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Abstract
We consider the maintenance of the set of all maximal cliques in a dynamic graph that is changing through the addition or
deletion of edges. We present nearly tight bounds on the magnitude of change in the set of maximal cliques when edges are
added to the graph, as well as the first change-sensitive algorithm for incremental clique maintenance under edge additions,
whose runtime is proportional to the magnitude of the change in the set of maximal cliques, when the number of edges added
is small. Our algorithm can also be applied to the decremental case, when edges are deleted from the graph. We present
experimental results showing these algorithms are efficient in practice and are faster than prior work by two to three orders
of magnitude.

Keywords Graph mining · Maximal clique · Incremental algorithm · Dynamic graph

1 Introduction

Graphs are widely used in modeling linked data, and there
has been tremendous interest in efficient methods for find-
ing patterns in graphs, an area often called “graph mining.”
A fundamental task in graph mining is the identification of
dense subgraphs, which are groups of vertices that are tightly
interconnected.

Many applications need to identify dense subgraphs from
an evolving graph that is changing with time as new edges
are added and old edges are deleted. Examples include real-
time identification of stories from Twitter [1] throughmining
dense subgraphs from an evolving graph on entities, and
the maintenance of common intervals among genomes [6]
through mining maximal cliques in an appropriately defined
dynamic graph. More broadly, identifying dense structures
in a graph is applicable to any task that needs to identify
and analyze communities with a network, such as the analy-
sis of communities among users in microblogging platforms
[23], identification of groups of closely linked people in a
social network [19,28,31], identification ofweb communities
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[18,27,38], and even in the construction of the phylogenetic
tree of life [11,39,52].

Most current methods for identifying dense subgraphs
are designed for a static graph. Suppose we used a method
designed for a static graph to handle a dynamic graph. If
the input graph changes slightly, say, by the addition of a
few edges, it is necessary to enumerate all dense subgraphs
all over again, even though the set of dense subgraphs may
have only changed slightly due to the addition of the new
edges. This repeated and redundant work is a source of seri-
ous inefficiency, so that methods designed for static graphs
are not applicable to a graph that is changing frequently.
Different methods are needed, which can handle changes to
a graph more efficiently. From a foundational perspective,
identifying dense structures in a graph has been a problem
of long-standing interest in computer science, but even basic
questions remain unanswered on dynamic graphs.

We consider themaintenance of the set ofmaximal cliques
in a dynamic graph. The maximal clique is perhaps the most
fundamental and widely studied dense subgraph. Let G =
(V , E) be an undirected unweighted graph on vertex set V
and edge set E . A clique in G is a set of verticesC ⊆ V such
that any two vertices in C are connected to each other in G.
A clique is called maximal if it is not a proper subset of any
other clique. Let C(G) denote the set of maximal cliques in
G. Many applications benefit from efficient maintenance of
maximal cliques in a dynamic graph, such as described in the
work of Chateau et al. [6] on maintaining common intervals
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Fig. 1 Change in maximal cliques due to addition of edges. On the left
is the initial graph G with maximal cliques {1, 2, 5} and {2, 3, 4}; on
the middle is the graph G ′ after adding edges (3, 5) and (4, 5) to G
resulting in new maximal clique {2, 3, 4, 5} and only subsumed max-

imal clique {2, 3, 4}; on the right is the graph G ′′ after adding edges
(1, 3) and (1, 4) to G ′ resulting in new maximal clique {1, 2, 3, 4, 5}
and subsumed cliques {1, 2, 5} and {2, 3, 4, 5}

among genomes, Duan et al. [12] on incremental k-clique
clustering, Hussain et al. [22] on maintaining the maximum
range-sum query over a point stream.

Suppose that we started from a graph G = (V , E)

and the state of the graph changed to G ′ = (V , E ∪ H)

through an addition of a set of new edges H to the set
of edges in the graph G. See Fig. 1 for an example. Let
Λnew(G,G ′) = C(G ′)\C(G) denote the set of maximal
cliques that were newly formed when going from G to G ′,
and Λdel(G,G ′) = C(G)\C(G ′) denote the set of cliques
that were maximal in G but are no longer maximal in G ′. Let
Λ(G,G ′) = Λnew(G,G ′) ∪ Λdel(G,G ′) denote the sym-
metric difference of C(G) and C(G ′). We ask the following
questions:

– How large can the size ofΛ(G,G ′) be? To systematically
study the problem of maintaining maximal cliques in a
dynamic graph,wefirst need to understand themagnitude
of change in the set of maximal cliques.

– What are efficient methods to compute Λ(G,G ′)? Can
we compute Λ(G,G ′) quickly in cases when the size of
Λ(G,G ′) is small, and take longer when it is large? Do
these methods scale to large graphs?

1.1 Contributions

(A) Magnitude of Change in the Set of Maximal Cliques:
We present a tight analysis of the magnitude of change in the
set of maximal cliques in a graph, when a set of edges are
added. When a set of edges H is added to graph G = (V , E)

resulting in graph G ′ = G ∪ H = (V , E ∪ H).

(A.1) Wepresent nearlymatching upper and lower bounds on
the maximum size ofΛ(G,G∪H), taken across all possible
graphs G and edge sets H . Let f (n) denote the maximum
number of maximal cliques in a graph on n vertices. A result
of Moon and Moser [34] shows that f (n) is approximately
3n/3. We show that by the addition of a small number of
edges to the graph G on n vertices, it is possible to cause a
change of nearly 2 f (n) ≈ 2 · 3n/3. We also note that this is

an upper bound on the magnitude of Λ(G,G ′). We present
this analysis in Theorem 3.

(A.2) We encountered an error in the 50-year-old result of
Moon andMoser [34] on the number of maximal cliques in a
graph, which is directly relevant to our bounds on the change
in the set of maximal cliques. We present our correction to
their result in Observation 1.

It is easy to see that the set of maximal cliques can change
by very little upon the addition of edges. For instance, adding
a single edge between two vertices that are part of different
components can lead to only a single new maximal clique
being added (the clique consisting of a single edge), and no
maximal cliques subsumed, so that the total change in the set
of maximal cliques is 1. Thus, we note that the magnitude of
the change can vary significantly from one input instance to
another.

(B) Algorithm for Maintaining Maximal Cliques: We
present incremental and decremental algorithms for main-
taining the set of maximal cliques of a dynamic graph. We
describe our results on incremental algorithms. Results for
decremental algorithms are similar. The key algorithmic con-
tributions in this work are as follows:

(B.1) We present algorithms that take as input G and H , and
enumerate the elements of Λ(G,G ′) in time proportional
to the size of Λ(G,G ′), i.e., the magnitude of the change
in the set of maximal cliques. We refer to such algorithms
as change-sensitive algorithms. To our knowledge, these are
the first provably change-sensitive algorithms for maintain-
ing the set of maximal cliques in a dynamic graph. The time
taken for enumerating newly formed cliques Λnew(G,G ′)
is O(Δ3ρ|Λnew(G,G ′)|) where Δ is the maximum degree
of a vertex in G ′ and ρ is the number of edges in H . The
time taken for enumerating subsumed cliques Λdel(G,G ′)
is O(2ρ |Λnew(G,G ′)|). Note that when ρ, the size of a batch
of edges, is logarithmic in Δ, the cost of enumerating sub-
sumed cliques is of the same order as that of enumerating
new cliques.
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Our algorithm for enumerating the change (in the set of
maximal cliques) is based on an exploration of a carefully
chosen subgraph ofG that is local to the set of edges that have
been added. Importantly, it does not iterate through exist-
ing maximal cliques in the graph to enumerate the change,
either for enumerating newmaximal cliques, or for subsumed
maximal cliques. The key aspect of the algorithm is that
through exploring this subgraph, it is able to directly “zero
in” on maximal cliques that have changed (either added or
subsumed). This approach reduceswasteful effort in enumer-
ation,when compared to an approach that iterates through the
set of existing maximal cliques. Based on our theoretically
efficient algorithms, we present a practical algorithm IMCE
for enumerating new and subsumed cliques, and an efficient
implementation.

(B.2) Our methods extend to the decremental case, to handle
deletion of edges from the graph. They can also be applied
to the fully dynamic case, where the change includes both
the addition and deletion of edges from the graph. However,
the fully dynamic case is not provably change-sensitive, as
discussed in Sect. 4.4.

(C) Experimental Evaluation We present empirical evalu-
ation of our algorithm using real-world dynamic graphs as
well as synthetic graphs. Our experimental study shows that
IMCE can enumerate change in maximal cliques in a large
graph with the order of a hundred thousand vertices and mil-
lions of edges within a few seconds. Our comparison with
prior and recent works shows that IMCE significantly out-
performs prior solutions, including the ones due to Stix [42],
Ottosen and Vomlel [37], and Sun et al. [43]. For example,
on the flickr-growth graph, our algorithms are faster
than those in [37,42,43] by a factor of more than a thousand.
On the flickr-growth graph, in order to maintain the
set of maximal cliques over the insertion of 250 batches of
100 edges each, IMCE took about 40 ms, while prior tech-
niques took anywhere from 5min to 2h. Further details are
in Sect. 6.

1.2 Prior and related work

Maximal Clique Enumeration in a Static Graph. There is
substantial prior work on enumerating maximal cliques in a
static graph, starting from the algorithm based on depth-first
search due to Bron and Kerbosch [4]. A significant improve-
ment to [4] is presented in Tomita et al. [48], leading to
worst-case optimal time complexity O(3n/3) for an n-vertex
graph [34]. Another work on refinements of [4,48] includes
[25], who presents several strategies for pivot selection to
enhance the algorithm in [4], and a fixed parameter tractable
algorithm parameterized by the graph degeneracy [13,14].

There is a class of algorithms for enumerating structures
(such as maximal cliques) in a static graph whose time

complexity is proportional to the size of the output—such
algorithms are called “output-sensitive” algorithms. Many
output-sensitive structure enumeration algorithms for static
graphs, including [8,32,50], can be seen as instances of a
general technique called “reverse search” [2]. The current
best bound on the time complexity of output-sensitive max-
imal clique enumeration on a dense graph G = (V , E) is
due to [32] which runs with O(M(n)) time delay (the inter-
val between outputting two maximal cliques), where M(n)

is the time complexity for multiplying two n × n matrices,
which is O(n2.376). Further work in this direction includes
[26] and [24], which consider the enumeration of maximal
independent sets in lexicographic order, [7], which consid-
ers the external memory model, and [36], which considers
uncertain graphs. Extensions to parallel frameworks such
as MapReduce, MPI, or shared memory are presented in
[9,35,44]. Note that there is a long line of prior work on
finding the maximum clique in a graph, e.g., [46,47,49] on
finding a maximum clique in a graph. However, these algo-
rithms are not directly useful to our work on enumerating
maximal cliques, since the maximum clique is a related, but
different concept.While everymaximum clique is amaximal
clique, there may be maximal cliques that are not maximum.

Maximal Clique Enumeration in a Dynamic Graph. In
[42], the authors present algorithms for tracking new and
subsumedmaximal cliques in a dynamic graph when a single
edge is added to the graph. These algorithms are not proved
to be change-sensitive, even for a single edge. The algorithm
due to Stix [42] for enumerating new maximal cliques needs
to consider (and filter out) maximal cliques in the original
graph that remain unaffected due to addition of new edge.
This can be wasteful, in terms of update time. Hence, such
an algorithm cannot be change-sensitive. For example, con-
sider the case of a graph growing from an empty graph on
10 vertices to a clique on 10 vertices. Only one new max-
imal clique has been formed by this batch, but numerous
maximal cliques arise during intermediate steps—if all these
are enumerated, then the time complexity of enumeration
is inherently large, even though the magnitude of change is
small.

