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Abstract—The interdependency of electric power and natural
gas systems requires co-ordinated operational planning. We
propose a unit commitment model that integrates a second-
order-cone relaxation of a non-convex nonlinear natural gas flow
model that considers pipeline line-pack. The model is enhanced
by using convex envelopes of bilinear terms, which tighten
the relaxation. By fixing the binary variables at their optimal
values and linearizing the natural gas-flow-balance equations
around the solution that is obtained, we obtain electricity and
natural gas locational marginal prices as the dual variables of
electricity- and natural gas-flow-balance equations, respectively.
The interdependence between these sets of prices is discussed.
Numerical results from two test systems validate the solution-
quality and computational-efficiency benefits of the proposed
modeling methodology.

Index Terms—Power system operations, natural gas, unit

commitment, second-order cone programming
NOMENCLATURE

Indices, Sets, and Functions

C(m) set of natural gas compressors connected to node m

E®i) set of power system buses directly connected to
bus %

Ep set of transmission lines

E,(7) set of generating units connected to bus ¢

G(m) set of natural gas nodes connected to node m

Gp set of natural gas pipelines

Gp(m) set of natural gas-fired generating units connected
to node m

Gy (m)  set of natural gas suppliers connected to node m

i, J indices of power system buses in set, ()

k index of natural gas compressors in set, G¢

m, n indices of natural gas-system nodes in set, Vg

REF reference bus of the power system

t index of time periods in set, T’

v index of generating units in set, {2

w index of natural gas suppliers in set, Ug

Qa set of natural gas-fired generating units

Qr set of coal-fired generating units
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Variables
Fok

value of lost electric load [$/p.u.]

value of lost natural gas load [$/Mm?]

variable production cost of coal-fired unit v [$/p.u.]
non-fuel variable operation and maintenance cost of
natural gas-fired unit v [$/p.u.]

variable production cost of natural gas supplier w
[$/Mm?]

shutdown cost of generating unit v [$/shutdown]
start-up cost of generating unit v [$/start-up]
non-generation-related natural gas demand at
node m in time period ¢ [Mm?3/h]

natural gas-transportation limit of compressor k
[Mm?3/h]

maximum natural gas supply of supplier w [Mm?/h]
minimum natural gas supply of supplier w [Mm?/h]
ramping limit of natural gas supplier w
[Mm?/h/(time period)]

line-pack parameter of pipeline connecting nodes m
and n [(Mm?)/bar]

minimum total line-pack in natural gas system
[Mm?]

electric demand at bus ¢ in time period ¢ [p.u.]
maximum output of generating unit v [p.u.]
minimum output of generating unit v when it is
online [p.u.]

capacity of transmission line connecting buses %
and j [p.u.]

ramping limit of generating unit v [p.u./(time pe-
riod)]

Weymouth constant of pipeline connecting nodes m
and n [(Mm?3/h)/bar]

duration of time periods [h]

heat rate of natural gas-fired unit v [Mm?3/h/p.u.]
conversion efficiency of natural gas compressor k
maximum natural gas pressure at node m [bar]
minimum natural gas pressure at node m [bar]
maximum compression ratio of natural gas com-
pressor k

minimum compression ratio of natural gas compres-
sor k

susceptance of transmission line connecting buses
and j [p.u.]

natural gas flow in time period ¢ through compres-
sor k [Mm?>/h]
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FP . non-generation-related natural gas demand at
o node m that is served in time period ¢t [Mm?/h]
Fa vt fuel consumed by natural gas-fired generating unit v
in time period ¢ [Mm?/h]

Fyun,e  matural gas flow in time period ¢ through pipeline
connecting nodes m and n [Mm?/h]

Fon:  average natural gas flow in time period ¢ through
pipeline connecting nodes m and n [Mm?3/h]

Fs i natural gas supplied in time period ¢ by supplier w
[Mm?/h]

Ly,n:  line-pack in time period ¢ in pipeline connecting
nodes m and n [Mm?]

£i7t electric demand at bus ¢ that is served in time

period ¢ [p.u.]

Pa vt active power produced in time period ¢ by generat-
ing unit v [p.u.]

UG v, binary variable that equals 1 if generating unit v is
online in time period ¢ and equals 0 otherwise

YG vt binary variable that equals 1 if generating unit v is
started up in time period ¢ and equals 0 otherwise

2Gut binary variable that equals 1 if generating unit v is
shutdown in time period ¢ and equals O otherwise

i+ phase angle of bus ¢ in time period ¢ [rad]

7rik“_t inlet pressure of natural gas compressor k in time

' period ¢ [bar]
Tt natural gas pressure at node m in time period ¢ [bar]

wg“; outlet pressure of natural gas compressor k in time
period ¢ [bar]

natural gas consumed by natural gas compressor k
in time period ¢ [Mm?3/h]

Tkt

I. INTRODUCTION

LECTRIC power and natural gas systems are becoming

increasingly interdependent [1], [2]. This is driven by the
low cost of natural gas-fired generating units. Moreover, many
natural gas-fired units can provide the operating flexibility
that high penetrations of renewable energy require [3]-[5].
Despite the growing interdependencies between these systems,
they are typically planned and operated independently of one
another. This lack of co-ordination can give rise to suboptimal
operating decisions and can even raise security, reliability, or
resilience issues. For instance, the United States experienced
a large-scale electricity- and natural gas-service disruption
in February, 2011, which highlights the challenges that this
interdependency creates [6].

