛 = 400, the number of predictors (𝑝) had values of 𝑝 = 4000 and 𝑝 = 8000, and the covariance 

shrinkage parameter (𝜏) had values of 1.01 and 1.05. Based on 𝜏, the covariance between two variables was 

generated as 𝜎𝑖+𝑑,𝑖 = 𝑐𝑜𝑣(𝑥𝑖+𝑑 , 𝑥𝑖) = 𝑐𝑜𝑣(𝑥𝑖−𝑑 , 𝑥𝑖) =
1

𝜏𝑑
, where 𝑥𝑖−𝑑  and 𝑥𝑖+𝑑  were the variables 𝑑 

distances before or after 𝑥𝑖 . Then, covariance among variables would reflect neighborhood shrinkage 

effects, i.e., the larger the 𝑑, the smaller the covariance between 𝑥𝑖+𝑑 and 𝑥𝑖 or 𝑥𝑖−𝑑 and 𝑥𝑖 was. Such a 

neighborhood shrinkage effect was indeed observed in our case study dataset when we sort the spatial 

predictors based on their contrast values from small to large. In total, we had 8 simulation scenarios. The 

model parameters were generated from a uniformly distributed random combination of piece-wise constant 

functions and exponential decay functions (see Figure 4(a)). If a piece-wise constant function was used, 

then 100, 150 or 200 parameters in series with equal and non-zero parameter values were generated, and 

the values were selected from a discrete uniform distribution of {-3, -2, -1, 0, 1, 2, 3}. Similarly, if an 

exponential decay function was used, 100, 150 or 200 parameters in series were generated using 𝛽𝑖−𝑑 =

𝛽𝑖+𝑑 =
𝛽𝑖

𝜃𝑑
, so that parameters of each series formed a symmetrical curve mimicking the shrinkage effect 

on parameters’ values. Here, 𝛽𝑖 was the parameter in the center of each series of parameters and followed 

a discrete uniform distribution of {-3, -2, -1, 0, 1, 2, 3}. 𝛽𝑖−𝑑  and 𝛽𝑖+𝑑 were the parameters 𝑑 distances 

before or after 𝛽𝑖. 𝜃 was the shrinkage parameter following a discrete uniform distribution of {1.01, 1.02, 

1.03}, which generated a symmetrically decaying parameter curve. Finally, the response was generated 

based on (1) with values generated above and 𝜀 following i.i.d. 𝑁(0, 1). The motivation to generate the 
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model parameters containing two different structures was to test if SSVS could better recover the inherent 

model structure when both piece-wise constant and smooth model parameter structures exist. 

Similar to the previous simulation, we used the 90%-10% random data split for training and testing within 

each replication, with 100 replications performed in total. The tuning parameters were selected based on 

EBIC. Due to the 1-D nature of the underlying dataset, matrix regression was not used for this simulation 

study. We varied the neighborhood value 𝑟 from 1 to 5 in SSVS (1 being fused Lasso) and reported only 

the best result for SSVS with 𝑟 > 1. Table 3 reports average RMSEs of prediction based on the testing data 

and the corresponding SEs (shown in parenthesis) over 100 replications for each scenario. We refer to 

Lasso, where the neighborhood effect was not considered as 𝑟 = 0. The variable selection results are 

presented in Table 4 based on variable selection accuracies (ACCs= 
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠
). The values 

shown in bold are the best results (smallest errors) obtained under each data generation scenario across 

different models. The modeling assumptions were validated by residual plots in the supplementary 

materials. The first observation is that SSVS performed significantly better than Lasso did in all scenarios. 