Ottosen and Vomlel [37] present an algorithm to enumer-
ate the change in set of maximal cliques, based on running a
maximal clique enumeration algorithm on a smaller graph.
Their algorithm supports addition of a set of edges all at once.
In contrast to our work, there are no provable performance
bounds for this algorithm.Another difference is that the algo-
rithm of [37] may not maintain the exact change in the set of
maximal cliques, in certain cases, while our algorithms can
maintain the change in the set ofmaximal cliques exactly. Sun
et al. [43] present an algorithm for enumerating the change
in set of maximal cliques, based on iterating over the set of
maximal cliques of the original graph to derive the set ofmax-
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imal cliques of the updated graph. This need to iterate over
currently existing cliques makes the algorithm expensive,
especially for cases when the set of maximal cliques does
not change significantly due to the update in edge set. Prior
algorithms for maximal clique enumeration on a dynamic
graph are not proved to be change-sensitive and do not pro-
vide a provable bound on the cost to enumerate the change,
or on the magnitude of the change.

OtherQueries on aDynamicGraph.Otherworks onmain-
taining dense structures on a dynamic graph includemethods
for the maintenance of k-cores [30,40], k-truss communi-
ties [20], densest subgraph [3,33], and maximal bicliques
in a bipartite graph [10]. The main differences between
this work and [10] are that the latter focuses on bicliques,
which are complete structures in a bipartite graph, while our
work focuses on maximal cliques. The theory of the size of
change in the number of substructures is substantially dif-
ferent between cliques and bicliques. Further, the manner in
which the change in the set of substructures is derived is
different in the two cases. For instance, when new edges are
added, the change in the set of maximal cliques only involves
vertices that are in the 1-neighborhood of the newly added
edges, but this is not necessarily the casewith bicliques.Other
structures such as k-core, k-truss, and densest subgraph are
different from maximal cliques in that they do not require
complete connectivity among different vertices within the
structure. In [1], the definition of a dense structure is based on
the weights of the edges, and dense subgraphs are defined as
thosewhose total weight exceeds a certain threshold. Clearly,
maximal cliques are different than such structures, due to
their requirement of complete connectivity among vertices.

Roadmap:We present preliminaries in Sect. 2, followed by
bounds on magnitude of change in Sect. 3, algorithms for
enumerating the change in Sect. 4, discussions in Sect. 5,
and experimental results in Sect. 6.

2 Preliminaries

We consider a simple undirected graph without self-loops
or multiple edges. For graph G, let V (G) denote the set of
vertices in G and E(G) denote the set of edges in G. Let n
denote the size of V (G) and m denote the size of E(G). For
vertex u ∈ V (G), let ΓG(u) denote the set of vertices adja-
cent to u in G. When the graph G is clear from the context,
we use Γ (u) to mean ΓG(u). For edge e = (u, v) ∈ E(G),
letG−e denote the graph obtained by deleting e from E(G),
but retaining vertices u and v in V (G). Similarly, let G + e
denote the graph obtained by adding edge e to E(G). For
edge set H , let G + H (G − H ) denote the graph obtained
by adding (subtracting) all edges in H to (from) E(G). Let
Δ(G) denote the maximum degree of a vertex in G. When

the context is clear, we use Δ to mean Δ(G). For vertex
v ∈ V (G), let G − v denote the induced subgraph of G on
the vertex set V (G) − {v}, i.e., the graph obtained from G
by deleting v and all its incident edges. Let Cv(G) denote the
set of maximal cliques in G containing v.

Definition 1 (Change-Sensitive Algorithm)An algorithm for
a property P on a dynamic graph is said to be change-
sensitive if the time complexity of enumerating the change
in P due to a change in the set of edges of the graph is linear
in the magnitude of change (in P), and polynomial in the
size of the input graph, and the number of edges added to or
deleted from the graph.

By the phrase “magnitude of change,” we mean the num-
ber of structures that have changed with respect to the
property P . Note that the notion of a change-sensitive algo-
rithm for a dynamic graph is similar to the notion of an
“output-sensitive” algorithm for a static graph, whose time
complexity depends on the size of the output and the size of
the graph.

An algorithm for a dynamic graph is called incremental
if it can efficiently handle insertion of edges, decremen-
tal if it can handle deletion of edges, and fully dynamic if
it can handle both insertions and deletions. For example,
a parallel algorithm due to Simsiri et al. [41] is an incre-
mental algorithm for graph connectivity, an algorithm due
to Thorup [45] is a decremental algorithm, and one due to
Wulff-Nilsen [51] is a fully dynamic algorithm. We present
change-sensitive incremental and decremental algorithms for
maximal clique maintenance. Our fully dynamic algorithm
for maximal clique maintenance is, however, not change-
sensitive.

Results for Static Graphs:We present some known results
about maximal cliques on static graphs. Nearly 50years ago,
Moon and Moser [34] considered the question: “what is the
maximum number of maximal cliques that can be present
in an undirected graph on n vertices”, and gave the follow-
ing answer. Let f (n) denote the maximum possible number
of maximal cliques in a graph on n vertices. A graph on
n vertices that achieves f (n) maximal cliques is called a
“Moon–Moser” graph.

Theorem 1 (Theorem 1, Moon and Moser [34])

f (n) = 3
n
3 if n mod 3 = 0

= 4 · 3 n−4
3 if n mod 3 = 1

= 2 · 3 n−2
3 if n mod 3 = 2

We use as a subroutine an output-sensitive algorithm for
enumerating all maximal cliques within a (static) graph,
using time proportional to the number of maximal cliques.
There are multiple such algorithms, for example, due to
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Tsukiyama et al. [50], and due to Makino and Uno [32].
We use the following result (Theorem 2) due to Chiba and
Nishizeki since it provides one of the best possible time com-
plexity bounds for general graphs. Better results are possible
for dense graphs [32], and our algorithm can use other meth-
ods as a subroutine also. Let the arboricity of a graph be
defined as the minimum number of forests into which the
edges of the graph can be partitioned. The arboricity of a
graph is no more than the maximum vertex degree, but could
be significantly smaller [8].

Theorem 2 (Chiba and Nishizeki [8]) There is an algorithm
MCE(G) that enumerates all maximal cliques in graph G in
time O(αmμ) where μ is the number of maximal cliques in
G, and α and m are, respectively, the arboricity of G and the
number of edges in G. The space complexity of the algorithm
is O(n + m), where n is the number of vertices in G.

Note that the space complexity excludes the size of the output,
which may be much larger.

3 Magnitude of change

From prior work [34], the maximum number of maximal
cliques in an n-vertex graph, denoted by f (n), is known (see
Theorem 1). The result of [34] is relevant for static graphs.
In the case of a dynamic graph, a different question is more
relevant: What is the maximum change in the set of maxi-
mal cliques, that can result from the addition of edges to the
graph? This will give us a bound on the worst-case complex-
ity of enumerating the change in the set of maximal cliques.

3.1 Maximum possible change inmaximal cliques

We consider the maximum change in the set of maximal
cliques upon the addition of edges to the graph. For an integer
n, let λ(n) be the maximum size of Λ(G,G + H) taken over
all possible n vertex graphs G and edge sets H . We present
the following result with nearly tight bounds on the value
of λ(n). Interestingly, our results show that it is possible to
change the set of maximal cliques by as much as ≈ 2 · 3n/3

by the addition of only a few edges to the graph.

Theorem 3

16

9
f (n) ≤ λ(n) < 2 f (n) if(n mod 3) = 0

λ(n) = 2 f (n) if(n mod 3) = 1
11

6
f (n) ≤ λ(n) < 2 f (n) if(n mod 3) = 2

Proof We first note that λ(n) ≤ 2 f (n) for any integer n. To
see this, note that for any graph G on n vertices and edge set

H , it must be true from Theorem 1 that |C(G)| ≤ f (n) and
|C(G+H)| ≤ f (n). Since |Λnew(G,G+H)| ≤ |C(G+H)|
and |Λdel(G,G+H)| ≤ |C(G)|, we have |Λ(G,G+H)| =
|Λnew(G,G+H)|+ |Λdel(G,G+H)| ≤ |C(G)|+ |C(G+
H)| ≤ 2 f (n).

The result of Moon and Moser [34] states that for n ≥ 2,
there is only one graph Hn on n vertices (subject to isomor-
phism) that has f (n) maximal cliques. We show below that
there is an error in this result for the case (n mod 3) = 1.
Note that the result is still true in the cases in which (n
mod 3) equals 0 or 2. Thus, for the cases where (n mod 3)
is 0 or 2, adding or deleting edges from Hn leads to a graph
with fewer than f (n) maximal cliques, so that we can never
achieve a change of 2 f (n) maximal cliques. Thus, we have
that for (n mod 3) equal to 0 or 2, λ(n) is strictly less than
2 f (n). The case of (n mod 3) = 1 is discussed separately
(see Observation 1 below).

Next, we show that there exists a graph G on n vertices
and an edge set H such that the size of Λ(G,G + H) is
large. See Fig. 2 for an example. Graph G is constructed on
n vertices as follows. Let ε > 3 be an integer. Choose ε

vertices in V (G) into set V1. Let V2 = V \V1. Edges of G
are constructed as follows.

– Each vertex in V1 is connected to each vertex in V2.
– Edges are added among vertices of V2 to make the
induced subgraph on V2 a Moon–Moser graph on (n−ε)

vertices. Let G2 denote this induced subgraph on V2,
which has f (n − ε) maximal cliques.

– There are no edges among vertices of V1 in G.

It is clear that for each maximal clique c in G2 and vertex
v ∈ V1, there is a maximal clique in G by adding v to c.
Thus, the number of maximal cliques in G is |V1| · |C(G2)|.
Hence, we have

|C(G)| = ε · f (n − ε) (1)

We add edge set H to the graph as follows. H consists
of edges connecting vertices in V1, to form a Moon–Moser
graph on ε vertices. Let G ′ = G+H . We note that C(G) and
C(G ′) are disjoint sets. To see this, note that each maximal
clique in G contains exactly one vertex from V1, since no
two vertices in V1 are connected to each other in G. On the
other hand, each maximal clique in G ′ contains more than
one vertex from V1, since each vertex v ∈ V1 is connected
to at least one other vertex in V1 in G ′. Hence, Λ(G,G ′) =
C(G) ∪ C(G ′), and

|Λ(G,G ′)| = |C(G)| + |C(G ′)| (2)

To compute |C(G ′)|, note that since each vertex in V1 is
connected to each vertex in V2, for each maximal clique in
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Fig. 2 A large change in set of maximal cliques when a few edges are
added. The vertex set is partitioned into V1 and V2. On the left is G,
the original graph on n vertices where each vertex in V1 is connected
to each vertex in V2, and V1 is an independent set. In G, the induced
subgraph G2 on vertex set V2 forms a Moon–Moser graph. On the

right is G ′, the graph formed after adding edge set H to G such that the
induced subgraph on vertex set V1 becomes a Moon–Moser graph. Let
c be a clique in G2, and c′ a new clique in G ′ formed among vertices in
V1. Note that c ∪ {v} was a maximal clique in G and is now subsumed
by a new maximal clique c ∪ c′

Fig. 3 On the left is Hn where
each vertex v in Si is connected
to each vertex u in S j , i 	= j . On
the right is Gn which is formed
from Hn by adding four edges to
S0. For the case (n
mod 3) = 1, Hn and Gn are
non-isomorphic graphs on n
vertices, with f (n) maximal
cliques each, showing a
counterexample to Theorem 2 of
Moon and Moser [34]

G ′(V1) and eachmaximal clique inG ′(V2), we have a unique
maximal clique in G ′. There are f (ε) maximal cliques in
G ′(V1) and f (n − ε) maximal cliques in G ′(V2), and hence,
we have

|C(G ′)| = f (ε) · f (n − ε) (3)

Putting together Eqs. 1, 2, and 3 we get

|Λ(G,G ′)| = (ε + f (ε)) · f (n − ε) (4)

Let F(ε) = (ε+ f (ε)) f (n−ε). We compute the value of
ε(> 3) at which F(ε) is maximized. To do this, we consider
three different cases depending on the value of (n mod 3)
and omit the calculations. If n mod 3 = 0, F(ε) is maxi-
mized at ε = 4 and the maximum value F(4) = 16

9 f (n). If n

mod 3 = 1, F(ε) is maximized at ε = 4 and F(4) = 2 f (n).
And finally if n mod 3 = 2, F(ε) is maximized at ε = 5
and F(5) = 11

6 f (n). This completes the proof. 
�

3.2 An error in a result of Moon andMoser (1965)

Moon and Moser [34], in Theorem 2 of their paper, claim
“For any n ≥ 2, if a graph G has n nodes and f (n) cliques,
then G must be equal to Hn ,” where Hn is a specific graph,
described below. We found that this theorem is incorrect for
the case when (n mod 3) = 1.