Given this context, co-ordinating the operation of the two
systems is becoming increasingly important. The technical lit-
erature provides a number of approaches to such co-ordination.
Liu et al. [7] propose a security-constrained unit commitment
model that incorporates natural gas-pipeline constraints. The
model is solved using Benders’ decomposition, wherein the
natural gas flows are represented using linear subproblems. Liu
et al. [8] incorporate a transient natural gas-flow model, using
a bilevel modeling approach. Their work takes the operation of
the power system to be the upper-level problem, and includes
natural gas-flow feasibility in the lower level. Zhao et al. [9]
develop a two-stage stochastic unit commitment problem that
includes natural gas-supply and -price uncertainties. Zhang
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et al. [10] propose a stochastic unit commitment model that
considers transmission and generator outages and demand
response. Correa-Posada et al. [11] consider transmission and
pipeline contingencies within an integrated unit commitment
model. He et al. [12] propose a two-stage robust unit commit-
ment model that accounts for the natural gas system in making
power system-operation decisions. Antenucci and Sansavini
[13] investigate the impacts of natural gas-system constraints
on a stochastic unit commitment model with (N — 1) contin-
gency constraints.

A major challenge that these works contend with is that
natural gas flows are highly nonlinear and non-convex. Some
works [9]-[11] ignore these complexities (i.e., model linear
natural gas flows or approximate them as being piecewise
linear) while others [7], [8], [13] use nonlinear optimization
models, which raise tractability issues. Another approach is
to convexify the flow equations. Doing so allows some of the
nonlinearities to be captured, while mitigating the challenges
that non-convexity raises. Sanchez et al. [14] propose using
a second-order-cone (SOC) relaxation to represent natural
gas flows for expansion planning of natural gas and electric
power systems. Other works [12] employ SOC relaxations
for modeling optimal power and natural gas flows in co-
ordinated operational-planning. Chen et al. [15] develop both
steady-state and transient natural gas-flow models that employ
SOC relaxations. The objective functions of their models are
tailored to ensure tight solutions. Chen er al. [16] propose
an enhanced SOC relaxation of a natural gas-flow model for
dispatching electric power and natural gas systems. Wang et
al. [17] propose a market-clearing model for natural gas that
uses an SOC relaxation of the network.

SOC relaxations of natural gas-flow models represent a
tradeoff between fidelity and computational tractability. The
methods in the existing literature that employ SOC relaxations
do leave some important gaps. Many methods [12], [14],
[15] employ steady-state natural gas-flow models that neglect
line-pack in pipelines. However, it is normally important to
consider line-pack for short-term operational planning [18].
Moreover, many of the models in the existing literature that
employ SOC relaxations yield solutions with relatively large
feasibility gaps. These infeasibilities are often exacerbated if
line-pack is considered. This implies that the models may be
unsuitable for operating a system without heuristic refinement
of a solution to find meaningful operating decisions.

Our work seeks to fill this gap in the literature on SOC
relaxations of natural gas flows. Specifically, we propose a
unit commitment model that has embedded within it non-
convex and nonlinear natural gas-flow equations that represent
line-pack. This unit commitment problem is a mixed-integer
nonlinear optimization problem. We then employ an enhanced
SOC relaxation that provides tighter feasibility bounds com-
pared to natural gas-flow models in the existing literature that
employ SOC relaxations. The enhanced SOC relaxation is
based on convex envelopes of bilinear terms in the nonlinear
natural gas-flow equations. An iterative bound-tightening algo-
rithm is used to tighten the relaxation. With this relaxation, our
unit commitment problem becomes a mixed-integer second-
order cone problem (MISOCP). Using a small four-node ex-
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ample and a large case study that is based on the IEEE 118-bus
test system, we demonstrate the performance of our enhanced
MISOCP compared to the standard SOC relaxation that is in
the literature, demonstrating its tighter feasibility gaps. We also
investigate the interdepencies between electric and natural gas
locational marginal prices (LMPs) by examining the impacts
of congestion in one system on LMPs in both systems.

The remainder of this paper is organized as follows. Sec-
tion II presents the mixed-integer nonlinear unit commitment
model with integrated natural gas-flow equations. Section III
details the enhanced SOC relaxation, which yields the MIS-
OCP. Sections IV and V summarize the results of the example
and case study, respectively. Section VI concludes.