Within SSVS models, when the sample size was small (𝑛  = 40), a larger 𝑟  offered better prediction 

accuracy, and when the sample size (𝑛 = 400) was large, a smaller 𝑟 offered better prediction accuracy 

(SSVS with 𝑟 = 1). The result indicates that emphasizing the neighborhood effect of variables can result in 

a better performance when the sample size is very limited. However, we also realize when the sample size 

reduced to only 40, the prediction accuracy of SSVS became much worse, which had approximately 10 

times larger RMSE comparing with the “𝑛 = 400” case. This means that we should always increase the 

sample size as much as possible for an ideal prediction performance when the model dimension grows very 

large. Lastly, we can see that SSVS was very robust to the variation on the covariance of adjacent model 

predictors, comparing with Lasso. This suggest that SSVS can effectively handle the data collinearity by 

considering model parameter smoothness. 
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Table 3. Average RMSEs over 100 replications for testing data in 1-D simulation studies. 

𝑝 

Size of Neighborhoods 

for SSVS 

𝜏 = 1.01 
 

𝜏 = 1.05 

𝑛 = 40 𝑛 = 400 𝑛 = 40 𝑛 = 400 

4000 

SSVS (𝑟 = 0) / Lasso 
145.29 

(8.48) 

14.32 

(0.67) 
 

199.55 

(9.07) 

26.15 

(1.12) 

SSVS (𝑟 = 1) / Fused 
Lasso 

31.57 

(2.38) 
1.42 

(0.02) 
 

61.41 

(4.04) 
1.48 

(0.03) 

SSVS (𝑟 > 1) 
30.49 (𝒓 = 3) 

(2.16) 

1.52 (𝑟 = 3) 
(0.03) 

 
55.23 (𝒓 = 4) 

(3.58) 

1.55 (𝑟 = 2) 
(0.03) 

8000 

SSVS (𝑟 = 0) / Lasso 
342.21 

(15.59) 

33.15 

(1.42) 
 

327.54 

(13.41) 

64.95 

(2.72) 

 SSVS (𝑟 = 1) / Fused 
Lasso 

185.84 

(11.68) 
2.01 

(0.04) 
 

229.56 

(9.83) 
2.38 

(0.05) 

SSVS (𝑟 > 1) 
176.28 (𝒓 = 4) 

(10.57) 

2.11 (𝑟 = 2) 
(0.04) 

 
209.87 (𝒓 = 5) 

(9.61) 

2.54 (𝑟 = 2) 
(0.06) 

 

Table 4. Average variable selection accuracies (ACCs) over 100 replications for the 1-D simulation 

dataset (standard errors in parenthesis). 

𝑝 

Size of Neighborhoods 

for SSVS 

𝜏 = 1.01 
 

𝜏 = 1.05 

𝑛 = 40 𝑛 = 400 𝑛 = 40 𝑛 = 400 

4000 

SSVS (𝑟 = 0) / Lasso 
0.83 

(0.01) 

0.89 

(<0.01) 
 

0.83 

(9.07) 

0.89 

(0.01) 

SSVS (𝑟 = 1) / Fused 
Lasso 

0.96 

(<0.01) 
1.00 

(<0.01) 
 

0.92 

(0.01) 
1.00 

(<0.01) 

SSVS (𝑟 > 1) 
0.97 (𝒓 = 3) 

(<0.01) 
1.00 (𝑨𝒍𝒍 𝒓) 

(<0.01) 
 

0.93 (𝑨𝒍𝒍 𝒓) 

(0.01) 
1.00 (𝑨𝒍𝒍 𝒓) 

(<0.01) 

8000 

SSVS (𝑟 = 0) / Lasso 
0.84 

(<0.01) 

0.88 

(<0.01) 
 

0.84 

(<0.01) 

0.88 

(<0.01) 

 SSVS (𝑟 = 1) / Fused 
Lasso 

0.87 

(0.01) 

1.00 

(<0.01) 
 

0.82 

(0.01) 
1.00 

(<0.01) 

SSVS (𝑟 > 1) 
0.87 (𝒓 = 5) 

(0.01) 
1.00 (𝑨𝒍𝒍 𝒓) 

(<0.01) 
 

0.83 (𝒓 = 5) 

(0.01) 
1.00 (𝑨𝒍𝒍 𝒓) 

(<0.01) 

 

As a visual illustration of variable selection, we present the results from the same dataset generated with 

4000 predictors. Figure 4(a) shows the true parameters generated and Figure 4(b) shows the parameters 

estimated by SSVS when there were more than one neighborhoods considered. By comparing the Figures, 

it is clear that when we considered more neighborhoods, SSVS recovered the original parameters 
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significantly better comparing with SSVS only considering one neighborhood (Figure 4(c)), and Lasso, 

which did not consider the neighborhood effect (Figure 4(d)).  

