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Abstract

Model-based diagnosis (MBD) is difficult to use in practice
because it requires a model of the diagnosed system, which
is often very hard to obtain. We explore theoretically how
observing the system when it is in a normal state can pro-
vide information about the system that is sufficient to learn
a partial system model that allows automated diagnosis. We
analyze the number of observations needed to learn a model
capable of finding faulty components in most cases. Then,
we explore how knowing the system topology can help us to
learn a useful model from the normal observations for settings
in which many of the internal system variables cannot be ob-
served. Unlike other data-driven methods, our learned model
is safe, in the sense that subsystems identified as faulty are
guaranteed to truly be faulty.

Introduction

Model-based diagnosis (MBD) is an approach for automated
diagnosis in which a model that describes the diagnosed sys-
tem’s expected behavior is assumed to be given as input.
This model is used to infer possible explanations – diag-
noses – for an observed abnormal system behavior. MBD is
a well-established, principled, approach for automated diag-
nosis that has been studied in the Artificial Intelligence liter-
ature for decades, and has been applied in practice (Williams
and Nayak 1996; Struss and Price 2003; Feldman et al.
2013). However, a key inhibitor to its widespread use is that
obtaining a model of the diagnosed system is often impossi-
ble or prohibitively expensive.

Spectrum-based fault localization (SFL) (Abreu,
Zoeteweij, and Van Gemund 2009; Gupta et al. 2014)
provides an alternative approach for diagnosis that does
not require modeling the system behavior. SFL considers
the observations collected at the time when the system
has failed, and finds diagnoses by “discovering statistical
coincidences between system failures and the activity of
the different parts of a system” (Abreu et al. 2009). While
SFL is lightweight, its diagnostic accuracy is inherently
limited compared to model-based approaches. Moreover,
SFL approaches do not improve over time, and the number
of observations required to obtain accurate diagnoses is
currently not fully understood.
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Learning approaches for diagnosis (Qin 2012; Keren,
Kalech, and Rokach 2011; Hafez, Ross, and Gadd 1997)
learn from observations of past failures how to map vari-
ous observed features to the correct diagnosis. These meth-
ods usually rely on having a set of abnormal observations,
each associated with its correct diagnosis. Since most sys-
tems function properly most of the time, obtaining a large set
of abnormal observations and their diagnosis is often very
difficult. Moreover, given that such observations are inher-
ently abnormal, the kinds of assumptions underlying data-
driven techniques, such as stationarity of the data, are ques-
tionable for diagnosis. By contrast, normal observations, i.e.,
observations in which the system is behaving as planned, are
easily obtained in practice. Indeed, systems often collect an
abundance of data while operating, to be used for monitor-
ing and optimization purposes. Such data contains valuable
information about the (mostly) normal behavior of the moni-
tored system. In this work we explore theoretically how such
data can be used for diagnostic purposes.

Our first contribution is a method for learning a par-
tial model from normal observations that can be used for
diagnosis. In particular, this partial model enables identi-
fying some components as surely faulty and other compo-
nents as probably normal, where surely faulty components
must be faulty and probably normal components cannot be
in any (minimal) diagnosis. Our learning method is safe, in
the sense that “surely faulty” components are indeed faulty,
in contrast to standard data-driven methods that cannot pro-
vide such a guarantee. As can be expected, the effectiveness
of this learned model strongly depends on how visible the
internal variables of the systems are, and on the number of
available normal observations. Our second contribution is
a statistical analysis of the number of normal observations
needed to learn an effective model. This novel form of sta-
tistical analysis draws from the well-known probably ap-
proximately correct (PAC) framework for analyzing learning
algorithms (Vapnik and Chervonenkis 1971; Valiant 1984;
Haussler 1992). Our main theoretical result is that under
several assumptions, the number of observations needed to
learn, with high probability, a model that will identify faults
in most cases is only linear in the number of components.
Our third contribution is a method for using knowledge
about the system topology, in addition to the set of nor-
mal observations, to learn a useful and more informed par-



tial model of the system. Here too, we provide theoretical
bounds relating the number of observations and properties
of the system topology to the probability of learning a model
that can identify faulty components in abnormal observa-
tions with high probability.