II. MODEL FORMULATION

We present here the formulation of our ‘base’ model (i.e.,
the mixed-integer nonlinear optimization problem without any
relaxation of the natural gas-flow constraints). This model
includes a linearized dc representation of power flows and
non-convex and nonlinear natural gas-flow constraints that
capture line-pack [19]. The natural gas-flow constraints that we
model are derived from a temporal and spatial discretization
(using finite differences) of the partial differential equations
that characterize pipeline dynamics and we use dimensional
equations in the natural gas system [19], [20]. The power
flows could be represented using a nonlinear ac model. Doing
so would raise further tractability issues, in addition to those
that arise from representing natural gas flows. Linearized
dc models are normally used for day-ahead power system
operation, which is the envisioned use of our proposed model.
Moreover, our focus is on modeling natural gas flows, to which
the representation of power flows is not germane.

The model is formulated as:

minz Z (Csuwya,v,t + Csp,vza,v,t) M
teT lve
+ Z CG,UPG,v,t+ Z CO,'UPG,U,t
vEQR veRe
+ Z CswFswt+ Z CeL - (Prie — Pliy)
wels icOm

+ 3 Cort (Frma = i)

mevgag

> Powi—Pliy= > oij- (0 —00);
VEE, (i) JEE(i)

VieQr,teT
PR UGt < Powt < PES ug o Yv et €T (3)
- Pgl?,p < PG,v,t - PG,v,t—l < Pgl?,p, (4)

YoeQteT
YG,ut — Gt = UGut — UGwt—1;V0 €t €T (5)
UGt YGwts 2G ot € {0,113 Yo e Qt €T 6)
=P < 0i g (0 — 054) < P (7

V(i,j) € Eg,t €T
Orert = O;Vt €T (8)

0< PP, <PpiyVieQpteT )
Z FS,w,t - FL[?m,t - Z Tkt (10)
WEG,, (m) keC(m)
Z FG'ut— Z ant+ Z Fth
vEG p(m) neG(m) keC(m)
Vm e Vg, teT
_ 1
Fm,n,t = E(Fm,n,t - Fn,m,t); (11)
V(m, n) eGp,teT
E2 W2 =mt =7 i V(m,n) € Gp,t € T(12)
1
Lm,n,t = §Kmn : (ﬂ'm,t + 7Tn,if); (13)
V(m,n) € Gg,t €T
A (Fm,n,t + Fn,m,t) = Lm,n,t - Lm,n,tfl; (14)
V(m,n) € Gg,t €T
Tt = VpFor; Ve € Go, t €T (15)
p}cnmﬂ'}ft <t < pmaxw}gt,Vk €eGe,teT (16)
0< Fopy < FE:VkeGe,t €T (17)
F2 < Fg oy < FES Y € Ug,t €T (18)
—F§W < Fsuwt— Fsuwi—1 < Fgo s (19)
Vw eVg,teT
amin < <Y € U, t €T (20)
Z Lm,n,|T| = Lnin (21)
(m,n)eGp
0<FP s S FLmyVme Vg, t €T (22)
FG,v,t = nvPG,U,t;VU € QGat eT. (23)

Objective function (1) gives the total cost of operating the
power and natural gas systems. The first two terms represent
the start-up and shutdown costs, respectively, of generating
units. The third term represents the variable cost of coal-fired
units while the fourth term represents the non-fuel variable
cost of natural gas-fired units. The fifth term represents natural
gas-production costs. This term implicitly includes the cost of
supplying fuel to natural gas-fired units. The final remaining
terms represent the costs of curtailing electric and natural gas
demands, respectively.

The model has three sets of constraints. The first set,
constraints (2)—(9), pertain to the operation of the electric
power system. Constraints (2) impose load balance at each bus.
Constraints (3) and (4) impose capacity and ramping limits,
respectively, on the generating units. Constraints (5) define
the start-up and shutdown variables for the generating units in
terms of changes in the corresponding ‘online’ state variables
while constraints (6) enforce integrality of these variables.
Constraints (7) define power flows along each transmission
line in terms of differences in the phase angles at its ends and
constraints (8) set the phase angle at the reference bus equal
to zero. Constraints (9) limit the load that is served at each
bus by demand.