The error is as follows (see Fig. 3). For (n mod 3) = 1,
the graph Hn is constructed on vertex set Vn = {1, 2, . . . , n}
by taking vertices {1, 2, 3, 4} into a set S0 and divid-
ing the remaining vertices into groups of three, as sets
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S1, S2, . . . , Sn−4
3
. In graph Hn , edges are added between any

two vertices u, v such that u ∈ Si , v ∈ S j and i 	= j . This

graph Hn has 4 · 3 n−4
3 maximal cliques, since we can make

a maximal clique by choosing a vertex from S0 (4 ways),
and one vertex from each Si , i > 0 (3 ways for each such
Si , i = 1 . . . (n − 4)/3).

Contradicting Theorem 2 in [34], we show there is
another graph Gn that is different from Hn , but still has
the same number of maximal cliques. Gn is the same as
Hn , except that the vertices within S0 are connected by a

cycle of length 4. In this case, we can still construct 4 · 3 n−4
3

maximal cliques, since we can make a maximal clique by
choosing two connected vertices in S0 (4 ways to do this),
and one vertex from each Si , i > 0 (3 ways for each such
Si , i = 1 . . . (n − 4)/3).

Observation 1 For the case (n mod 3) = 1, there are two
distinct non-isomorphic graphs Hn and Gn described above,

that have 4 · 3 n−4
3 maximal cliques, which is the maximum

possible. This is a correction to Theorem 2 of Moon and
Moser [34], which states that there is only one such graph,
Hn.

This observation enables us to have λ(n) = 2 f (n) for
the case (n mod 3) = 1. By starting with graph Hn and
by adding edges to make it Gn , we remove f (n) maximal
cliques and introduce f (n) maximal cliques, leading to a
total change of 2 f (n).

4 Enumeration of change in set of maximal
cliques

In this section we present algorithms for enumerating the
change in the set of maximal cliques. In Sect. 4.1, we first
present an algorithm with provable theoretical properties for
enumerating new maximal cliques that arise due to the addi-
tion of a batch of edges, followed by an algorithm with good
practical performance in Sect. 4.2. In Sect. 4.3, we present
an algorithm for enumerating subsumed cliques due to the
addition of new edges. We then consider the decremental
case where edges are deleted from the graph in Sect. 4.4. For
graph G and edge set H , when the context is clear, we use
Λnew to mean Λnew(G,G + H) and similarly Λdel to mean
Λdel(G,G + H).

4.1 Enumeration of newmaximal cliques

When a set of edges H is added to the graph G, let G ′ denote
the graphG+H .One approach to enumeratingnewcliques in
G ′ is to simply enumerate all cliques in G ′ using an output-
sensitive algorithm such as [8], suppress cliques that were
also present in G, and output the rest. The above approach

is not change-sensitive. To see why, consider a case when
the initial graph G is the union of a Moon–Moser graph
on (n − 3) vertices, along with three isolated vertices a, b,
and c. Suppose three edges are added in H so that vertices
{a, b, c} form a triangle. In going from graph G to G + H ,
the set of maximal cliques has changed as follows: A new
clique {a, b, c} has been formed and three existing (trivial)
cliques {a}, {b}, and {c} have been subsumed. Following the
above approach, all cliques in G and in G + H are enu-
merated, which has a cost of Ω(3

n
3 ), since there are Θ(3

n
3 )

cliques in G and in G + H . The size of change is small (a
constant), while the cost of enumeration is very large (expo-
nential in the number of vertices). Approaches that involve
enumerating maximal cliques in a certain graph, followed
by suppressing cliques that do not belong to Λnew, run the
risk of sometimes having to suppress most of the cliques that
were enumerated, and such approaches will not be change-
sensitive.

In the following, we present a simple approach that leads
to a change-sensitive algorithm for new cliques. At its core,
our algorithm constructs a set of subgraphs of G + H such
that each maximal clique in any of these subgraphs is a
new maximal clique, i.e., belongs to Λnew(G,G ′). Further,
each element of Λnew(G,G ′) is a maximal clique in one of
these subgraphs. This construction allows the algorithm to
directly output cliques from Λnew(G,G ′), without enumer-
ating cliques that do not belong to Λnew(G,G ′). This can
form the basis of a change-sensitive algorithm. There is an
additional duplicate elimination step in our algorithm, whose
goal is to only to suppress enumerating the same clique mul-
tiple times.

For edge e ∈ H , let C ′(e) denote the set of maximal
cliques in G ′ that contain edge e. We first present the fol-
lowing observation that Λnew, the set of all new maximal
cliques, is precisely the set of all maximal cliques in G ′ that
contain at least one edge from H .

Lemma 1

Λnew(G,G ′) = ∪e∈HC ′(e)

Proof We first note that each clique in Λnew must contain at
least one edge from H . We use proof by contradiction. Con-
sider a clique c ∈ Λnew. If c does not contain an edge from
H , then c is also a clique in G, and hence cannot belong
to Λnew. Hence, c ∈ C ′(e) for some edge e ∈ H , and
c ∈ ∪e∈HC ′(e). This shows that Λnew ⊆ ∪e∈HC ′(e). Next,
consider a clique c ∈ ∪e∈HC ′(e). It must be the case that
c ∈ C ′(h) for some h in H . Thus, c is a maximal clique in
G ′. Since c contains edge h ∈ H , c cannot be a clique in
G. Thus, c ∈ Λnew. This shows that ∪e∈HC ′(e) ⊆ Λnew.


�
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Fig. 4 Illustration of Lemma 2
that, the set of new maximal
cliques in G ′ containing
e = (4, 5), i.e., the single clique
{2, 3, 4, 5}, is exactly the set of
all maximal cliques in G ′

e

We now consider efficient ways of enumerating cliques
from ∪e∈HC ′(e). For an edge e ∈ H , the enumeration of
cliques inC ′(e) is reduced to the enumeration of allmaximal
cliques in a specific subgraph of G ′, as follows. Let u and
v denote the endpoints of e, and let G ′

e denote the induced
subgraph of G ′ on the vertex set {u, v} ∪ {ΓG ′(u) ∩ ΓG ′(v)},
i.e., the set of vertices adjacent to both u and v in G ′, in
addition to u and v. For example, see Fig. 4 for construction
of G ′

e.

Lemma 2

For each e ∈ H , C ′(e) = C(G ′
e)

Proof First, we show that C ′(e) ⊆ C(G ′
e). Consider a clique

c in C ′(e), i.e., a maximal clique in G ′ = G + H containing
edge e. Hence, c must contain both u and v. Every vertex
in c (other than u and v) must be connected both to u and
to v in G ′, and hence must be in ΓG ′(u) ∩ ΓG ′(v). Hence,
c must be a clique in G ′

e. Since c is a maximal clique in
G ′, and G ′

e is a subgraph of G ′, c must also be a maximal
clique in G ′

e. Hence, we have that c ∈ C(G ′
e), leading to

C ′(e) ⊆ C(G ′
e).

Next, we show that C(G ′
e) ⊆ C ′(e). Consider any maxi-

mal clique d in G ′
e. We note the following in G ′

e: (1) Every
vertex in G ′

e (other than u and v) is connected to u as well
as v; (2) u and v are connected to each other. Due to these
conditions, d must contain both u and v, and hence also
edge e = (u, v). Clearly, d is a clique in G ′ that contains
edge e. We now show that d is a maximal clique in G ′. Sup-
pose not, and we could add vertex v′ to d and it remained
a clique in G ′. Then, v′ must be in ΓG ′(u) ∩ ΓG ′(v), and
hence v′ must be in G ′

e, so that d is not a maximal clique in
G ′

e, which is a contradiction. Hence, it must be that d is a
maximal clique in G ′ that contains edge e, and d ∈ C ′(e).


�
Following Lemma 2, in Fig. 4, {2, 3, 4, 5} is a new max-
imal clique in G ′ that contains e = (4, 5) ∈ H , H =
{(3, 5), (4, 5)}. Note that {2, 3, 4, 5} is also a maximal clique
in G ′

e.
Our change-sensitive algorithm, IMCENewClq (Algo-

rithm 1) is based on the above observation and uses an
output-sensitive algorithm MCE, due to [8], to enumerate all
maximal cliques in G ′

e.

Algorithm 1: IMCENewClq(G, H )
Input: G - Input graph, H - Set of ρ edges added to G
Output: All cliques in Λnew , each clique output once

1 Consider edges of H in an arbitrary order e1, e2, . . . , eρ

2 G ′ ← G + H
3 for i = 1 . . . ρ do
4 e ← ei = (u, v)

5 Ve ← {u, v} ∪ {ΓG′ (u) ∩ ΓG′ (v)}
6 G ′

e ← graph induced by Ve on G ′
7 Generate cliques using MCE(G ′

e). For each clique c thus
generated, output c only if c does not contain an edge e j for
j < i

We now present the time–space complexity analysis of
IMCENewClq. Our analysis shows that IMCENewClq is
a change-sensitive algorithm for enumerating new maximal
cliques, since its time complexity is polynomial in the max-
imum degree Δ and linear in the number of new maximal
cliques |Λnew| and in the number of new edges ρ.

Theorem 4 IMCENewClq enumerates the set of all new
cliques arising from the addition of H in time O(Δ3ρ|Λnew|)
where Δ is the maximum degree of a vertex in G ′. The space
complexity is O(|E(G + H)| + |V (G + H)|).
Proof We first prove the correctness of the algorithm. From
Lemmas 1 and 2 , we have that by enumerating C(G ′

e) for
every e ∈ H , we enumerate Λnew. Our algorithm does
exactly that, and enumerates C(G ′

e) using Algorithm MCE.
Note that each clique c ∈ Λnew is output exactly once though
cmay be in C(G ′

e) for multiple edges e ∈ H . This is because
c is output only for edge e that occurs earliest in the prede-
termined ordering of edges in H .