We demonstrate our learning approach on a Boolean
circuit from the standard ISCAS ’85 benchmark (Brglez,
Bryan, and Kozminski 1989), showing that with a single
probe and only 256 observations, we are able to find a faulty
component in 28% of the cases, and this percentage in-
creases rapidly. Importantly, our approach is not specific to
Boolean circuits, and it applies to any discrete-valued sys-
tem, and thus applies to the wide range of systems that can
be qualitatively modeled.

Background: Model-Based Diagnosis
There are three key entities in MBD: the set of system com-
ponents that comprise the diagnosed system (COMPS), a
model of the system (SD), and the observed system be-
havior (OBS). At a given point in time, each component
c ∈ COMPS is either healthy or faulty, represented by the
predicate h(c), which is true iff c is currently healthy. We
focus on systems in which the components perform some
function, i.e., each component accepts a set of values as in-
put and produces a single output (possibly vector-valued).
The relation between the input values and the output values
is referred to as the behavior of the component. The normal
behavior of c, i.e., the behavior when c is healthy, is denoted
by ϕh(c) and assumed to be deterministic, i.e., for the same
inputs we expect the same outputs. We briefly discuss how
to relax this assumption in the last section.

The system’s topology is a graph whose nodes are the
components and there is an edge from component ci to cj iff
at least one output of ci is an input of cj . We say that a sys-
tem model is behavioral if it contains information about the
behavior of the components in addition to the system topol-
ogy. A common behavior system model in the MBD litera-
ture is the weak fault model (WFM), in which we have rules
capturing the normal behavior (ϕh(·)) of all of the compo-
nents. The WFM system model SDWFM is given by:

SDWFM =
∧

c∈COMPS

(h(c) → ϕh(c)) (1)

The union of all the components’ inputs and outputs rep-
resent the set of system variables. The values of these vari-
ables may change over time. The system inputs, denoted
SYSINS, are all the components’ inputs that are not the out-
put of any component in the system. Thus, the values of the
system inputs are set externally by whoever is using the sys-
tem. The system’s internal variables are all the components’
inputs that are not system inputs, i.e., the inputs whose val-
ues are outputs of the system’s components. The system out-
puts, denoted SYSOUTS, are the components’ outputs that
are visible from outside the system. The internal variables
and the system outputs are not necessarily disjoint, as there
may be internal variables that are also exposed outside of
the system. Such internal variables are sometimes called
“probes”, and are especially useful for diagnosis. An obser-
vation is an assignment of values to SYSINS and SYSOUTS.

Internal variable D

H

G

I

A

B
System input

System output

FC

J

K

E

Observable 

subsystem

Figure 1: An illustration of a system. Rectangles are com-
ponents, lines connect outputs to inputs (going from left
to right), and circles are the system inputs and outputs.
The minimal observable subsystem of each system output
is marked with a dashed rectangle.

The vector of the values of SYSINS and SYSOUTS in an ob-
servation obs are denoted by in(obs) and out(obs), respec-
tively. The inputs and outputs of a component c in obs are
denoted by in(c, obs) and out(c, obs), respectively.

Figure 1 illustrates a system with 11 components, repre-
sented by rectangles, 3 system inputs (the inputs of A, B,
and C), represented by empty circles, and 4 system outputs
(the outputs of D, E, J , and K), represented by red cir-
cles. A line connecting the two components represents that
an output of the component on the left is an input to the
component on the right. An observation obs is thus an as-
signment of values to in(A, obs), in(B, obs), in(C, obs),
out(D, obs), out(E, obs), out(J, obs), and out(K, obs).
The outputs of components D and E are probes, since they
are system outputs and provide inputs to other components.

A diagnosis problem arises when there is an observation
obsab that indicates the system is behaving abnormally. The
task in consistency-based diagnosis is to find a hypothesis
about which components are faulty that is consistent with the
observation and with our knowledge of the system (Reiter
1987). Such a hypothesis is called a diagnosis, and is defined
as follows:

Definition 1 (Diagnosis). A set of components ω is a diag-
nosis iff

∧

c∈COMPS\ω

h(c) ∧ obsab ∧ SD 2 ⊥

A diagnosis is minimal iff no proper subset of ω is a diagno-
sis.

MBD algorithms accept SD, COMPS and obsab as input
and output one or more diagnoses. Minimal diagnoses are
often preferred, following Occam’s razor and due to the po-
tentially exponential number of possible diagnoses.1

Definition 2 (Conflict). A conflict is a set of components γ
such that

∧

c∈γ

h(c) ∧ obsab ∧ SD � ⊥

1Definition 1 follows the consistency-based approach to diag-
nosis. In abductive diagnosis, the diagnosis is derived from (as op-
posed to only being consistent with) obsab and SD (Console and
Torasso 1991), and is beyond our scope.