The second set of constraints, (10)—(22), pertain to the
natural gas system. Constraints (10) impose nodal flow bal-
ance. Constraints (11) define the average flow in each pipeline
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in terms of flows in each direction. Constraints (12) relate
these average natural gas flows to the change in squared
pressure between the two ends of each pipeline. We as-
sume that Fj, ,; > 0, meaning that we know the direc-
tion of the flows a priori. This is a reasonable assumption
in day-ahead operations [21], whereas longer-term planning
exercises should consider bi-directional natural gas flows.
Constraints (13) determine the line-pack on pipelines based
on the upstream and downstream pressures at their ends.
Constraints (14) give the relationship between hourly changes
in flows and line-pack in pipelines. Constraints (15) compute
the fuel consumption of natural gas-driven compressors in
the network. Constraints (16) impose minimum and maximum
compressor ratios while constraints (17) impose flow limits.
Constraints (18) and (19) impose capacity and ramping limits,
respectively, on natural gas suppliers. Constraints (20) limit
the nodal pressures. Constraint (21) imposes a minimum line-
pack level in the final time period of the optimization horizon,
thereby ensuring that the natural gas in the network is not
depleted. Constraints (22) limit load served at each node by
nodal demand.

The final set of constraints, (23), couple the two systems
through the fuel consumption of natural gas-fired units.

III. ENHANCED SOC-BASED RELAXATION OF NATURAL
GAs-FLoOw MODEL

Integrated model (1)—(23) is a mixed-integer nonlinear opti-
mization problem that has a non-convex continuous relaxation.
Specifically, tractability issues arise from constraint set (12),
which can be equivalently written as:

Fr%z,n,t/ng,n < 7T-rzn,if - 7T121,t; V(m, n) € G37 teT (24)
Wi o =7 — T i ¥(m,n) € G, t €T, (25)

A standard technique to convexify such a model is to re-
lax (25), thereby replacing (12) with the SOC constraints (24)
[14], [22]. Doing so yields a MISOCP, which can be solved
using off-the-shelf software tools. However, the solutions that
are obtained from such a relaxation may yield non-trivial
violations of constraint set (12).

Building off of this approach, we propose employing an
enhanced SOC relaxation that includes a convex relaxation
of (25). To convexify (25) we replace the bilinear terms that
appear in the inequalities with their convex envelopes [23],
[24]. To do so, we define two sets of variables, a,,,,,; and
by n,t» which are defined as the sums and differences of the
pressure at the two ends of each pipeline via the equalities:

(26)
27)

Amon,t = Tm,t + 7rn7t;V(m,n) S GB,t eT
bm,n,t = Tm,t — 7Tn7t;\VI(m, TL) S GB,t eT.

We also define two new sets of auxiliary variables, x,y, , ; and
Am,n,t- The convex relaxation of (25) is given by:

Bt/ Wi = Amont; V(m,n) € G, t €T (28)
Byt = Fro o 3V(m,n) € G, t €T (29)
Kmn,t < (Fv?zld;:(t + TI:zl,l:z],t)me,t - gi:{t nn;,l:z],ﬁ

Y(m,n) € Gg,t €T (30)
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min min min min
/\m,n,t > am,n,tbmyn-,t + bm,n.,tamyn-,t - am,n,tbm,n,ta

Y(m,n) € Gg,t €T (31)

Amongt 2 U (Omon e + O Gm e — ans D070 4
Y(m,n) € Gg,t €T (32)

Amngt < Gy tOmn,t + O iGmnt — Gy D070 45
Y(m,n) € Gp,t €T (33)

Am,n.,t S ami}l{_’tbm,n,t + bmi?l_’tam,n,t - ami}z{,tbml,?z,t;
Y(m,n) € G, t €T; (34)
and (26), (27), where Fﬁifl‘_’t, FRes,, aﬂiﬁ‘l_’t, Ao 5 bg;”;m

and b7, are constants.

In this'relaxation, Km,n,t and Ay, , ¢ represent the convex-
ified approximations of F72,  , and 772, , — w2 ,, respectively.
Thus, (28) ‘replaces’ (25), insomuch as it imposes the necess-
ary relationship between k., ,; and A, . Fig. 1 shows the
convexified bounds on the value of Fr%z,n,t that (29) and (30)

Impose On Ky ¢

max
Fouver
2
—_— _ . ’
max min max frmin
== (st Fm.n.z)Fm.n,t — Fm e P
min |
Fon
fmin fmax

mnt _ mon,t

Font

Fig. 1. Convexified approximation of Fﬁl’nyt that is given by (29) and (30).

Constraints (31)-(34) impose analogous bounds on A, ,, ¢.
To see this, first note that from the definition of @y, ¢
and by, ¢, We have that ap nibmne = 7 — 75 ;. Con-
straints (31)—(34) impose bounds on A, , . that are related
t0 @py,n,t and by, ¢ Visualizing these bounds is challenging,
because ay n,tbm,n,e 1s a surface and (31)—-(34) are hyper-
planes in a three-dimensional space. Fig. 2 shows @, p tbm n ¢
and (31)-(34) for the special case in which @y, nt = bmont-
The figure shows that (31)—(34) provides a tight convex
envelope that contains @, n,t0m,n,¢-

Thus, our proposed enhanced MISOCP, which we hereafter
refer to as an eMISOCP, is given by (1)-(11), (13)-(23),
(24), and (26)—(34). Relaxation (29)-(34) is not the only
way to convexify (12). For instance, one can apply a convex
envelope to each of the n7 , and =7, terms that are on
the right-hand side of (12) separately. However, convexifying
each set of quadratic terms individually requires two sets of
convex approximations, which typically results in a relatively
less tight relaxation that may also entail added computational
complexities.
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min max
At

At

Fig. 2. Convexified approximation of nfn ¢ —7r72l,t that is given by (31)—(34).