 

               (a)                               (b) 

 

              (c)                               (d) 

Figure 4. (a). True values of the simulated parameters. (b). The parameters learned considering more than 

one neighborhoods using SSVS. (c). The parameters learned considering one neighborhood using SSVS 

(fused Lasso). (d). The parameters learned considering no neighborhood (Lasso). 

 

4. Case Study of the AJP for Printed Electronics 

In this case study, we model the resistance for conducting wires printed by the AJP process. Single-layer 

silver nanoparticle wires were printed by varying several process setting parameters, including atomizer 

power voltage, process speed, gas flow rate, sheath gas flow rate and ink volume. In the end, 35 wires with 

microscopic images taken on their surfaces were produced and the corresponding resistances were 

measured. The primary defect type we are focusing on in this study is the missing spray of the silver inks. 
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Such defects can be seen as black pinholes/regions in Figure 5, which significantly increase the resistance 

of printed wires. A known cause of the missing ink spray is the inappropriate compositions of silver 

nanoparticle inks (Zhao et al., 2012). Some recent research focuses on adding novel carbon nanotubes 

(CNTs), which can bridge the pinholes/defects, into silver nanoparticle ink to improve the printing quality 

(Oh et al., 2008; Zhao et al., 2012). Additionally, other process settings, including the sheath gas flow rate, 

the aerosol gas flow rate, and the stage speed, have been proven to affect the wire resistance and potentially 

contribute to missing ink spray issue (Sun et al., 2017). 

 

4.1. Contrast Generation on Microscopic Images 

A high-resolution microscopic image (741×19491 pixels), combined from 10 consecutive microscopic 

images, was taken on the conducting wire having a small area (0.5 mm×10 mm). x. It can be inefficient 

and computationally expensive to use one predictor to represent such a small region for product quality 

characterization. For the ease of future modeling scale-up, we divided the raw image (Figure 5(a)) into 

rectangular meshes and averaged the intensities of all the pixels in each mesh (Figure 5(b)). This approach 

was also called average pooling operation with non-overlapping windows (Boureau et al., 2010), and we 

referred images produced from the pooling as pooled images. When determining the optimal resolution for 

images after pooling, we first trained different Lasso models using different sets pooled images in 

resolutions of 10×100, 20×200, 30×300, 40×400, and 50×500 based on the underlying dataset as a pilot 

study. The model trained using the resolution setting of 20×200 provided us the best prediction results on 

the testing data. As a result, each pooled images has a resolution of 20×200, with each mesh representing 

a 50 μm×25 μm regions. 

 

             

                                               (a)                                                                 (b) 

Figure 5. (a). An original grey-scale image. (b). A newly formed image with lower resolution. 
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For the case study, we considered three types of contrasts, which could be easily generated from the images 

without engineering domain knowledge. The first set of 20×200 predictors was generated with the contrasts 

between each mesh’s intensity and the overall image’s mean intensity. The second set of 20×200 predictors 

was generated with the contrasts between each mesh’s intensity and the mean intensity of the meshes in its 

8-Connected neighborhood. Lastly, the third set of 20×200 predictors was generated with the contrasts 

between each mesh’s intensity and the largest row-wise mean intensity. In an AJP process, this “brightest” 

region in the microscope image was the outcome of the most silver ink spray and could be considered as 

the most conductive path of the wire. However, one issue is that defect locations can vary significantly from 

one wire to another (dark regions in Figures 6), so that it was meaningless to fix each predictor to one 

corresponding location of images. Therefore, we sorted the values within each set of predictors from low 

to high and re-organized the predictors in quantiles. As a result, we expected that predictors at certain 

quantiles (e.g., high quantiles representing high contrast regions) were more strongly associated with wire 

resistance. Furthermore, the neighborhood effect among the model parameters of neighborhood quantiles 

preserves, which means that the changes of parameter values among neighborhood quantiles should be 

smooth. As a result, we can apply the 1-D version of SSVS model based on spatial predictors sorted in 

quantiles. 