Conflicts are useful in diagnosis because every diagno-
sis is a hitting set of all conflicts (Reiter 1987). Conflict-
directed MBD algorithms find diagnoses by searching in the
space of possible hitting sets of the found conflicts (Williams
and Ragno 2007; de Kleer and Williams 1987; Reiter 1987).
Roughly speaking, finding conflicts, and in particular min-
imal ones, helps to speed up conflict-directed MBD algo-
rithms as it reduces the size of their search space.

Model-based Diagnosis without a Model

In this work, we study a setting in which the system model
SDWFM is not available to the diagnostician. Instead, a set of
normal observations is available, collected when the system
was working properly. Thus, they represent observations of
the system when all of its components were healthy. We now
show how these observations can help us find faulty compo-
nents, and provide a statistical analysis of how likely this
approach is to succeed.

Full Probing

The first setting we analyze is where the output of every
component is also a system output, i.e., ∀c ∈ COMPS we
have that out(c) ∈ SYSOUTS. We refer to this setting as full
probing, since it corresponds to putting a probe after every
component. Probing components may be very costly and im-
practical in many scenarios, but we analyze this setting first
as a step towards the partial probing settings analyzed later
in this paper.

Let OKS denote the given set of normal observations. The
partial model we can learn in the full probing setting from
OKS is a conjunction of statements about how each compo-
nent is expected to behave when healthy. To formalize this,
we introduce the predicate f(c, i, o), which represents the
following statement: if the input vector to component c is i
then its output vector must be o. The partial model we can
learn in the full probing setting, denoted SDFP , is given by

∧

obsOK∈OKS,
c∈COMPS

(

h(c) → f
(

c, in(c, obsOK), out(c, obsOK)
)

)

(2)
SDFP states that if a component is healthy and it receives

the same input values as it had in one of the normal obser-
vations, then we expect it to output the same value as it had
in that observation. SDFP can be viewed as an incomplete
version of SDWFM, as follows.

Proposition 1. SDWFM |= SDFP

Proof. SDFP describes the normal behavior of all com-
ponents for a subset of their possible input values, while
SDWFM describes the normal behavior of all components
for all possible input values. Thus, for every observation
obs and normal observation obsOK ∈ OKS it holds that
ϕh(c) → f(c, in(c, obsOK), out(c, obsOK)). Thus, (1) en-
tails (2) as required.

One can compute diagnoses and conflicts with respect to
this partial model (see Definitions 1 and 2), but will these di-
agnoses and conflicts be useful? The following general ob-
servation, which follows from the definitions of diagnoses

and conflicts (Def. 1 and 2), describes the relationship be-
tween conflicts and diagnosis of SDWFM and SDFP .

Proposition 2. For every pair of system models SD and
SD′ and an abnormal observation obsab, if SD |= SD′

then (1) a conflict w.r.t. SD′ is a conflict w.r.t. SD, and (2)
a diagnosis w.r.t. SD is a diagnosis w.r.t. SD′.

A diagnosis w.r.t. SDFP may not be a diagnosis for
SDWFM. For example, if we do not have any normal obser-
vations, then SDFP is empty, and consequently assuming
all components are healthy is a diagnosis w.r.t. SDFP in this
case. Clearly, this is not desirable. In general, in this work we
consider SDWFM as a reference, and unless stated otherwise
use the term diagnosis to refer to diagnoses w.r.t. SDWFM.

Definition 3 (Surely Faulty and Normally Behaving). A
component c has a surely normal input in obsab if ∃obs ∈
OKS such that in(c, obs) = in(c, obsab). A component c
with a surely normal input in obsab is called surely faulty if
out(c, obsab) 6= out(c, obs) and is called normally behav-
ing otherwise.

That is, a surely faulty component is one that has the same
inputs in the abnormal observation obsab as in some other
normal observation obs ∈ OKS, but has a different output.
Since we assume components are deterministic when they
are healthy, a surely faulty component c cannot be healthy.
Thus, c represents a conflict w.r.t. SDFP and, due to Propo-
sition 2, also w.r.t. SDWFM.