A. Tightening of Enhanced SOC Relaxation

Figs. 1 and 2 show that the tightness of the proposed convex
envelopes that are given by (29)— (34) depend on the chosen
values of ETih , ERS, abin o afitt s by, and b
For example, the maximum error in appr0x1mating Fm)mt is
[(Fpmax, — Fmmin ) /2]2. This is because (29)—(34) allow Ky p, ¢
and A, p, tO lie anywhere within the convex envelopes that
are given by the constraint sets. The farther the true values of
F?2 . and 7  —72  are from F  and F25%, and ajp'h |,

A 1 bm”;L , and bﬂ"‘fjt, respectively, the less accurate the
resultmg relaxation is.

As such, we employ a simple bound-tightening algorithm to
improve the proposed relaxation. Algorithm 1 provides pseu-
docode outlining the steps of this procedure. The algorithm
takes two inputs on line 1. § is a convergence tolerance and
{e*}E_| is a decreasing sequence of control parameters that
is used to successively tighten the bounds on the convex
envelopes. Line 2 initializes the algorithm by setting the
iteration counter to 1 and starting with relatively wide bounds
on the convex envelopes by choosing wide starting ranges for

717111}111],15’ nnffizx,t’ arr?zi,?l,n i n ot 1HrlLi,?1,t’ and bwfff,r

Lines 3—12 are the main iterative loop The eMISOCP is
solved using the current values of F,ﬁ“ﬁt, e a ﬁi‘,‘lt,
qmax min

momts Omon.t» and O7°% in line 4. Solving the eMISOCP
gives incumbent values for the convex relaxation, which we

nc in 1nc
denote as Fm nyts Gy ,g> and bm n,t- Lines 5-10 then update
min max mm max min
the values Of ant’ ant’ m,n,t> amnt’ bmnt’ and

by, using the incumbent values. The sequence, {e M
should decrease sufficiently slowly to ensure that the values of

i P, amin s, b and b, converge (o
tightened envelopes without ‘cutting off” an optimal solution.
The algorithm continues for at most K iterations or until

constraint set (12) is satisfied within the tolerance, §.

B. Comparison of Natural Gas-Flow Models

We compare the performance of three models, using our
example and case study. The first model, which we hereafter
refer to as the MINLP, is given by (1)—(23). The MINLP is

Algorithm 1 eMISOCP bound-tightening
1: input: J, sequence {e*}5
2: initialize: k& < 1; initialize values for F™Min

m,n,t>
min qrax min

b ¥(m,n) € Gp,teT

Fmax

m,n,t>

m,n,t> “m,n,t> Ym,n,t>
3: repeat
) : inc inc inc
4: Solve eMISOCP to obtain ant, Aymts Uiyt

V(m,n) € Gp,t €T

5 Fmin (1 —€é¥)Fie  V(m,n) € Gp,teT
6 Fmax (1+ek)F;3°nt, V(m,n) € Gp,t €T
7 aﬁ‘;‘m%( k)aljy‘fnt, V(m,n) € Gp,t €T
8 am = (1+ k)a‘j,‘fnt, V(m,n) € Gp,t €T
9 b (1 — ’“)b‘,‘,‘fnt, V(m,n) € Gp,t €T
10 pmax (1 + ﬂ;ﬁn“ V(m,n) € Gp,t €T

11: kék+1 .
12: until |72, , — 77121,15 - Fr?wnt/
Gp,tcTork>K+1

Wv%z,n|/7r72n,t S 5 V(mv n) €

a nonlinear mixed-integer optimization problem with a non-
convex continuous relaxation. Thus, we can only guarantee
finding local optima. However, solutions that are obtained
from the MINLP are guaranteed to strictly satisfy all of the
constraints, including constraint set (12). The second model,
which we hereafter refer to as the MISOCP, is given by (1)-
(11), (13)—(23), and (24). The third model is the eMISOCP, in
which the convex envelopes are updated using Algorithm 1.
We measure the performance of these models in terms of
computation time and solution quality. Solution quality is
measured in three ways. The first is the objective-function
gap, which is defined as the percentage difference in the
optimal objective-function value between the MINLP and each
of the MISOCP and the eMISOCP. The objective-function gap
measures how accurately each of the two relaxations represents
the true cost of operating the power and natural gas systems.
Our second solution-quality metric is the violation of
pipeline-flow constraint set (12). To compute this metric, we
first define:
Tt = Tt = Fnt/ Wi
Vm,n,t = : : 2 — —,

(35)
m,t
as the p.u. amount by which each of the MISOCP and
eMISOCP solutions violate constraint (12) in time step ¢ for
the pipeline connecting nodes m and n. We then compute:
Vm,n,t

teT;(m,n)eEGp

T |Gsl
as the average (over time steps and pipelines) percentage
violation of constraint set (12) for each of the MISOCP and
eMISOCP solutions.