For the runtime, consider that the algorithm iterates over
the edges in H . In an iteration involving edge e, it constructs
a graph G ′

e and runs MCE(G ′
e). Note that the number of ver-

tices in G ′
e is no more than Δ + 1 and is typically much

smaller, since it is the size of the intersection of two vertex
neighborhoods in G ′. Since the arboricity of a graph is less
than its maximum degree, α′ ≤ Δ where α′ is the arboricity
of G ′

e. Further, the number of edges in G ′
e is O(Δ2). The set

of maximal cliques generated in each iteration is a subset of
Λnew; hence, the number of maximal cliques generated from
each iteration is no more than |Λnew|. Applying Theorem 2,
we have that the runtime of each iteration is O(Δ3|Λnew|).

123



Incremental maintenance of maximal cliques in a dynamic graph 359

Within each iteration, the time taken to generate the sub-
graph G ′(e) is O(Δ2), which is dominated by the term
O(Δ3|Λnew|). For each new edge added, there must be a
new maximal clique that contains this edge. Hence, as long
as ρ > 0, i.e., at least one new edge is added, Λnew is a non-
empty set. The overall runtime of each iteration is bounded
by O(Δ3|Λnew|). Since there are ρ iterations, the result on
runtime follows.

For the space complexity, we note that the algorithm does
not store the set of new cliques in memory at any point.
The space required to construct G ′

e is linear in the size of
G ′ = (G+H), and so is the space requirement of Algorithm
MCE(G ′

e), from Theorem 2. Hence, the total space require-
ment is linear in the number of edges in G + H . 
�

4.2 Practical algorithm for enumerating new
maximal cliques

Now we present an efficient algorithm FastIMCENewClq
for enumerating new maximal cliques when new edges are
added. This is based on the theoretically efficient algorithm
IMCENewClq and incorporates improvements that we dis-
cuss next.

The algorithm IMCENewClq uses as a subroutine Algo-
rithm MCE (Chiba and Nishizeki [8]) to enumerate maximal
cliques within a subgraph of G. While MCE is theoretically
output-sensitive, in practice, it is not the most efficient algo-
rithm for maximal clique enumeration. The most efficient
algorithms for maximal clique enumeration in a static graph
are typically based on depth-first search using a technique
called “pivoting,” such as the algorithm due to Tomita et al.
[48]. While the runtime of these algorithms are not prov-
ably output-sensitive, they are faster in practice than those
algorithms that are provably output-sensitive.

In particular, the algorithm due to Tomita et al. [48], which
we call TTT, is a recursive algorithm based on backtracking
that takes as input a graph G and enumerates C(G). In its
recursive procedure, TTTmaintains a currently found clique
c, not necessarily maximal. It tries to extend c to get a larger
clique, declaring c to be maximal when no further vertices
can be added. Vertices are considered for addition to c in a
carefully chosen order, and cliques that were enumerated in
prior recursive calls are not explored again through the main-
tenance of a set of vertices whose exploration is complete.
The recursive search procedure backtracks upon reaching a
maximal clique and continues until all maximal cliques are
enumerated. TTT is shown to be worst-case optimal with a
runtime of O(3n/3) for an n vertex graph [48]. It is possible
to directly improve the performance of the IMCENewClq
algorithm by using TTT in place of MCE. In the following,
we show how to do even better.

Reducing Redundant Clique Computation: Note that
IMCENewClq (Algorithm 1) may compute the same clique
c multiple times. For example, if c ∈ C ′(e1) and c ∈ C ′(e2)
for two distinct edges e1 and e2, c will be enumerated (at
least) twice, once when considering e1 in the for loop, and
once while considering edge e2. In line 7, duplicates are sup-
pressed prior to emitting the cliques, by outputting c only for
one of the edges among {e1, e2}. However, the algorithm still
pays the computational cost of computing a clique such as c
multiple times.

Algorithm2:TTTExcludeEdges(G, K ,cand,fini,

E)

Input: G - The input graph, K - a non-maximal clique to extend
cand - Set of vertices that may extend K , fini - vertices that
have been used to extend K
E - set of edges to exclude

1 if (cand = ∅) & (fini = ∅) then
2 Output K and return

3 pivot ← (u ∈ cand ∪ fini) such that u maximizes the size
of cand ∩ ΓG(u)

4 ext ← cand − ΓG(pivot)

5 for q ∈ ext do
6 Kq ← K ∪ {q}
7 if Kq ∩ E 	= ∅ then
8 cand ← cand − {q} ; fini ← fini ∪ {q}
9 continue

10 candq ← cand ∩ ΓG(q) ; finiq ← fini ∩ ΓG(q)

11 TTTExcludeEdges(G, Kq ,candq ,finiq , E)

12 cand ← cand − {q} ; fini ← fini ∪ {q}

Wenowpresent amethod,AlgorithmFastIMCENewClq,
to avoid such redundant clique computation. The idea is to
consider the edges in H in a specific order e1, e2, . . .. When
enumerating all cliques in C(ei ), the algorithm prunes out
search paths that lead to cliques containing edge e j , j < i .
This way, each new clique is enumerated exactly once.

For this purpose, Algorithm FastIMCENewClq uses
as a subroutine Algorithm TTTExcludeEdges (Algo-
rithm 2), an extension of the TTT algorithm, which enu-
merates all maximal cliques of an input graph that avoid
a given set of edges. While TTT simply takes a graph as
input and enumerates all maximal cliques within the graph,
TTTExcludeEdges takes an additional input, a set of
edges E , and only enumerates those cliques within the graph
that do not contain any edge from E . We present a recur-
sive version of TTTExcludeEdges, which takes as input
five parameters—an input graph G, three sets of vertices K ,
cand, andfini, and a set of edges E . The algorithmoutputs
every maximal clique in G that contains (a) all vertices in K ,
(b) zero or more vertices in cand, (c) none of the vertices in
fini, and (d) none of the edges in E .

123



360 A. Das et al.

Algorithm 3: FastIMCENewClq(G, H)

Input: G - input graph
H - Set of ρ edges being added to G

Output: Cliques in Λnew = C(G + H)\C(G)

1 G ′ ← G + H ; E ← φ

2 Consider edges of H in an arbitrary order e1, e2, . . . , eρ

3 for i ← 1, 2, . . . , ρ do
4 e ← ei = (u, v)

5 Ve ← {u, v} ∪ {ΓG′ (u) ∩ ΓG′ (v)}
6 G ← Graph induced by Ve on G ′
7 K ← {u, v}
8 cand ← Ve\{u, v} ; fini ← ∅
9 S ← TTTExcludeEdges(G, K ,cand,fini, E)

10 Λnew ← Λnew ∪ S
11 E ← E ∪ ei

A description of TTTExcludeEdges is presented in
Algorithm 2, and an example of its output is presented in
Fig. 5. This algorithm follows the structure of the recursion
in the TTT algorithm and incorporates additional pruning of
search paths, by avoiding paths that contain an edge from E .
In particular, in line 7 of TTTExcludeEdges, if the clique
Kq (formed after adding vertex q to K ) contains an edge from
E , then the rest of the search path, whichwill continue adding
more vertices, is not explored further. Instead, the algorithm
backtracks and tries to extend the clique K by adding other
vertices.

Our algorithm for enumerating new maximal cliques
FastIMCENewClq (Algorithm 3) is an adaptation of
IMCENewClq (Algorithm 1) where we use
TTTExcludeEdges instead of the output-sensitive MCE.
In particular, while enumerating all new cliques contain-
ing edge ei , FastIMCENewClq enumerates only those
cliques that exclude edges {e1, e2 . . . , ei−1}. Note that in
FastIMCENewClq, there is no further duplicate suppres-
sion required, since the call to TTTExcludeEdges does
not return any cliques that contain an edge from E . This is
more efficient than first enumerating duplicate cliques, fol-
lowed by suppressing duplicates before emitting them. This

idea makes FastIMCENewClq more efficient in practice
than IMCENewClq.

The correctness of FastIMCENewClq follows in a sim-
ilar fashion to that of Algorithm IMCENewClq proved in
Theorem 4, except that we also need a proof of the guaran-
tee provided by Algorithm TTTExcludeEdges, which we
establish in the following lemma.

Lemma 3 TTTExcludeEdges(G, K ,cand,fini, E)

(Algorithm 2) returns all maximal cliques c in G such that
(1) c contains all vertices from K , (2) remaining vertices in c
are chosen from cand, (3) c contains no vertex from fini,
and (4) c does not contain any edges in E .
Proof We note that TTTExcludeEdgesmatches the orig-
inal TTT algorithm, except for lines 7 to 9. Hence, if we do
not consider lines 7 to 9 in TTTExcludeEdges, the algo-
rithm becomes TTT, and by the correctness of TTT ([48,
Theorem 1]), all maximal cliques c in G are returned. Now
consider lines 7 to 9 in TTTExcludeEdges. Clearly, (1),
(2), (3) are preserved for each maximal clique c generated
by TTTExcludeEdges. Now to complete the correct-
ness proof of TTTExcludeEdges, along with proving
(4), we also need to prove that each maximal clique c
in G that does not contain any edge in E is generated
by TTTExcludeEdges. Assume there exists a maximal
clique c in G, which contains an edge in E , which is output
by the TTTExcludeEdges algorithm; assume the offend-
ing edge is e = (q, v). Suppose that vertex v was added to
our expanding clique first. Then, as q is processed, line 7 of
the algorithm will return back true as e ∈ Kq and E , thus q
will not be added to the clique, and c will not be reported as
maximal, a contradiction.

Next, we show if a maximal clique does not con-
tain an edge from E , the clique will be generated. Con-
sider a maximal clique c in G that contains no edge
from E but c is not generated by TTTExcludeEdges.
The only reason for c not being generated is the inclu-
sion of lines 7 to 9 (of TTTExcludeEdges) to TTT
resulting in TTTExcludeEdges, because, otherwise, c
would be generated due to correctness of TTT. So in

Fig. 5 Enumeration of new maximal cliques from G to G ′ due to addi-
tion of new edges (3, 6) and (4, 6). Order the new edges as (3, 6)
followed by (4, 6). There are two new maximal cliques containing

edge (4, 6), {4, 5, 6} and {2, 3, 4, 6}. With TTTExcludeEdges, only
{4, 5, 6} is enumerated when considering edge (4, 6), since {2, 3, 4, 6}
has already been enumerated while considering edge (3, 6)
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TTTExcludeEdges, during the expansion of K toward
c, there exists a vertex q ∈ c such that line 7 in
TTTExcludeEdges is satisfied and c never gets a chance
to be generated as q is excluded from cand and included in
fini (line 8). This implies that c contains at least an edge
in E , because otherwise, condition at line 7 would never be
satisfied. This is a contradiction and completes the proof. 
�

4.3 Enumeration of subsumedmaximal cliques

We now consider the enumeration of subsumed cliques, i.e.,
the set C(G)\C(G + H). A subsumed clique c′ still exists
in G ′ = G + H , but is now a part of a larger clique in
G ′. Such a larger clique must be a part of Λnew. Thus, an
algorithm idea is to check each new clique c inΛnew to see if
c subsumed anymaximal clique c′ inG. In order to seewhich
maximal cliques c may have subsumed, we note that any
maximal clique subsumed by cmust also be amaximal clique
within subgraph c − H . Thus, one approach is to enumerate
all maximal cliques in c − H and for each such generated
clique c′, we check whether c′ is maximal in G by verifying
maximality of c′ inG. This algorithm can be implemented in
space proportional to the size of G + H , since it can directly
use an algorithm for maximal clique enumeration such as
MCE.

However, in practice, checking each potential clique for
maximality is a costly operation since it potentially needs to
consider the neighborhood of every vertex of the clique. An
alternative approach to avoid this costly maximality check
is to store the set of maximal cliques C(G) and check if c′
is in C(G). The downside of this approach is that the space
required to store the clique set can be high.