Normally behaving components serve a different purpose.
All we know about these components is that they behaved in
obsab just like they did in a normal observation. Faulty com-
ponents can behave intermittently, i.e., behave as healthy
components in some observations (de Kleer 2009). Thus, a
normally behaving component may actually be faulty. How-
ever, since it followed its normal behavior in obsab, assum-
ing it is faulty does not help explaining the abnormal system
behavior. The following observation summarizes the above
discussion.

Proposition 3. Every diagnosis must contain all of the
surely faulty components, and every diagnosis that contains
a normally behaving component is not minimal.

Proposition 4 (At least one surely faulty). If there is obs ∈
OKS such that in(obs) = in(obsab) then we will find at
least one component that is faulty.

Proof. Since obs and obsab have exactly the same input,
obsab is abnormal, and we observe every input and output
of every component, then there must be at least one compo-
nent that has a surely normal input and its output is different
from its normal output for that input. Thus, this component
is surely faulty.

Example. Consider the simple Boolean circuit depicted in
Figure 2. Now, assume we are given one normal observation
obs = {i1 = 1, i2 = 1, z1 = 0, z2 = 0, o = 0} and an ab-
normal observation obsab = {i1 = 1, i2 = 1, z1 = 1, z2 =
0, o = 1}. The only diagnosis w.r.t. SDWFM is {A,C}. With
the learned model, we can infer that A is surely faulty and B
is normally behaving, since both have surely normal inputs.
C does not have a surely normal input, so we cannot classify
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Figure 2: A simple Boolean circuit demonstrating Prop. 3.

it as either surely faulty or normally behaving. This high-
lights that while the set of surely faulty components must be
faulty, it is not necessarily a diagnosis. In fact, there may be
diagnoses that cannot be found using only normal observa-
tions.

Nonetheless, a direct implication of Proposition 4 is that
given a sufficient number of normal observations, we will be
able to find at least one faulty component for every diagnosis
problem.

However, in non-trivial systems, the set of all possible
combinations of system input values is extremely large. A
key question is how many normal observations are needed
to be able to find a faulty component in most diagnosis prob-
lems. We analyze this in the next section.

Distribution of Normal System Inputs In the following
analysis we focus on faults that are caused by malfunctions
in the components themselves, and not due to abnormal sys-
tem inputs. That is, we assume that the system inputs of
obsab are standard system inputs. Another assumption we
make is that the system inputs in each of the given obser-
vations – normal and abnormal – are drawn independently
from the same distribution, denoted by D.

In the normal observation, this distribution over the sys-
tem inputs induces a distribution over the input values for
every component c, denoted Dc. Let P (c, i) be the probabil-
ity of component c getting input i in a normal observation
according to Dc. We denote the domain of possible input
values for component c by dom(c, in) and the largest do-
main size by V , i.e., V = maxc∈COMPS |dom(c, in)|.

Lemma 1 (Common Inputs). For every system with n com-
ponents and every ǫ, δ ∈ (0, 1), after observing

m ≥
1

ǫ
ln

n · V

δ

normal observations, then with probability at least 1 − δ
we have observed every input value i for every component c
such that P (c, i) ≥ ǫ.

Proof. Consider an input value i for a component c in a nor-
mal observation such that P (c, i) ≥ ǫ. Since each observa-
tion is independent, the probability that we do not observe i
in any of the m observations is at most

(1− ǫ)m ≤ (1− ǫ)
1

ǫ
ln

n·V

δ ≤ e− ln
n·V

δ =
δ

n · V
(3)

By a union bound over the at most n ·V pairs of components
and input values, we have that with probability 1− δ, every
component c and input value i for which P (c, i) ≥ ǫ will be
observed in one of the m normal observations

Theorem 1. Given an abnormal observation obsab and m
normal observations, where m ≥ 1

ǫ
ln n·V

δ
, then with proba-

bility at least 1− δ, the learned model SDFP is sufficient to
identify at least one surely faulty component with probability
at least 1− ǫ.

Proof. The scope of a component c, denoted scope(c), is
the set of components that affect its input, i.e., have a path
to c in the system’s topology. Since obsab is an abnormal
observation and we assumed the system inputs are normal,
then there is at least one faulty component cf such that its
scope is either empty or contains only healthy components
(h(c′) for every c′ ∈ scope(cf )), and (2) its output is dif-
ferent from its normal output, i.e., ϕh(cf )∧ in(cf , obsab)∧
out(cf , obsab) |= ⊥.