Our third-solution quality metric is related to the violation
of pipeline-flow constraint set (12). For this third metric we
first fix a slack natural gas-supply node, which should be a
node with a relatively high supply capacity. We then fix all of
the variables pertaining to the operation of the electric power
system (i.e., all of the values of Fg , ¢, Pgi,t’ Pa vt ug vt
YGv.ts 2Gv,t. and 0;,), the natural gas injections (i.e., the
Fs..,¢’s) for all of the nodes except for the slack node, and

Vs =100 x (36)
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the natural gas pressures (i.e., the m,, ;’s) for the slack node
only to the final values that are obtained from each of the
MISOCP and eMISOCP solutions. Constraints (10)—(15) are
then solved using Newton’s method to obtain a solution that
is feasible in all of the equality constraints that pertain to
the natural gas system [5]. The value of (1) that corresponds
to these solutions that are obtained from Newton’s method
measures the actual cost of operating the natural gas system
following the solutions given by the MISOCP and eMISOCP.

C. Electric and Natural Gas LMPs

Electric and natural gas LMPs can be obtained from prob-
lem (1)—(23) by fixing the binary variables to their optimal
values and solving the resulting continuous relaxation. The
dual variables that are associated with constraint set (2) are
standard electric LMPs, which are differentiated by time
period and bus. Analogously, the dual variables that are
associated with constraint set (10) give natural gas LMPs,
which are differentiated by time and node. One challenge that
can arise from using this latter set of dual variables is that
the SOC relaxations can introduce numerical instabilities [25].
This issue can be overcome by linearizing the three sets of
quadratic terms in constraint set (12) around the final solution.
This linearization is given by:

[(F:“L,n,t)Q =+ 2F;1,n,t ' (Fm',n7t - F;zn,t)]/wgzn =

(7":1,15)2 + 27Tjn,t (e — ﬂ-:@,t)

— (7 ) — 21 ¢+ (Mot — 7 4);V(m,m) € G, t €T}

n,t

(37)

where F;;Lyn_t, Tmt» and 7, . denote the optimized values
of these variables. Constraint set (37) can be substituted for
constraint set (12), the binary variables fixed to their optimal
values, and the resulting continuous relaxation can be solved

to obtain stable electric and natural gas LMPs.

IV. EXAMPLE

This section summarizes the results of a four-bus/four-node
example, the topology of which is shown in Fig. 3. Buses,
nodes, loads, natural gas supplies, and generators are labeled
using the same notation as in the model formulation. Natural
gas-fired unit 2 couples the two systems. All of the pertinent
data are provided in an online supplement.! We examine
system operations in a base case as well as two additional
cases in which non-generation-related natural gas demands are
increased by 10% and 20% relative to the baseline.

Table I summarizes the objective-function values of the
three models and the corresponding objective-function gaps.
In all of the cases (with baseline and increased natural gas
demands), the eMISOCP outperforms the MISOCP by pro-
viding a more accurate estimate of the true cost of operating
the two systems. Fig. 4 shows, as a demonstrative example,
the values of Vi 3,, as defined by (35), in each of the
hours with natural gas demands that are 20% above baseline.
As expected, the eMISOCP results in significantly reduced
constraint violations compared to the MISOCP, which has
violations in all hours. Table II summarizes the values of Vg

Uhttps://doi.org/10.6084/m9.figshare.6025340.v1
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Gw(4) FL,Q,t

Fig. 3. System topology of the example in Section IV.

that are obtained from the eMISOCP across six iterations of
Algorithm 1. For comparison, the MISOCP yields a solution
with a value of Vg = 43.7%. These results show that the
eMISOCP outperforms the MISOCP in terms of average con-
straint violations. Moreover, Table II shows that Algorithm 1
obtains progressively better solutions with smaller constraint
violations as the value of € is reduced.

TABLE I
OBJECTIVE FUNCTION VALUES [$ MILLION] AND GAPS [%] FOR
EXAMPLE IN SECTION IV

Base Line 10% Higher 20% Higher
Model Value  Gap Value  Gap Value  Gap
MINLP 3.296 — 3.595 — 3.943  —
MISOCP 3.286 0.3 3.582 0.4 3.907 0.9
eMISOCP  3.296 0.0 3.593 0.1 3.933 0.3
09 T T T T T T T

[ MISOCP

0.8 |- |[_]eMISOCP J
0.7 q
0.6 4

S os |

=)

- 0.4 J
0.3 4
0.2 J
0.1 J

oL B NHN NN 10 ] ml N =l =122 =l =l6 I I I l |
123 456 7 8 9101112131415 1617 18 1920 21 22 23 24

t
Fig. 4. Violations of constraints (12) for natural gas pipeline connecting

nodes 1 and 3 in the example in Section IV.