Hence, we considered another approach to subsumed
cliques, where we reduce the memory cost by storing
signatures ofmaximal cliques as opposed to the cliques them-
selves. The signature is computed by representing a clique
in a canonical fashion (for instance, representing the clique
as a list of vertices sorted by their ids.) as a string followed
by computing a hash of this string. By storing only the sig-
natures and not the cliques themselves, we are able to check
if a clique is a current maximal clique, and at the same time,
pay far lesser cost in memory when compared to storing the
clique itself. The procedure is as described in Algorithm 4.
With this approach of storing signatures instead of storing the
cliques themselves, there is a (small) chance of collision of
signatures, which means that the signatures of two different
cliques C1 and C2 might be the same. This might result in
false positives, meaning that some cliques might wrongly be
concluded as subsumed cliques. However, the probability of
the event that the hash values of twodifferent cliques are same
is extremely low with the use of a hashing algorithm such as

64-bit murmur hash.1 In our experiments, we observed that
the set of subsumed cliques reported with the use of signa-
ture is always the same as the actual set of subsumed cliques.
If it is extremely important to avoid false positives, we can
explicitly check a potential subsumed clique for maximality
in the original graph.

In Algorithm 4, lines 4 to 12 describe the procedure for
computing S, the set of all maximal cliques in c − H , and
lines 13 to 15 decide which among the maximal cliques in
S are subsumed. For computing maximal cliques in c − H ,
we only consider the edges in H that are present in c as we
can see in line 4. We prove that S is the set of all maximal
cliques in c − H in the following lemma using an induction
on the number of edges in H those are present in c:

Lemma 4 In Algorithm 4, for each c ∈ Λnew, S contains all
maximal cliques in c − H.

Proof Note thatwe only consider the set of all edges H1 ⊆ H
which are present in c (line 4). It is clear that computing
maximal cliques in c−H is equivalent to computingmaximal
cliques in c − H1.

We prove the lemma using induction on k, the number of
edges in H1. Suppose k = 1 so that H1 is a single edge, say
e1 = {u, v}. Note that c−H1 has twomaximal cliques, c\{u}
and c\{v}. It can be verified that in Algorithm 4 cliques c\{u}
and c\{v} are inserted into S, thus proving the base case.

Suppose that for any set H1 of size k, it is true that all
maximal cliques in c− H1 have been generated using induc-
tion hypothesis. Consider a set H ′

1 = {e1, e2, ..., ek+1} with
(k + 1) edges. Now each maximal clique c′ in c − H1 either
remains a maximal clique within c− H ′

1 (if at least one end-
point of ek+1 is not in c′), or leads to two maximal cliques in
c − H ′

1 (if both endpoints of ek+1 are in c′). Thus, lines 4 to
12 in Algorithm 4 generate all maximal cliques in c − H . 
�

We show that the above is a change-sensitive algorithm
for enumerating Λdel in the case when the number of edges
ρ in H is a constant. In the following lemma (Lemma 5),
we present the time and space complexity of IMCESubClq
where we use an induction on ρ for proving the time com-
plexity. Note that the time complexity is change-sensitive
when ρ is a constant because the time complexity is linear
on the size of Λnew.

Lemma 5 Algorithm IMCESubClq (Algorithm 4) enumer-
ates all cliques in Λdel = C(G)\C(G ′) using time O(2ρ |
Λnew|). The space complexity of the algorithm is O(|E(G ′)|+
|V (G ′)|+|C(G)|). The algorithm can also be adapted to run
in time O(2ρ |E(G)||Λnew|)and space O(|E(G ′)|+|V (G ′)|.
Proof We first show that every clique c′ enumerated by the
algorithm is indeed a clique in Λdel . To see this, note that c′

1 https://sites.google.com/site/murmurhash/.
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Algorithm 4: IMCESubClq(G, H , D,Λnew)

Input: G - Input Graph
H - Edge set being added to G
D - Set of maximal cliques in G
Λnew - set of new maximal cliques in G + H

Output: All cliques in Λdel = C(G)\C(G + H)

1 Λdel ← ∅
2 for c ∈ Λnew do
3 S ← {c}
4 for e = (u, v) ∈ E(c) ∩ H do
5 S′ ← φ

6 for c′ ∈ S do
7 if e ∈ E(c′) then
8 c1 = c′\{u} ; c2 = c′\{v}
9 S′ ← S′ ∪ c1 ; S′ ← S′ ∪ c2

10 else
11 S′ ← S′ ∪ c′

12 S ← S′

13 for c′ ∈ S do
14 if c′ ∈ D then
15 Λdel ← Λdel ∪ c′
16 D ← D\c′

must be a maximal clique in G, due to explicitly checking
the condition. Further, c′ is not a maximal clique in G ′, since
it is a proper subgraph of c, a maximal clique in G ′. Next,
we show that all cliques in Λdel are enumerated. Consider
any subsumed clique c′

1 ∈ Λdel . It must be contained within
c1 − H , where c1 ∈ Λnew. Moreover, c′

1 will be a maximal
cliquewithin c1−H andwill be enumerated by the algorithm
according to Lemma 4.

For the time complexity we show that for any c ∈ Λnew,
the maximum number of maximal cliques in c−H = c − H
is 2ρ . Proof is by induction on ρ. Suppose ρ = 1 so that
H is a single edge, say e1 = {u, v}. Then clearly c−H has
two maximal cliques, c\{u} and c\{v}, proving the base
case. Suppose that for any set H of size k, it was true
that c−H has no more than 2k maximal cliques. Consider
a set H ′′ = {e1, e2, . . . , ek+1} with (k + 1) edges. Let
H ′ = {e1, e2, . . . , ek}. Subgraph c − H ′′ is obtained from
c − H ′ by deleting a single edge ek+1. By induction, we
have that c− H ′ has no more than 2k maximal cliques. Each
maximal clique c′ in c− H ′ either remains a maximal clique
within c − H ′′ (if at least one endpoint of ek+1 is not in c′),
or leads to two maximal cliques in c− H ′′ (if both endpoints
of ek+1 are in c′). Hence, the number of maximal cliques in
c− H ′′ is no more than 2k+1, completing the inductive step.

Thus, for each clique c ∈ Λnew, we need to check maxi-
mality for no more than 2ρ cliques in G. Note that a clique c′
is maximal in G if it is contained in C(G), the set of maximal
cliques inG. This can be done in constant time by storing the
signatures of maximal cliques and checking if the signature
of c′ is in the set of signatures of maximal cliques of G.

Algorithm 5: IMCED(G, H)

Input: G - Input Graph, H - Set of ρ edges being deleted
Output: All cliques in Λnew(G,G − H) ∪ Λdel(G,G − H)

1 Λnew ← ∅, Λdel ← ∅, G ′′ ← G − H
2 Λdel ← IMCENewClq(G ′′, H)

3 Λnew ← IMCESubClq(G ′′, H , C(G ′′),Λdel )

For the space bound, we first note that all operations in
Algorithm 4 except maximality check can be done in space
linear in the size of G ′. For maximality check we need space
O(|C(G)|) as we need to store the (signatures of) maximal
cliques of G. The only remaining space cost is the size of
Λnew, which can be large. Note that the algorithm only iter-
ates throughΛnew in a single pass. If elements ofΛnew were
provided as a stream from the output of an algorithm such
as IMCENewClq, then they do not need to be stored within
a container, so that the memory cost of receiving Λnew is
reduced to the cost of storing a single maximal clique within
Λnew at a time.

An alternative algorithm does not store C(G) (or hashes of
elements in C(G)). Instead, each time a potential subsumed
clique c′ is generated that is contained in a new clique c ∈
Λnew, we simply check c′ for maximality in G. This can
be done in time O(|E(G)|), by checking the intersections
of the different vertex neighborhoods—typical runtime for
maximality checking can be much smaller. 
�

4.4 Decremental case

Next, we consider the case when a set of edges H is deleted
from G. A set of edges H is deleted from graph G, and
we are interested in efficiently enumerating Λ(G,G − H).
The decremental case can be reduced to the incremental case
through the following observation.

Observation 2 Λdel(G,G − H) = Λnew(G − H ,G) and
Λnew(G,G − H) = Λdel(G − H ,G)

Proof Consider the first equation: Λdel(G,G − H) =
Λnew(G − H ,G). Let c ∈ Λdel(G,G − H). This means
that c ∈ C(G) and c /∈ C(G − H). Equivalently, c is
not a maximal clique in G − H , but upon adding H to
G−H , c becomes a maximal clique in G. Hence, it is equiv-
alent to say that c ∈ Λnew(G − H ,G). Hence, we have
Λdel(G,G − H) = Λnew(G − H ,G). The other equation,
Λnew(G,G − H) = Λdel(G − H ,G), can be proved simi-
larly. 
�

Thedecremental algorithm formaximal cliques is outlined
in Algorithm 5 (IMCED).
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Fig. 6 Change in the maximal cliques due to both addition and deletion
of edges. The initial graph G, graph G1 after deleting edge (b, c) from
G, resulting in new maximal cliques {a, c, d} and {a, b, d} and one
deleted maximal clique {a, b, c, d}, graph G2 after adding edges (a, e),
(e, d), (a, f ), and (d, f ) from G1 resulting in new maximal cliques

{a, e, d, c} and {a, b, d, f } and subsumed cliques {a, c, d}, {a, b, d},
{c, e}, and {b, f }. Note that the intermediate new cliques (at state G1)
{a, c, d} and {a, b, d} are only “transient” maximal cliques and are not
in the final graph G2

4.5 Fully dynamic case

Consider the fully dynamic case, where there is a set of inser-
tions (edge set H ) as well as deletions (edge set H ′) from
a graph. This can be processed as follows. First, we ensure
there is no overlap between H and H ′, i.e., H ∩ H ′ = ∅.
If this is not the case, we can simply remove overlapping
elements since they have no effect on the final graph. Next,
we enumerate the change following all the edge deletions,
followed by enumerating the change upon edge insertions.
Note, however, that this may not lead to a change-sensitive
algorithm. Intermediate cliques that are output may not be in
the final set of new or subsumed cliques. See Fig. 6 for an
example.

5 Discussion

Our incremental algorithm IMCE can be adapted to related
problems such as maintaining top-k maximal cliques. Also,
the techniques developed in the work can be used for the
maintenance of maximal cliques with additional search con-
text such as graph with labels at nodes or vertices.

Maintenance of top-k maximal cliques: Observe that the
vertices that correspond to the top-k maximal cliques are of a
high degree. More precisely, if the smallest size of the clique
among the current top-k maximal cliques is s, then we only
need to consider the vertices of the original graph whose
degree is at least (s − 1). Thus, given top-k maximal cliques
of G, we can update the top-k maximal cliques of the graph
G ′ = G + H using our incremental algorithm as follows:
(1) For computing new maximal cliques, we only enumerate
those with size at least s. We can do this by recursively delet-
ing vertices of degree smaller than s − 1 from the subgraph
used (G at line 6 of Algorithm 3), adding these vertices to
the fini set (line 8 of Algorithm 3), and then enumerating
maximal cliques of the updated graph containing the rest of
the vertices (by adding them to the cand set at line 8 of
Algorithm 3). This ensures that each maximal clique such

enumerated is of size at least s. (2) It is possible that some
of the maximal cliques in top-k may be subsumed by larger
new maximal cliques when new edges are added. The algo-
rithm for subsumed cliques can deal with this situation in the
following manner: Instead of checking for the containment
in the set of maximal cliques of the original graph, check for
the containment in the set of top-k maximal cliques (line 14
of Algorithm 4 where the set C contains only top-k maximal
cliques ofG instead of all maximal cliques ofG). Eventually,
as a result of subsumption, it might happen that the number
of maximal cliques is less than k in the final set. For han-
dling this situation, it is required to generate the set of all
new maximal cliques and sort them in decreasing order of
size.