If cf has a surely normal input in obsab, then it must
be surely faulty (Definition 3), and thus using SDFP we
can immediately identify that cf is faulty. If cf does not
have a surely normal input, then there is a component c ∈
scope(cf ) for which there is no normal observation obs
where in(c, obs) = in(c, obsab). Following Lemma 1, this
means P (c, in(c, obsab)) < ǫ, i.e., this event occurs with
probability smaller than ǫ.

Note that the number of normal observations required
grows only logarithmically with the number of system com-
ponents (and linearly with the fan-in). For example, consider
a system that consists of 100 Boolean gates, each having
a fan-in of 2. Assume we wish to learn, with probability
at least 0.9, sufficient information to allow us to identify a
faulty component in at least 0.9 of the observations. This
corresponds to setting V = 22 = 4, n = 100, δ = 0.1, and
ǫ = 0.1. Thus, the number of normal observations required
is 1

0.1
· ln 400

0.1
≈ 83 normal observations. Increasing the sys-

tem size from 100 components to 1,000 components requires
106 normal observations, which is slightly more than 20%
more observations than the result for 100 components.

Partial and No Probing

Next, we analyze the setting where we do not observe the
outputs of all of the components. Consider first the extreme
case where we have no internal probes, i.e., there is no sys-
tem output that is also an input to some other component. We
refer to this as the no probing setting. To determine whether
a component is surely faulty or surely normal for a given
observation, we must be able to observe both its inputs and
some of its outputs. We refer to such a component as a ob-
served component. There are no observed components in a
no probing setting.2 Between full probing and no probing
is the partial probing setting, in which only a subset of the
components are observed. The system description SDFP in
the partial probing setting is defined as in Eq. 2, but the con-
junction is only over the observed components. Thus, in the
no probing setting SDFP is empty, and we cannot use it to
infer diagnoses.

2Strictly speaking, a system can contain components that are
not connected to any other component. Such components, are, in
fact, observed components, and thus can be identified as surely
faulty even without probes.



In the partial probing setting and given enough normal
observations, we may be able to identify the observed com-
ponents as surely faulty or normally behaving in a given
abnormal observation. However, it is not clear how likely
is it for such identification to occur. The statistical analysis
given for the full probing setting does not transfer nicely to
the partial probing setting. Lemma 1 by itself is still true
in partial probing: given a sufficient number of examples
(m ≥ 1

ǫ
ln n·V

δ
), with high probability (≥1-δ) we observe

every common (P (c, i) ≥ ǫ) input value of each compo-
nent. However, since we do not observe the inputs of all of
the components, we cannot estimate how likely we are to be
able to identify a surely faulty component in an abnormal
observation (Theorem 1). The key difference between the
full and partial probing settings is that in partial probing we
may not have a component that outputs an abnormal value
and has a surely normal input, since some of the components
in a partial probing setting are not observed.

Using Topology and Normal Observations

So far, we have ignored an important and commonly avail-
able source of information about the system: its topology.
Lamperti and Zanella (2012) explored how system topology
can be used to perform consistency-based diagnosis and how
it relates to MBD with a behavioral model. Here we extend
their discussion to consider diagnosis with normal observa-
tions and a topology.

The system topology allows us to extend the notion of a
observed component to an observed subsystem. A subsys-
tem is a connected induced subgraph of the system topology
G. The inputs of a subsystem S are the set of inputs of the
components in S that are either system inputs or are outputs
of components that are not in S. The subsystem outputs are
defined in a similar way.

Definition 4 (Observed Subsystem). An observed subsystem
is a subsystem in which all its inputs and at least one of its
outputs are either system inputs or system outputs.

Note that an input of an observed subsystem can be a sys-
tem output. The key property of an observed subsystem is
that all the inputs and at least one of its outputs must be ob-
servable (i.e., given in an observation).

Figure 1 shows several of the observed subsystems that
exist in the depicted system. For example, the set of compo-
nents {G,H, J} forms an observed subsystem with inputs
from D E and outputs from J .

Let S be the set of all observed subsystems of the diag-
nosed system. This set allows us to extend the model we can
learn from normal observations described in Eq. 2, to the
following model, denoted by SDS :

∧

S∈S,
obsOK∈OKS

(

(
∧

c∈S

h(c)
)

→ f
(

S, in(S, obsOK), out(S, obsOK)
)

)

(4)

where in(S, obsOK) and out(S, obsOK), are the input and
output values of S, respectively, in obsOK , and f is general-
ized in the natural way from components to subsystems.