The final solutions that are given by the MISOCP and
eMISOCP slightly violate the node-2 minimum natural gas-
pressure constraint in hour 12. The natural gas pressures that
are given by the MISOCP and eMISOCP solutions are 29.4 bar
and 29.9 bar, whereas the minimum pressure in 30 bar. If
Newton’s method is employed to obtain a feasible solution
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TABLE 11
AVERAGE VIOLATION OF CONSTRAINT SET (12) IN SOLUTIONS
OBTAINED FROM SIX ITERATIONS OF ALGORITHM 1 IN THE EXAMPLE IN

SECTION IV

Iteration Number € Vs [%]
1 — 13.4

2 0.50 5.3

3 0.25 2.5

4 0.20 1.9

5 0.15 1.5

6 0.10 1.2

from the MISOCP and eMISOCP, the resulting operating cost,
as measured by (1), is $3.299 million and $3.297 million,
respectively. This illustrates a further benefit of the proposed
eMISOCP, insomuch as feasibly operating the system using
the solution that is obtained from this model is less costly
than using the MISOCP solution.

Figs. 5 and 6 illustrate the interdependencies between
natural gas and electric LMPs and how the cost of oper-
ating the two systems are interrelated. Fig. 5 shows hourly
load-weighted natural gas LMPs that are obtained from the
eMISOCP. All three of the cases result in high LMPs in hours
9-12, which is more pronounced in the cases with higher
natural gas demands. The higher LMPs in the high-demand
cases are due to congestion in the natural gas system, which
results in unavoidable curtailment of natural gas demand. This
curtailment increases the operating cost of natural gas-fired
unit 2 during these hours, yielding the increased electric LMPs
that are shown in Fig. 6.

3000
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-------- +20% Natural Gas Demand
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Fig. 5. Load-weighted average natural gas LMPs obtained from applying
eMISOCP to the example in Section IV.

The high natural gas LMPs in hours 9-12 have a further
spillover effect, in that they reduce the use of natural gas-fired
generation. The case with baseline natural gas demands yields
about 19 GWh of natural gas-fired generation during the day
that is modeled. This is reduced to 17 GWh and 13 GWh in the
cases in which natural gas demands are 10% and 20% above
baseline, respectively. As such, natural gas-system congestion

400

Baseline Natural Gas Demand
= = +10% Natural Gas Demand
........ +20% Natural Gas Demand

w

IS

=)
T

.....

w

=]

S
T

o

ot

o
T

[
=
S

=

SN

S
T

—
o
IS

Load-Weighted Average Electric LMP [$/MWh]

L L
1 23 45 6 78 9101112131415161
t

I L
718 19 20 21 2

0

L
2 23 24

Fig. 6. Load-weighted average electric LMPs obtained from applying
eMISOCP to the example in Section IV.

restricts the use of natural gas-fired generation and increases
electric LMPs.

The three models are implemented in version 24.7 of the
GAMS mathematical modeling software package. The MINLP
is solved using DICOPT and the MISOCP and eMISOCP
are solved using CPLEX with default solver settings. All of
the models are solved on a computer with a 1.9 GHz Intel
Core processor and 4 GB of memory. The MINLP, MISOCP,
and eMISOCP require approximately 6.1 s, 1.3 s, and 7.3 s,
respectively, of wall-clock time to solve.

V. CASE STUDY

This section summarizes the results of a case study, which
consists of the IEEE 118-bus system, which is coupled with
the 48-node natural gas system that is shown in Fig. 7. Nodes,
natural gas supplies and loads, and power system nodes that
have natural gas-fired units (which couple the systems) are
labeled using the same notation that is used in the model
formulation. Natural gas compressors are represented by the
trapezoids. Natural gas-system data are obtained from the work
of Wu et al. [26]. The nine natural gas-fired units constitute
36% of the total generating capacity in the power system.

Tables III and IV and Fig. 8 summarize the relative perfor-
mance of the MISOCP and eMISOCP in terms of objective-
function value and constraint violations. Table III shows that
the eMISOCP yields a more accurate estimate of the cost of the
operating the two systems. Fig. 8 shows, as a representative
example, the constraint violations for all of the natural gas
pipelines in hour 15. The MISOCP yields a solution with
a value of Vg = 16.6%. Comparing this to the values that
are reported in Table IV further illustrates the performance of
the eMISOCP in reducing constraint violations. Overall, these
results show that the improved performance of the eMISOCP
carries over to this larger case study.