Maintenance of maximal cliques with search context:
Search contexts are relevant in “keyword”-based or “topic”-
based searches, or in the combinations of the two, such as
finding communitieswith people interested in a specific topic
[17,21]. The network in this context contains labels attached
to nodes/edges. We can use IMCE for maintaining maximal
cliques such that each of the nodes in the maximal cliques
contains one or a group of specified keywords/labels. There
might be two cases.

First, consider the casewhen vertices contain labels. Here,
we should consider only those vertices to add to cand set
(line 8 of Algorithm 3) from the graph G ′

e that contains the
specified labels and put rest of the vertices in fini set. This
way, we can use IMCE for maintaining only those maximal
cliques that contain specified labels to the vertices. Next, we
consider the case when edges contain labels. For generating
maximal cliques with each of the edges containing specified
labels, we consider Algorithm 2 and add an additional check
for constraints on edge labels whenever we add a vertex q to
K (in line 6 of the algorithm).

Boundedness of incremental computation: In the context
of a recent theoretical framework for incremental graph algo-
rithms [16], the time complexity of IMCE is bounded when
the size of the batch ρ is fixed. Our analysis shows that when
the original graph is large and the changes in the graph are
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small, the time complexity of computing the change is pro-
portional to the size of the change in the set of maximal
cliques,which follows the definition of bounded computation
as defined in [16]. Also, IMCE admits localizable computa-
tions [16] as we focus on the subgraphs local to the changes
in the graph structure for enumerating the changes.

6 Experimental evaluation

In this section, we present results from empirical evaluation
of the performance of algorithms proposed in this paper. We
address the following questions: (1)What is the computation
time and memory usage of our algorithms? (2) How does the
computation time compare with the magnitude of the change
when new edges are added (incremental algorithm), when
existing edges are deleted (decremental algorithm), and in the
fully dynamic case, when edges are both added and deleted?
(3) What is the impact on the computation time of our incre-
mental algorithm when the stream of new edges are located
around high-/low-degree vertices of the original graph? (5) In
the incremental case, can we achieve a space–time trade-off
in subsumed clique computation, depending on whether or
not we store the (signatures) of the set of maximal cliques?
(6) How do our algorithms compare with prior works?

6.1 Datasets

We consider graphs from the Stanford large graph database
[29], KONECT—The Koblenz Network Collection,2 and
Network Repository3: dblp-coauthor is a co-authorship
network where each vertex represents an author and there is
an edge between two authors if they have a common pub-
lication. flickr-growth is a social network of Flickr
users where each vertex represents a user and there exists
a directed edge if two users are friends. ca-cit-HepTh is
a citation network in high-energy physics theory in a period
from January 1993 to April 2003 where each vertex repre-
sents a paper and there is an edge from “a” to “b” if paper
“a” cited paper “b”. wikipedia-growth is a hyperlink
network of the English Wikipedia where each vertex rep-
resents a Wikipedia page and there is an edge from a page
wiki1 to a page wiki2 if there is a hyperlink of wiki2 from
wiki1. facebook-friendship is a friendship network
where vertex represents user and there is an edge between
two users if they are friends. In each graph, edges have time
stamps of creation. We convert all these graphs into simple
undirected graphs. If there are multiple time stamp edges
between two vertices, we take the edge with the earliest time

2 http://konect.uni-koblenz.de/.
3 http://networkrepository.com/.

stamp. soc-livejournal is a social network of Live-
Journal where vertex represents user and there is an edge
between two users when they are friends. As the original
graph does not contain time stamps at its edges, we synthet-
ically generate time stamps of edges by assigning an integer
uniformly chosen at random between 0 and the number of
edges in the network to each edge. A summary of the graphs
used in this experiment is given in Table 1. In our experi-
ments, for incremental computation we start with the empty
graph and at each iteration, we add a batch of new edges
(in the increasing order of time stamps) and enumerate the
change in maximal cliques after the addition. For decremen-
tal computation, we start with the original graph and in each
iteration, delete a batch of existing edges (in the decreasing
order of time stamps), and enumerate the change in maximal
cliques after the deletion.

Next, we generate three synthetic RMAT [5] graphs.
An RMAT-n-m graph has n vertices and m edges. We
use RMAT-50K-5M and RMAT-100K-10M for address-
ing graphs with specific edge stream patterns (edge stream
around high-/low-degree vertices) and a high-density graph
RMAT-100-4000 for addressing the behavior of the main-
tenance algorithms with the change in the density of the
graph.

For generating the edge stream for the fully dynamic
case, we used the first two RMAT graphs. We first ran-
domly assign a label of either 0 (for edge deletion) or
1 (for edge addition) to each edge. We then assign a
randomly chosen time stamp to each edge of the graph.
For creating the initial graphs RMAT-50K-5M-INIT and
RMAT-100K-10M-INIT, we remove all the edges from
the original graph those are marked 1. We then arrange
all edges in increasing order of time stamps for cre-
ating the edge stream for RMAT-50K-5M-INIT. For
RMAT-100K-10M-INIT, we order all the edges by group-
ing them based on the source vertex. Note that a batch of
edges contains a mix of new edges to add and existing edges
to delete. For experimenting with the stream of edges around
high-degree vertices, we choose the 1000 highest degree ver-
tices of the initial graph and consider all the edges with a
label of 1 that are attached to at least one high-degree vertex.
Similarly for experimenting with the stream of edges around
low-degree vertices, we choose the 10,000 lowest degree ver-
tices of the initial graph and consider all the edges with label
1 that are attached to at least a low-degree vertex. For cre-
ating the edge stream of RMAT-100-4000, we follow an
approach similar to soc-livejournal.

We also consider a variant of the Erdős–Rényi random
graph model G(n, N ) graph for our experiments where n is
the number of vertices and N is the number of edges. In these,
we first generate graphs according to the standard Erdős–
Rényi random graph model [15], and we “plant” cliques of
a certain size. We call these graphs ER-1M-20M with 1M
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Table 1 Input graphs and their aggregate statistics

Dataset Nodes Edges Density # Maximal cliques Maximum degree Degeneracy

dblp-coauthor 1,282,468 5,179,996 6.3 × 10−6 1,219,320 1, 522 118

flickr-growth 2,302,925 22,838,276 8.6 × 10−6 > 400B 27, 937 600

wikipedia-growth 1,870,709 36,532,531 2.08 × 10−5 131,652,971 226, 073 206

soc-livejournal 4,033,137 27,933,062 3.4 × 10−6 38,413,665 2, 651 213

ca-cit-HepTh 22,908 2,444,798 0.0093 > 400B 8, 718 561

facebook-friendship 63,731 817,035 4 × 10−4 1,539,038 1, 098 52

RMAT-100-4000 100 4,000 0.8 10,180 99 65

RMAT-50K-5M 50K 5M 0.004 232,400,002,455 10, 496 328

RMAT-100K-10M 100K 10M 0.002 144,600,002,154 15, 408 371

ER-1M-20M 1M 20M 4 × 10−5 19,978,809 81 29

ER-2M-15M 2M 15M 7.5 × 10−6 14,998,954 59 29

vertices and 20M edges, and ER-2M-15M with 2M vertices
and 15M edges. We plant 10 random cliques each of size 20
on ER-1M-20M and 10 random cliques each of size 30 on
ER-2M-15M, with the goal of finding the planted cliques
through incremental computation.

6.2 Experimental setup and implementation details

We implemented all the algorithms in Java on a 64-bit
Intel(R)Xeon(R)CPUwith 16GDDR3RAMwith 13G JVM
heap memory.

Algorithm Implementations: We first evaluate our incre-
mental algorithm IMCE for maintenance of maximal
cliques when new edges are added. IMCE consists of
FastIMCENewClq for enumerating new maximal cliques
and IMCESubClq for enumerating subsumed maximal
cliques.We also implemented the theoretically efficient algo-
rithm IMCENewClq for enumerating new maximal cliques.
Since FastIMCENewClq performed better in all cases,
we present results for FastIMCENewClq. We also imple-
mented a variant of IMCENewClq by replacing MCE with
TTT and name this variant as IMCENewClqTTT.

We evaluate a variant of IMCE where we use a different
strategy for computing subsumed cliques in IMCESubClq.
Note that deciding subsumed cliques by checking if it is in
the set of all maximal cliques of the graph before update
requires us to store the set of maximal cliques (or their sig-
natures) of the original graph as in IMCESubClq. In this
variant, we modify line 14 of IMCESubClq where instead
of checking for containment, we directly check for maxi-
mality of each c′ (line 13 of algorithm IMCESubClq). We
name this variant of IMCE as IMCE − NoCliqueStore.
IMCE − NoCliqueStore uses less memory than IMCE,
but has to pay an additional overhead to check formaximality
for each candidate subsumed clique.

Next, we evaluate Algorithm 5 (IMCED) which handles
the decremental case. When the graph changes to G − H
starting from G due to the deletion of a batch H , we com-
pute the new maximal cliques and delete maximal cliques
following Observation 2. We also experimentally evaluate
the fully dynamic case with a mixture of addition and dele-
tion of edges. For dealing with the fully dynamic case,
we first remove all edges that are both added and deleted
(as these edges do not contribute to the change in the
set of maximal cliques). We then run IMCED for comput-
ing the changes due to the deletion of edges, followed by
IMCE − NoCliqueStore for computing the changes due
to the addition of edges. Finally, we generate the overall
changes in the set of maximal cliques due to the deletion
and addition of edges.

We consider the following prior algorithms for compari-
son with IMCE: (1) STIX (Stix [42]) computes on a dynamic
graph by incrementally adding one edge at a time; (2) OV
(Ottosen and Vomlel [37]) computes on a dynamic graph by
incrementally adding a set of edges; and (3) MCMEI (Sun
et al. [43]) computes on a dynamic graph by incrementally
adding one edge at a time. We also consider the following
prior algorithms for comparison with our decremental algo-
rithmIMCED: (1) STIXD (Stix [42]) computes on a dynamic
graph by deleting one edge at a time and (2) MCMED (Sun
et al. [43]) computes on a dynamic graph by deleting one
edge at a time. For the algorithms (STIX, MCMEI, STIXD,
MCMED) that support only single edge addition/deletion, we
simulate the addition (deletion) of a batch of edges by insert-
ing (deleting) the edges one at a time.We also compareIMCE
and IMCED with baseline algorithms Naive and NaiveD,
respectively, where Naive handles the incremental case by
running a static algorithm TTT each time a set of new edges
is added to the graph and explicitly computing the symmetric
difference; NaiveD similarly handles the decremental case
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by running TTT each time a set of existing edges is deleted
from the graph.