One can adapt SDFP from the full probing setting to par-
tial probing, by including only the clauses in Eq. 2 that con-
sider observed components. However, such a system model
will be less powerful than SDS since every observed com-
ponent is, in fact, an observed subsystem where the sub-
system contains a single component. Since SDS still only
describes the normal behavior of the components, it is still
weaker than SDWFM, in the sense that SDWFM → SDS .

The concepts of surely faulty components and normally
behaving components can be adapted to the subsystem level:
a surely faulty subsystem and a normally behaving subsys-
tem are subsystems that have a surely normal input in obsab
and whose outputs are different and the same, respectively.

Proposition 5. Every diagnosis must contain at least one
member from every surely faulty subsystem.

Proof outline: A surely faulty subsystem is a conflict
w.r.t. SDS , as it follows by induction: if all subsystems are
healthy and all inputs are normal, then the output should also
be normal; contrapositively, if the output is abnormal but the
inputs are normal, then there must be a faulty component.

Minimal Observed Subsystem

The set of all observed subsystems (S) is never empty, as ev-
ery system output induces at least one observed subsystem.
In fact, in a full probing setting S can even be exponential in
the number of components. Thus, we focus on the set of min-
imal observed subsystems, where an observed subsystem S
is minimal if no proper subset of S is also an observed sub-
system. We denote this set of subsystems by Smin. Every
system output o has a corresponding minimal observed sub-
system, defined by going backwards on the system topology
until reaching either a system output or the system inputs. In
fact, Smin is exactly the set of all these subsystems. Figure 1
shows, in dashed lines, all the subsystems in Smin for the ex-
ample system. Note that Smin can be found in polynomial
time as described above, and it contains at most |SYSOUTS|
subsystems. Next, we show that this set is sufficient for di-
agnostic purposes and there is no need to find all of the ob-
served subsystems.

Let SDSmin
be the subset of the system model SDS that

uses only the minimal observed subset in Smin.

Proposition 6. SDSmin
≡ SDS

Proof outline: Since Smin ⊆ S , then SDS |= SDSmin
.

To prove the other direction, we observe that a non-minimal
observed subsystem S is equivalent to a union of the set of
minimal observed subsystems that correspond to the outputs
of S. Thus, the statement in SDS added due to S can be
derived from the set of statements added to SDSmin

due to
S’s constituent minimal observed subsystems.

The set of observable subsystems to which a component
belongs provides additional, useful information:

Proposition 7. If every observable subsystem that a compo-
nent c belongs to is normally behaving, then any diagnosis
that contains c is not minimal.

The proof is omitted due to space constraints.



m\P 1 4 8 16 Full (57)

4 0.01 (6.9) 0.05 (2.3) 0.09 (2.1) 0.18 (1.7) 0.67 (0.0)
16 0.05 (9.6) 0.12 (5.2) 0.20 (4.4) 0.35 (3.1) 0.95 (0.0)
64 0.13 (9.5) 0.21 (6.6) 0.37 (5.6) 0.56 (4.3) 1.00 (0.0)

256 0.30 (12.4) 0.38 (9.6) 0.55 (7.5) 0.72 (5.7) 1.00 (0.0)
1024 0.52 (16.6) 0.57 (13.1) 0.70 (9.5) 0.83 (7.2) 1.00 (0.0)
2048 0.62 (18.9) 0.66 (15.3) 0.76 (10.7) 0.87 (7.8) 1.00 (0.0)
4096 0.75 (21.0) 0.78 (17.3) 0.86 (12.1) 0.93 (8.7) 1.00 (0.0)

Table 1: Experimental results on the 74181 system.
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Figure 3: Fault detection rate for the 74181 system with 4
probes and 1, 2, and 3 injected faults.

Statistical Analysis

The system model SDSmin
allows us to extend Theorem 1

to consider the system topology, making it also applicable
for any probing setting (full, partial, or none).

Theorem 2. Let VSmin
denote the size of the largest domain

for the input of a minimal observable subsystem. Given

m ≥
1

ǫ
ln

|SYSOUTS| · VSmin

δ

normal observations, with probability at least 1 − δ, the
learned model SDSmin

is sufficient to identify at least one
surely faulty minimal observed subsystem with probability
at least 1− ǫ.