We adopted high dimensional ordinary least squares projection (HOLP) by Wang et al. (2015) to further 

filter the 12000 (3×20×200) predictors down to 6000 predictors. Here, the HOLP method is a screening 

method, which is built upon the ordinary least squares (OLS) estimator. Comparing with regularized 

regressions, HOLP can quickly screen the number variables in the original variable space down to a 

relatively low level so that the computational efficiency of SSVS can be further enhanced. However, we 

consider that determining the appropriate percentage of variables to preserve through HOLP can become a 

valuable future work. One thing worth emphasizing on dimension reduction in this work is that there are 

other popular methods, such as principal component analysis (PCA) (Jin et al., 2000), to reduce the 

dimension of the data. However, different from HOLP, methods like PCA are widely known as “black box” 
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approaches, which do not preserve the original variables of data, hence are significantly detrimental to the 

interpretability of the modeling and variable selection efforts. 

 

4.2. Numerical Results and Explanations 

We performed 100 replications for both benchmarks (Lasso and nuclear-norm based matrix regression) and 

SSVS estimator under different neighborhood settings. For fair comparison, the matrix regression, which 

already incorporated low-rank regularization in model estimation, was trained using the original 2-D 

microscopic image data (Zhou et al., 2014), while the SSVS and Lasso were trained using the proposed 

spatial predictors in 1-D filtered quantiles.  

For each replication, we used 90%-10% data partition for model training and testing. The average testing 

RMSEs for resistance over 100 replications are presented in Table 5 with SEs in the parenthesis. The 

regularized matrix regression had a significantly poorer prediction performance comparing with the 

proposed approach. As a drawback mentioned previously, one major limitation on regularized matrix 

regression is that it fixes each predictor to the same location across different samples, but the defect areas 

which are strongly associated with the response (resistance) are constantly changing their locations.  

Furthermore, we can see that Lasso performed poorly in resistance prediction. On the contrary, SSVS with 

different neighborhood settings had significantly smaller RMSEs, and the smallest error was achieved at 𝑟 

= 3. This indicated that the neighborhood defined by 𝑟  = 3 was the most appropriate to describe the 

predictors’ smoothness. The modeling assumptions were validated by residual plots in supplementary 

materials. 

 

Table 5. Testing RMSEs over 100 replications for the AJP dataset 

 

Benchmark Models  Proposed Model 

Matrix 

Regression  
SSVS (𝑟 = 0) / 

Lasso 

SSVS (𝑟 = 1) / 

Fused Lasso 

SSVS 

 (𝒓 = 3) 

RMSEs 
8.44 

(0.87) 
4.68 

(0.20) 
3.27 

(0.14) 
 3.21 

(0.13) 
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One of the advantages of transforming original images directly into spatial predictors lies in good 

interpretability, because complicated feature extractions can lead to the loss of information depending on 

how well the underlying physical manufacturing process is understood. We illustrate the most selected 

features in Figures 6, where the colors of the mask indicate the number of times a predictor was selected 

over 100 replications (a darker color indicates the mesh being more frequently selected). Specifically, the 

top two wires of Figure 6 illustrate the variable selection among the first set predictors: the contrasts 

between each mesh’s intensity and the overall image’s mean intensity. The middle two wires of Figure 6 

illustrate the variable selection among the second set predictors: the contrasts between each mesh’s intensity 

and the mean intensity of the mesh’s 8-Connected neighborhood. The bottom two wires of Figure 6 

illustrate the variable selection among the third set predictors: contrasts between each mesh’s intensity and 

the largest row-wise mean intensity of the image. The row with the largest intensity, due to a dense layer 

of ink sprayed, is the most conductive path of the wire. 