Metrics:We evaluate the performance of algorithms through
the following metrics: (1) total computation time for deter-
mining newmaximal cliques and subsumedmaximal cliques
when a batch of new edges is added to the graph; 2) change-
sensitiveness, i.e., total computation time as a function of the
size of the total change. For defining the size of change in
the theoretical analysis (Sect. 4), we used the total number
of cliques that were added and deleted. We call this metric
“change-in-number.” Note that there are other natural ways
to quantify the size of change. If one were to actually enu-
merate the change, each clique that is added (or deleted)
could be written as a set of its constituent vertices. Hence, it
is natural to consider another metric for the size of change,
equal to the sum of the sizes of all cliques that are a part
of the change. We call this metric “change-in-nodes.” We
further consider another metric “change-in-edges,” defined
as the sum of the numbers of edges in all the cliques that
are a part of the change. For example, suppose there are two
new maximal cliques of sizes 3 and 4, and one subsumed
clique of size 2. The change-in-number is 3, since there are
a total of three cliques to enumerate. The change-in-nodes is
3+ 4+ 2 = 9. The change-in-edges is

(3
2

) + (4
2

) + (2
2

) = 10,

since a clique on k vertices has
(k
2

)
edges. We consider

all three metrics, change-in-number, change-in-nodes, and
change-in-edges, to measure the size of change. (3) Memory

cost, which includes the space required to store the graph as
well as additional data structures used by the algorithm; and
(4) cumulative computation time (through a series of incre-
mental updates) as a function of the size of the batch.

6.3 Discussion of experimental results

Incremental computation time: Figure 7 shows the com-
putation time of IMCE for computing the change in the
set of maximal cliques when batches of edges are added.
The batch size is set to ρ = 1000. The size of the
change is shown on the left y-axis, and the time for com-
puting the change is shown on the right y-axis. We see
that the time for computing the change in the set of max-
imal cliques becomes greater as iterations progress for
graphs flickr-growth, soc-livejournal, and
facebook-friendship and remains roughly the same
for other graphs. Figure 8 shows the breakdown of compu-
tation time of IMCE into computation time for new maximal
cliques (FastIMCENewClq) and computation time for sub-
sumed maximal cliques (IMCESubClq).

Strategies for subsumed cliques: Next, we compare the com-
putation time of IMCE with IMCE − NoCliqueStore
as shown in Fig. 9. Clearly, IMCE is faster than
IMCE − NoCliqueStore, because cost of checking for
maximality in computing subsumed cliques as in
IMCE − NoCliqueStore is higher than that of check-

(a) (b) (c)

(d) (e) (f)

Fig. 7 Computation time for enumerating the change in set of maximal cliques for IMCE, and size-of-change per batch (batch size ρ = 1000). The
left y-axis shows the size of change, and the right y-axis shows the computation time in seconds
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(a) (b) (c)

(d) (e) (f)

Fig. 8 Computation time (in s) broken down into time for new and subsumed cliques with batch size ρ = 1000. Average time in the y-axis is the
average taken over the total computation time (new + subsumed) of the iterations in each of the ranges on the x-axis

ing for containment in the set of maximal cliques in
computing subsumed cliques as in IMCE. We do not
observe much difference in computation time for the graphs
dblp-coauthor and ca-cit-HepTh because
dblp-coauthor is small and sparse; ca-cit-HepTh
is small and sparse at the initial states of the computation
compared to the other graphs. Therefore, the sizes of neigh-
borhood of the vertices are small that makes the maximality
checking easier.

Impact of edge insertion pattern on computation time: We
study the computation time of IMCE when the new edges
center around high-degree and low-degree vertices. We
have used synthetic graphs RMAT-50K-5M-INIT and
RMAT-100K-10M for this evaluation. We consider new
edges around 1K highest degree nodes for creating the edge
stream around high-degree nodes and consider new edges
around 10K least degree nodes for creating the edge stream
around low-degree nodes. We observe that the changes in the
set ofmaximal cliques are large (Fig. 10) when the new edges
center around high-degree vertices of the initial graph.On the
other hand, the changes in the set ofmaximal cliques are small
when the new edges center around low-degree vertices of the
initial graph and the computation time is small. For instance,
addition of 655 batches (with batch size 100) of edges around

low-degree vertices, starting with RMAT-50K-5M-INIT,
takes around 0.6s with cumulative size of change (in the
number of maximal cliques) 93K, whereas addition of 655
batches of new edges (with the same batch size) centering
around high-degree vertices takes around 137s with cumu-
lative size of change (in the number of maximal cliques)
1.8 × 107 starting with the same initial graph.

Benefits of using TTTExcludeEdges for new maximal
cliques:Wecompare the computation timesofIMCENewClq
(which uses MCE to enumerate cliques), IMCENewClqTTT
(which uses TTT), and FastIMCENewClq (which uses
TTTExcludeEdges), and the results are shown in Table 2.
We observe that FastIMCENewClq is significantly faster
than IMCENewClqTTT—the difference can be attributed to
the additional pruning in TTTExcludeEdges when com-
pared to TTT. Further, IMCENewClqTTT is much faster
than IMCENewClq—the difference can be attributed to the
use of TTT which is faster than MCE.

On finding planted cliques in synthetic graphs: We observe
that IMCE can find all “planted” cliques in the synthetic
G(n, N ) graphs in approximately 20min, whereas the other
algorithms (STIX, OV, MCMEI) could not find a single
planted clique in an hour. Results are shown in Table 3.
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(a) (b) (c)

(d) (e) (f)

Fig. 9 Difference in computation time due to different strategies for
subsumed cliques computation: once by storing the maximal cliques
and another by directly checking for maximality (without storing the

maximal cliques). We use batch size 1000 for all graphs except for
ca-cit-HepTh where we use batch size of 100

Fig. 10 Performance of IMCE
with edge stream centering
around 1K highest degree
vertices considering batch size
100

(a) (b)

Table 2 Cumulative
computation time (in s) for new
maximal cliques with batch size
ρ = 100

Dataset IMCENewClq IMCENewClqTTT FastIMCENewClq

dblp-coauthor (9603) 7774 62 24

flickr-growth (25,000) 7161 343 125

wikipedia-growth (26,795) 446 310 30

soc-livejournal (151,997) 7200 474 302

ca-cit-HepTh (233) 7464 71 15

facebook-friendship (8171) 2100 89 55

The number of batches for which the cumulative time is computed is in parentheses
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Table 3 Total time taken to find all the planted cliques incrementally
(ρ = 100)

Dataset IMCE IMCENewClq

ER-1M-20M 19min 24min

ER-2M-15M 15min 15min

Other algorithms (STIX, OV, MCMEI) cannot find a single planted
clique within an hour

Decremental computation time: Figure 11 shows the com-
putation time of IMCED for computing the changes in the set
of maximal cliques when batches of edges are deleted. For
this experiment, we choose a batch size of 100 edges. For the
graph flickr-growth, we had to prune the graph down
by 15 million edges, to get a reasonable turnaround time for
the computation. We used a batch size of 10 for this graph.
Similarly, in the case of ca-cit-HepTh, we had to prune
the graph down by 1.9 million edges and used the rest of the
graph as the initial graph and used the batch size of 100 for
performing the decremental computation starting from that
point.

Fully dynamic computation time: Figure 12 shows the
behavior of the algorithm in a fully dynamic setting, where
a batch contains both the edges for addition and the edges
for deletion. For this experiment, we considered synthetic
RMAT graphs RMAT-50K-5M and RMAT-100K-10M.

Impact of graph density on incremental case: Figure 13
shows the computation time of IMCE − NoCliqueStore
upon adding a batch of 100 edges of the initial graphs with
different densities. For generating the initial graphs, at every
iteration i , we add 100, 000× i edges in stream to the empty
graph and we insert the batch of next 100 edges to eval-
uate the performance of IMCE − NoCliqueStore. For
this experiment, we do not use IMCE because for most of
the graphs (flickr-growth, wikipedia-growth,
soc-livejournal, ca-cit-HepTh) the number of
maximal cliques at different densities is so large that those
cannot fit in the main memory and IMCE requires the set of
maximal cliques of the initial graph for computing the sub-
sumed cliques. We observe that the cost of computing the
changes increases as the graph becomes denser. The changes
are especially noticeable for graphs flickr-growth,
soc-livejournal, ca-cit-HepTh. Sometimes, the
computation time is lower in the denser state of the graph.
This is because (1) the changes in the set of maximal cliques
due to the insertion of a batch are smaller than the others
and (2) the computation time is dominated by the size of the
changes in the set of maximal cliques.

Impact of graph density on decremental case: Tables 4
and 5 show the computation time of the algorithm IMCED
when the density of the initial graph changes. For doing

(a) (b) (c)

(d) (e) (f)

Fig. 11 Computation time for enumerating the change in set of maxi-
mal cliques for decremental case when the edges are deleted from the
graph instead of insertion, and size-of-change per batch (batch size

ρ = 100 except for flickr-growth where the batch size is 10).
The left y-axis shows the size of change, and the right y-axis shows the
computation time in seconds
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Fig. 12 Fully dynamic case
where both addition and
deletion of edges are performed
in a streaming manner. Each
batch (of size 100) in the stream
consists of mixed edges

(a) (b)

(a) (b) (c)

(d) (e) (f)

Fig. 13 Performance of IMCE when the density of the graph changes over time

Table 4 Decremental computation time (in s) of different algorithms
upon changing density of RMAT-100-4000 by deleting edges in
reverse order (of the stream for incremental computation) starting from
the original graph

Initial edges Initial density IMCED STIXD MCMED

3.5K 0.7 243.8 1,496 > hour

3K 0.6 4.2 15 94

2.5K 0.5 0.3 1.2 5

2K 0.4 0.06 0.6 0.6

1K 0.2 0.003 0.5 0.05

The reported computation time is for deleting a batch of next 100 edges
from initial graph (at different densities)

Table 5 Decremental computation time (in s) of different algorithms
upon changing density of dblp-coauthor by deleting edges in
reverse order (of the stream for incremental computation) starting from
the original graph

Initial edges Initial density IMCED STIXD MCMED

4,179,996 5 × 10−6 0.001 7.8 26.5

3,179,996 3.9 × 10−6 0.001 6.7 21.2

2,179,996 2.7 × 10−6 0.002 5.7 20.4

1,179,996 1.4 × 10−6 0.005 4.9 15.8

179,996 2.2 × 10−7 0.002 4.1 11.4

The reported computation time is for deleting a batch of next 100 edges
from initial graph (at different densities)
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Table 6 Cumulative computation time for adding the same set of edges
once in incremental computation and then in decremental computation

Dataset IMCE IMCED

dblp-coauthor 1113 7219

wikipedia-growth 224 7627

facebook-friendship 101 342

RMAT-100-4000 564 4274

The initial state of each graph for the incremental computation is the
final state for the same graph in the decremental computation and vice
versa. Batch size is 1000 for all graphs except RMAT, where batch size
is 100

this, at each iteration, we remove the edges from the orig-
inal graph for decreasing the density of the graph and then
perform the decremental computation on deleting a batch
of next 100 edges. For example, for dblp-coauthor
graph, at first iteration we remove 1 million initial edges
and on the rest of the graph we perform the decremental
computation, and in second iteration, we remove 2 million
initial edges and then perform the decremental computation.
Similarly, we remove multiple of 500 edges from the origi-
nal graph RMAT-100-4000 in each iteration. We observe
that for RMAT-100-4000 graph, the decrease in compu-
tation time is noticeable when the density of the initial
graph changes, whereas for dblp-coauthor graph, no
such trend is observable. This is because RMAT-100-4000
graph is very dense (with density more than 0.8), whereas
dblp-coauthor graph is very sparse (with density 6.3×
10−6). Therefore, the change in the density due to the dele-
tion of edges is not significant in dblp-coauthor as in
RMAT-100-4000.