The proof of this theorem follows the proof of Theorem 1
and Lemma 1 exactly, where the only change needed is that
instead of the number of components n we have the number
of system outputs |SYSOUTS|, and instead of the size of the
largest domain for a component’s input V we have VSmin

.

Experimental Results

As a proof-of-concept, we implemented our diagnosis al-
gorithm and ran it on system 74181 from the ISCAS ’85
Boolean circuit benchmark (Brglez, Bryan, and Kozminski
1989). This system has 65 components, 14 inputs, and 8 out-
puts. We created training sets by setting uniform-random in-
puts to the system. In each trial, we injected faults randomly
to the system, ran our diagnosis algorithm, and checked if
the injected fault was identified as part of a surely faulty
subsystem. We varied the size of the training set (4, 16, 64,
256, 1024, 2048, and 4096) and the number of probes (1, 4,
8, 16, and 57, where 57 means full probing for this system).
Table 1 shows the proportion of trials out of 100 where the
learned model was able to identify the failed component. We

show the average number of other components that were in
the same observable subsystem as the faulty component in
parentheses. The size of the training set varies across rows,
and the number of probes varies across columns. Our re-
sults are incomparable to that of MBD algorithms that know
the system’s model. However, as expected, more probes and
larger training sets increase the likelihood that our algorithm
will detect the fault. Although the system has 14 inputs (214

possible input vectors), with full probing and only 256 train-
ing instances we always found exactly the faulty component.
Even with only 8 probes, our algorithm found the faulty
component in more than half (55%) of the cases. Due to the
system topology, in 30% of the problems even one probe is
sufficient to identify a set of fewer than 13 components (on
average) that contain the faulty component. Observe that for
the same number of probes, adding more observations re-
sults in identifying more surely faulty subsystems in more
instances. Consequently, the number of components in ob-
served subsystems identified as surely faulty also increases.

Figure 3 plots the ratio of cases where a surely faulty min-
imal observed subsystem was found (on the y axis) as a func-
tion of the training size (on the x-axis), for the 74181 system
with four probes when injecting one, two, and three faults.
As can be seen, our approach is not limited to observations
with a single fault and works well for faults of higher cardi-
nality. In fact, having more faults increases the chances that
a surely faulty minimal observed subsystem will be found.

We also performed some preliminary experiments on the
c3540 system, which is significantly larger than 74181 – it
has over 1500 components, 50 system inputs and 22 system
outputs. With 4,096 normal observations and only 4 probes
our algorithm was able to identify a surely faulty component
in over 27% of the cases.

Related Work

Niggemann et al. (2012) proposed a method for learning be-
havioral models of a system described by a hybrid timed au-
tomaton, but the learned model was used for fault detection
and not for diagnosis (fault isolation). Feldman et al. (2015)
proposed an algorithm for learning how to construct a hybrid
model from a set of models of different fidelity. Preliminary
work by Sadov et al. (2010) studied how to test the system
in order to efficiently learn a model for diagnosis. We do not
assume the ability to test the system, and only infer a partial
model from a given set of observations. Also, we exploit the
system topology, which they did not.

Approximate MBD has been studied in the Fault Detec-
tion and Isolation (FDI) community, based on Fuzzy mod-
els (Dexter and Benouarets 1997; Mendonça, Sousa, and
da Costa 2009) and other ways to capture how the system
description can be inaccurate (e.g., robust FDI) (Chen and
Patton 2012; Frank and Ding 1997). We do not assume a-
priori knowledge about the inaccuracy of the model, and,
unlike these prior works, propose a framework that supports
logic-based reasoning over the model. Juba (2016) proposed
a method for PAC-learning of abductive reasoning that could
in principle be used for diagnosis, extended to partial ob-
servations by Juba et al. (2018). But, this approach requires



that the training set contains both normal and abnormal ob-
servations. In contrast, we do not need to train on abnormal
observations. The notion of a surely faulty subsystem is re-
lated to the discussion of partial diagnoses by Shchekotykin
et al. (2016). A partial diagnosis is a diagnosis that is created
by a hitting set of a subset of all minimal conflicts. Thus, a
partial diagnosis may or may not be correct. By contrast, a
surely faulty component must be faulty, but it may not be a
diagnosis in the sense that it may not explain all of the ab-
normal behavior we currently observe. Deriving partial di-
agnoses from normal observations is a topic for future work.