For the first set in Figure 6, the selected meshes identified the missing ink defects. However, the intensities 

of selected meshes in the 40 Ω-wire were only 78 units (on a 0-255 scale) darker than the wire mean 

intensity on average, while such a difference increases to 120 units for the 15 Ω-wire. A relatively lower 

difference is due to the mean intensity of the 40 Ω-wire is low, which is the result of excessive missing 

prints shown in the image. For the second set in Figure 6, the selected meshes identified the areas of non-

uniform ink spray (seen as black pinholes). However, the contrasts between each mesh and its 8-Connected 

neighborhood were significantly smaller for the 15 Ω-wire, which is on average 0 versus -4 for the 40 Ω-

wire. The less contrast reflects that the 15 Ω-wire was printed more uniformly. For the third set in Figure 

6, the selected meshes identified uniformly printed regions. The meshes in the 15 Ω-wire have similar 

intensity to the image’s largest row-wise mean intensity (an average difference of 0). On the contrary, the 

meshes for 40 Ω-wire are on average 9 units darker than its largest row-wise mean intensity due to 

significantly more missing sprays. The variable selection results show that variation modeling based on 

simple and direct spatial features have inherently good interpretability for quality diagnosis and can result 

in an accurate resistance prediction when combined with SSVS estimator. 
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Figure 6. For the first set: the top five selected meshes representing the contrast between each mesh’s 

intensity and the overall image’s mean intensity for the wire with 15 Ω and 40 Ω. For the second set: the 

top five selected meshes reflecting the contrast between each mesh’s intensity and the mean intensity of the 

each mesh’s 8-Connected neighborhood for the wire with 15 Ω and 40 Ω. For the third set: the top five 

selected meshes reflecting the contrast between each mesh’s intensity and the largest row-wise mean 

intensity for the wire with 15 Ω and 40 Ω. 

 

5. Summary  

Although spatial predictors are widely encountered in the AM process modeling, the modeling and feature 

extractions of the spatial predictors are typically challenging and case-specific. In most cases, such an effort 

requires engineering knowledge of the spatial dataset (e.g., feature extractions from images), or the 

manufacturing process. In this paper, the proposed SSVS aims to identify the significant predictors in 

pursuit of smooth parameters to reflect the neighborhood effect. The size of neighborhoods can be 

adaptively determined by the dataset, which is flexible for various AM processes, with different spatial 

correlations of predictors. The proposed SSVS relaxed the strong assumption of fused Lasso, which is 

SSVS’s special case considering 1-neighborhood, and was able to estimate the underlying model 

parameters with higher accuracy. Both the simulation and case studies showed that the proposed 
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methodology could not only accurately predict the quality response, but also automatically locate areas in 

quality modeling, which can be used in root cause diagnosis. 

There are several directions for further investigations. First, we can validate the proposed methodology on 

other types of 2D or 3D spatial datasets, which have coherent spatial information across different samples, 

so that re-organizing the spatial data into quantiles for smoothness enforcement is not necessary anymore. 

Second, we may also relax the coherency requirement by projecting the raw image data into other domains, 

e.g., 2-D Fourier domains, so that the same set of projected spatial predictors may correspond to different 

regions with missing spray defects across different samples. As a result, ordering the predictors in quantiles 

will no longer be necessary before adopting SSVS for the AJP case study dataset. Third, we may adopt 

other spatial datasets to enhance the modeling performance. For example, we can use the 3-D surface 

scanning to capture the thickness variation, which can also contribute to the resistance variation of printed 

wires. However, the limitations, such as the slow data collection speed, of the current sensing technologies 

suggest that additional spatial data types might not be obtained efficiently for quick product quality 

quantification at this moment (Wang et al., 2013). Finally, the proposed framework can be further used for 

spatial predictor monitoring and control for quality improvements and variation reduction, with some 

examples in Li et al. (2017b). The code package of SSVS is available upon request. 
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