Incremental versus decremental computation: Table 6
shows the comparison of IMCE and IMCED on dblp-
coauthor, facebook-friendship, wikipedia-
growth, and RMAT-100-4000. In this study, we
started the incremental computation from the empty graph,
and then starting from the point where we stopped the incre-
mental computation, we started decremental computation
with reverse order of the edges of the incremental stream.
We observe that the overall computation time for decremen-
tal computation is higher than the incremental computation
on the same set of edges. This is because the computation
cost for generating subsumed cliques is lower in the incre-
mental computation than the computation cost of generating
new cliques (that are subsumed in the incremental computa-
tion) in the decremental computation as in the decremental
computation, we directly check for maximality instead of
containment check by presenting the set of maximal cliques
of the graph before update as in the incremental computation.

Change-sensitiveness: The change in the computation time
as a function of the size of change is shown in Figs. 7, 13, and

10 for incremental computation; in Fig. 11 for decremental
computation; and in Fig. 12 for fully dynamic computation.

We observe that the computation time is almost pro-
portional to the size of change. Note that the metrics
change-in-nodes and change-in-edges better capture the
notion of change-sensitiveness than the metric change-in-
number because the actual cost of computation depends on
the neighborhood structure of the vertices.

As we have discussed in Sect. 4.4 that the fully dynamic
case might not become change-sensitive because there
might be many intermediate cliques computed that are not
in the final output, we tried to reproduce this case on
RMAT-100K-10M graph by creating edge stream grouped
by the source vertex. Indeed, we observed that there aremany
intermediate cliques generated as a result of the change in
the graph that are not in the final output, but this size (of
intermediate cliques that are not in the final output) is much
smaller than the actual changes that are in the final output.
Therefore, this wasteful computation time is dominated by
the time for computing the actual change and thus we see the
change-sensitive behavior in this case as well.

Memory consumption: Figure 14 shows the main memory
used by IMCE. For this experiment, we consider two differ-
ent versions of the algorithm—onewith storing the clique set
explicitly, and onewith only storing the hashes of the cliques.
As expected, the use of a hash function reduces the mem-
ory consumption considerably. The difference in memory
consumption between the two versions is especially visible
in graphs flickr-growth, wikipedia-growth,
soc-livejournal and facebook-friendship,
where the sizes of the maximal cliques are considerably
larger. We used the 64-bit murmur4 hash function on the
canonical string representation of a clique, for computing
the hash signature. Note that there are some “spikes” in the
plot for dblp-coauthor, where the memory consump-
tion suddenly increased. On this graph, we observed that
the number of maximal cliques at the point corresponding
to the spike in memory usage also increased suddenly and
then subsequently decreased. We do not show the memory
consumption for ca-cit-HepTh because the number of
maximal cliques is small compared to the other graphs till
the state we executed the incremental computation for this
graph, and therefore, the difference in memory consumption
with storing the maximal cliques and with storing the hashes
of the maximal cliques is not noticeable (less than 1 MB).

Cumulative computation time versus batch size:We also
studied the effect of the batch size (ρ) on the cumulative
computation time of IMCE while keeping the total number
of edges added the same. For example, a total of 10,000 edges
would lead to 1000 batches if we used a batch size of 10, and

4 https://sites.google.com/site/murmurhash/.
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(a) (b) (c)

(d) (e)

Fig. 14 Memory cost of IMCE with and without using hash function (ρ = 1000)

Table 7 Cumulative
computation time (in s) of IMCE
with different batch sizes

Dataset ρ = 1 ρ = 10 ρ = 100 ρ = 1000 ρ = 3 log2 Δ

dblp-coauthor (5,179,996) 1659 1335 1198 1289 1252

flickr-growth (3649 ×103) 7028 6784 6465 7159 6062

wikipedia-growth (28,798 ×103) 6973 6567 7160 6995 6513

soc-livejournal (17,633 ×103) 6892 6876 7176 7095 6871

ca-cit-HepTh (19,000) 29 24 1076 3728 22

facebook-friendship (817,035) 100 97 97 94 96

Note that Δ is the maximum degree of the graph before update. Numbers in parentheses indicate the total
number of edges inserted incrementally

Table 8 Comparison of incremental computation time(s) of IMCE and Naive for adding a single batch with different batch sizes starting from a
graph with 1 million initial edges

Dataset ρ = 100 ρ = 1000 ρ = 10000 ρ = 100, 000 ρ = 1, 000, 000
Naive IMCE Naive IMCE Naive IMCE Naive IMCE Naive IMCE

dblp-coauthor 4.5 0.001 4.6 0.009 4.8 0.07 5 1.5 9.5 67.3

flickr-growth 10 0.002 10 0.03 9.6 0.4 11 3.4 50.9 127

wikipedia-growth 8.7 0.003 8.5 0.02 9.4 0.2 9.7 2.4 21.9 25.9

ρ indicates the batch size

Table 9 Comparison of decremental computation time(s) of IMCED and NaiveD for deleting a single batch with different batch sizes starting
from the original graph

Dataset ρ = 100 ρ = 1000 ρ = 10000 ρ = 100, 000
NaiveD IMCED NaiveD IMCED NaiveD IMCED NaiveD IMCED

dblp-coauthor 22.6 0.02 22.3 0.2 22.6 6.4 25.3 >720

facebook-friendship 19.4 0.3 19.5 0.6 19.2 4.8 14.9 192

ρ indicates the batch size
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Table 10 Cumulative time (in s)
for enumerating new and
subsumed cliques

Dataset STIX OV MCMEI IMCE

dblp-coauthor (499) 3870 295 7212 0.6

flickr-growth (288) 3911 306 7214 0.2

wikipedia-growth (305) 4258 309 7216 0.3

soc-livejournal (156) 4077 299 7234 0.1

ca-cit-HepTh (310) 7291 17 11 1

facebook-friendship (1895) 7776 193 6853 1

Bold values highlight the improved runtime over prior work
The number of batches is shown in parentheses. Batch size ρ = 100 except ca-cit-HepTh, where ρ = 10
edges

100 batches if we used a batch size of 100. Table 7 shows
the results for different batch sizes. There is no observable
trend found by varying the batch size for all the input graphs
except for ca-cit-HepTh. For this graph, we found that
with the increase in batch size from 10 to 100, the number of
subsumed clique candidates that are not actually subsumed
increases quite a lot. This affects the overall computation
time. The possible reason is that the density of other graphs is
smaller, the sizes of new cliques for those graphs are smaller,
and the search for subsumed cliques is short, even for large
batch size. From this observation, it seems, for dense graph,
it is good to use small batch size to reduce the redundant
computation in the subsumed clique computation such as in
the case of ca-cit-HepTh graph.

Comparison with Baseline: We compare IMCE (IMCED)
with algorithm Naive (NaiveD), which recomputes the set
ofmaximal cliques each time there is an addition (deletion) of
edges, and show the results in Table 8 (Table 9). As expected,
both IMCE and IMCED significantly outperform Naive and
NaiveD when the number of edges inserted/deleted in a
batch is small (less than 1 million for Naive and less than
105 for NaiveD, in our experiments). When the number
of edges is larger than 1 million, Naive outperforms IMCE.
This is not surprising, since as the number of edges in a batch
increases, the size of the change also increases, and there is
lesser benefit in using an incremental algorithm.

However, Naive and NaiveD have an additional prob-
lem related to memory consumption, since they have to
store the set of maximal cliques in order to compute the
symmetric difference. For instance, NaiveD cannot execute
even for a single edge deletion for wikipedia-growth,
due to insufficient memory. On flickr-growth and
ca-cit-HepTh, NaiveD also comes to a near standstill
since it tries to store the set of maximal cliques in memory.
Since IMCE and IMCED do not store the set of all maxi-
mal cliques, they do not run into similar issues of memory
consumption.

Comparison with prior works: We also compare the
computation time of IMCE with prior works as shown
in Table 10. Clearly, IMCE is many orders of magni-

tude (more than 1000) faster than prior algorithms for
most of the input graphs except for ca-cit-HepTh and
facebook-friendship because (1) these graphs are of
small sizes compared to the other graphs and (2) the num-
ber of maximal cliques at the initial states of these graphs is
small compared to the other graphs. One reason why IMCE
is so much faster than prior works is that IMCE systemati-
cally selects a local subgraph of the entire graph to search for
new and subsumed maximal cliques. This reduces the com-
putation effort considerably. OV tried to achieve such a local
computation, butOV is not provably change-sensitive for new
maximal cliques, and its computation of subsumed cliques
is expensive since the algorithm iterates over the entire set
of maximal cliques for deriving subsumed cliques. A similar
strategy of iterating over the entire set of maximal cliques
for deriving maximal clique set of the updated graph as in
MCMEImakes the algorithm less efficient. Next, we compare
IMCE with STIX, ov, and MCMEI upon changing (increas-
ing) the density of the input graphs and we present the results
in Tables 11 and 12, and we compare IMCED with STIXD
and MCMED upon changing (decreasing) the density of the
input graph and we present the results in Tables 4 and 5. Note
that we cannot compare other larger graphs because all of the
prior works require the set of maximal cliques of the initial
graph to start the computation and the number of maximal
cliques at different states of graph is so large that they can-
not fit in the main memory. We observe that both IMCE and
IMCED are magnitude of order faster than the prior works
which is as expected except for RMAT-100-4000 where
the performance of OV is similar to that of IMCE. This is
because the graph RMAT-100-4000 is small and the num-
ber of maximal cliques of this graph is also small compared
to the other graphs.

Summary of results: To summarize the results of our exper-
iments, we note the following: (1) IMCE and IMCED are
change-sensitive: The computation time to enumerate the
change in the set of maximal cliques is proportional to the
magnitude of the change in the set of maximal cliques.
(2) IMCE and IMCED are two to three orders of magni-
tude faster than prior algorithms. (3) The computation time
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Table 11 Incremental computation time (in s) of different algorithms
upon changing the density of dblp-coauthor at each computation
with batch size 100

Initial edges Initial density IMCE STIX OV MCMEI

1M 1.2 × 10−6 < 1ms 16 1.6 16.2

2M 2.4 × 10−6 < 1ms 20.8 0.9 21.3

3M 3.6 × 10−6 0.02 376.2 4.8 28.8

4M 4.9 × 10−6 0.002 26.2 1.6 33

5M 6 × 10−6 0.003 42.4 2.4 33.8

Table 12 Incremental computation time (in s) as a function of the den-
sity of RMAT-100-4000 using batch size 100

Initial edges Initial density IMCE STIX OV MCMEI

1K 0.2 0.005 1.4 0.01 0.05

2K 0.4 0.04 544 0.07 1

2.5K 0.5 0.2 > 1h 0.3 10

3K 0.6 2.6 > 1h 3 220.8

3.5K 0.7 146 > 1h 129 > 1h

for the maintenance increases when the density of the graph
increases. (4) The use of hash signatures for storing maximal
cliques greatly reduces the memory consumption.

7 Conclusion

We presented change-sensitive algorithms for maintaining
the set of maximal cliques in a graph that is changing due
to the addition or deletion of edges. We showed nearly tight
bounds for the magnitude of change in the set of maximal
cliques, due to a change in the set of edges. Our results show
that even for the addition of a small number of edges, the
change in the number of maximal cliques can be exponen-
tial in the size of the graph, in the worst case. Motivated by
this, we designed change-sensitive algorithms, whose time
complexity of enumerating the change is proportional to the
magnitude of the change. Experimental results show that our
algorithms are practical and improve on prior work by orders
of magnitude.

Many interesting research questions remain open, includ-
ing (1) design of more efficient change-sensitive algorithms
for computing Λnew(G,G + H), especially for enumerat-
ing subsumed cliques; (2) computation of the exact value
of λ(n), the maximum magnitude of change; (3) design of
change-sensitive algorithms for other dense structures in a
graph such as quasi-cliques.
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