Grouping components into a set of minimal observable
subsystems bears some resemblance to the system abstrac-
tions (Stern, Kalech, and Elimelech 2014; Siddiqi and
Huang 2011; Sachenbacher and Struss 2005; Torta and
Torasso 2003). The set of minimal observed subsystems,
however, does not create a disjoint partition over the compo-
nents, i.e., there are components that are part of more than
one minimal observed subsystem (e.g., B in Figure 1).

Casanova et al. (2014) considered how to bound the lim-
its of diagnostic accuracy given partial probing. They as-
sumed a distribution over possible inputs and showed how
to infer from this knowledge which components can be iso-
lated if faulty and which components are indistinguishable.
This is somewhat similar to our notion of observable sub-
system. They did not relate the number of available obser-
vations to diagnostic accuracy. Also, their work was focused
on diagnosis engines based on spectrum based fault local-
ization (SFL). Diagnosis based on SFL does not use a model
of the system components’ behavior, and considers instead
only which components were used when the abnormal be-
havior was observed.

Conclusion and Discussion
We provide a theoretical foundation for diagnosis using only
normal observations, system topology, and probes if avail-
able. We showed how to learn a partial system model from
this information, and how to use it to for diagnosis. Our ap-
proach is unique in that the learned model is safe, in the
sense that conflicts extracted from it are conflicts that would
have been extracted if we knew the system’s model. The
number of observations needed to obtain an effective partial
model is analyzed, and a small experimental proof of con-
cept is reported, suggesting that our method is applicable.

The analysis in Theorems 1 and 2 only guarantees that
we find one surely faulty observed subsystem, even in mul-
tiple fault scenarios. However, our approach can sometimes
detect more than a single fault. This occurs when multiple
observed subsystems are detected as surely faulty, and these
observed subsystems have no overlap. Analyzing the num-
ber of observations and probing needed to identify a com-
plete multiple fault diagnosis is a topic for future work. An-
other direction for future work is to incorporate other meth-
ods for detecting faulty outputs that can be used to identify
more subsystems as surely faulty.

In this paper, we made several significant assumptions.
We now discuss approaches for relaxing them.
Deterministic Normal Behavior. If a component may out-
put different values in two different observations even if

it received the same inputs and it is healthy, it has a
non-deterministic normal behavior. To capture such a non-
deterministic behavior formally, for every component c we
define a relation Rc that is the set of all the input-output
pairs that are normal. If we assume that the normal behav-
ior of the system components is stationary, i.e., the choice
of output for a given input follows some stationary distribu-
tion, then we can adapt our theoretical results by replacing
the size of the input domain (V in Theorem 1) with the size
of the relation Rc. Notably, we can never fully establish a
component is surely faulty, but we can establish that it is
faulty with high probability.

We stress that this approach cannot diagnose faults with
respect to a probabilistic specification. As an extreme case,
suppose that one of our components is supposed to output
an unbiased random bit, but it outputs 0 with probability 1.
It is faulty with respect to our specification, but we cannot
diagnose this from a single observation of the system, even
with full probing. Many observations of this faulty behavior
are needed to have any hope of detecting it.

Faults due to Abnormal Inputs. Faults may occur due to
abnormal or illegal system inputs, and not faulty compo-
nents. This means the correct diagnosis may be that a system
input was illegal. We can model this setting by considering
every system input as a “buffer” component: when healthy,
it outputs normal system inputs, and when faulty it does not.
Thus, our analysis is fundamentally the same.

Cyclic System Topology. In some systems there is no clear
notion of components’ inputs and outputs, and components
may affect each other in both directions. Thus, a proper anal-
ysis of the system’s behavior requires a temporal aspect, to
represent the propagation of values in the system (Feldman
and de Kleer 2017). Learning a model from normal observa-
tions over time is an exciting direction for future work.

Components with a Continuous Domain. The analysis in
Theorems 1 and 2 implicitly assumes that the components’
input domain is discrete, as otherwise it has an infinite num-
ber of possible values. However, various methods have been
proposed to learn functions over continuous-valued inputs
(and with continuous-valued outputs). For example, strong
generalization bounds have been proved for the Rademacher
complexity (Bartlett and Mendelson 2002), and analyses of
the Rademacher complexity have been given by Kakade et
al. (2009) for the many common kinds of real-valued func-
tions that can be viewed as linear functions. Thus, it may be
possible to derive polynomial sample complexity bounds for
our problem from these works given some a-priori knowl-
edge about the range of normal behaviors (ϕh(c)), e.g., some
parametric model for the healthy components.
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