To further explore interactions between the two systems, we
consider three cases with different amounts of transmission
capacity available in the electric power system. Specifically,
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Fig. 7. Natural gas-system topology of the case study in Section V.
TABLE III
OBJECTIVE FUNCTION VALUES [$ MILLION] AND GAPS [%] FOR CASE
STUDY IN SECTION V

Model Value  Gap
MINLP 44.29 —
MISOCP 43.81 1.1
eMISOCP  44.21 0.2

we consider a base case, which corresponds to the IEEE 118-
bus system and two additional cases in which all branches
are assumed to have transmission capacities that are 20% and
40% below the baseline.

Fig. 9 shows day-ahead load-weighted electricity LMPs in
the three cases when the eMISOCP is used. The third case,
with 40% less transmission capacity relative to the baseline,
has the highest overall prices, due to extreme transmission
congestion. Fig. 10 shows the amount of natural gas-fired
generation in the three cases. Because natural gas is a relatively
expensive generation fuel (compared to coal), natural gas-fired
generators are only used in the case study when lower-cost
alternatives cannot be. Fig. 10 shows that transmission conges-
tion exacerbates the need to use natural gas-fired generation,
leading to the higher electric LMPs that are shown in Fig. 9.
The increased reliance on natural gas-fired units in the two
cases with lower transmission capacity leads to higher natural
gas LMPs, as shown in Fig. 11. Thus, the natural gas and
electric LMPs tend to increase together.

The case study is implemented using the same computa-
tional environment with which the example is. The MINLP,
MISOCP, and eMISOCP each require approximately 375 min-
utes, 41 minutes, and 105 minutes of wall-clock time, respec-

TABLE IV
AVERAGE VIOLATION OF CONSTRAINT SET (12) IN SOLUTIONS
OBTAINED FROM THREE ITERATIONS OF ALGORITHM 1 IN THE CASE
STUDY IN SECTION V

Iteration Number € Vs [%]
1 — 2.4
2 0.50 2.0
3 0.25 0.8
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Fig. 8. Violations of constraints (12) for all natural gas pipelines in hour 15
in the case study in Section V.
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Fig. 9. Load-weighted average electric LMPs obtained from applying
eMISOCP to the case study in Section V.

tively, to find a solution. Contrasting these computation times
with the example in Section IV shows that the MISOCP and
eMISOCEP scale better than the MINLP does. Moreover, use of
the eMISOCP introduces a tradeoff. While it provides higher-
quality solutions than the MISOCP, this entails an added
computational cost.

VI. CONCLUSION

This paper presents a unit commitment model that integrates
non-convex nonlinear natural gas-flow equations that capture
pipeline line-pack. We employ an enhanced convex relaxation
to make the model tractable while obtaining high-quality so-
lutions. The relaxation is obtained by using convex envelopes
of bilinear terms in the natural gas-flow equations. This allows
us to model ‘both sides’ of the equality. This can be contrasted
with other convexification techniques, which only include one
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Fig. 10. Natural gas-fired electricity produced as a percentage of total electric
load from applying eMISOCP to the case study in Section V.
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Fig. 11. Load-weighted average natural gas LMPs obtained from applying
eMISOCP to the case study in Section V.

of the two inequalities that equivalently define the natural gas-
flow equations. Electric and natural gas LMPs can be obtained
by fixing the binary variables to their optimal values and
employing a linearization of the non-linear flow equality. Test
results demonstrate that the proposed eMISOCP yields higher-
quality solutions compared to the MISOCP, especially as the
convex envelopes are tightened using Algorithm 1.

We investigate the interdependencies between prices in the
two systems. We find that congestion in one system can affect
prices in the other. Moreover, this effect can be bidirectional.
In the example in Section IV high natural gas demands force
curtailment of natural gas loads, which significantly increases
natural gas LMPs. This, in turn, makes natural gas-fired units
more expensive, decreasing their use while at the same time
increasing electric LMPs. These dynamics are reversed in the
case study in Section V. In the case study, natural gas-fired
units are relatively expensive and are only used to produce

energy if absolutely necessary (i.e., other lower-cost units are
capacitated or transmission congestion requires the use of
natural gas-fired units). Limited transmission capacity exactly
forces such increased use of the natural gas-fired units. This
increases both electric and natural gas LMPs (the latter effect
owing to increased demand for natural gas due to electricity-
production needs). Natural gas and electric power systems
are currently operated independently of one another. Thus,
our proposed model (and the existing literature to which
it adds) does not have a present-day user. However, our
and other works can be used to understand the importance
of co-ordinating the operation of the two systems and the
suboptimality (or potential reliability issues) that operating the
systems independently of one another raise. Such analyses will
be important formative steps in determining whether tighter
co-optimization of the two systems should be pursued.
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